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INTRODUCTION 
 

Myocardial ischemia/reperfusion (I/R) injury occurs at 

the stage of reperfusion due to reactive oxygen species 

(ROS) overproduction, calcium overload, the 

inflammatory response and microvascular damage [1, 

2]. Mitochondria contribute to myocardial I/R injury by 

inducing various pathological processes [3–8]. First, 

most ROS are generated and released by mitochondria 

when electron transport chain activity is reduced. 

Second, mitochondria serve as calcium pumps in 

cardiomyocytes, so they can contribute to intracellular 

calcium overload when the mitochondrial calcium  

 

uniporter is dysregulated. Third, mitochondria-induced 

oxidative stress and cardiomyocyte death initiate an 

inflammatory response to repair the damaged 

myocardium. Fourth, although the content of 

mitochondria in endothelial cells is relatively low, 

mitochondrial morphologic disorder has been observed 

in cardiac microvascular injury following I/R injury. 

Therefore, several studies have identified mitochondria 

as the primary targets of strategies to prevent cardiac 

I/R damage. 

 

Mitochondria are renewable organelles. Damaged 

mitochondrial fragments can be metabolized by 
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ABSTRACT 
 

Cardiac ischemia/reperfusion injury is associated with reduced mitochondrial turnover and regeneration. There 
is currently no effective approach to stimulate mitochondrial biogenesis in the reperfused myocardium. In this 
study, we investigated whether melatonin could increase mitochondrial biogenesis and thus promote 
mitochondrial homeostasis in cardiomyocytes. Cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) 
injury with or without melatonin treatment, and various mitochondrial functions were measured. H/R injury 
repressed mitochondrial biogenesis in cardiomyocytes, whereas melatonin treatment restored mitochondrial 
biogenesis through the 5’ adenosine monophosphate-activated protein kinase (AMPK)/peroxisome 
proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) pathway. Melatonin enhanced 
mitochondrial metabolism, inhibited mitochondrial oxidative stress, induced mitochondrial fusion and 
prevented mitochondrial apoptosis in cardiomyocytes subjected to H/R injury. The melatonin-induced 
improvement in mitochondrial biogenesis was associated with increased cardiomyocyte survival during H/R 
injury. On the other hand, silencing of PGC1α attenuated the protective effects of melatonin on cardiomyocyte 
viability, thereby impairing mitochondrial bioenergetics, disrupting the mitochondrial morphology, and 
activating mitochondrial apoptosis. Thus, H/R injury suppressed mitochondrial biogenesis, while melatonin 
activated the AMPK/PGC1α pathway and restored mitochondrial biogenesis, ultimately protecting the 
reperfused heart. 
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mitophagy and then regenerated through mitochondrial 

biogenesis [9–11]. Mitophagy determines the 

degradation rate of old mitochondria, whereas 

mitochondrial biogenesis sustains mitochondrial 

population turnover [12–14]. Defective mitophagy has 

been observed in cardiac I/R injury, and is associated 

with mitochondrial dysfunction in cardiomyocytes and 

cardiac microvascular endothelial cells [15, 16]. 

Similarly, mitochondrial biogenesis was found to be 

inhibited in a mouse model of cardiac I/R injury; thus, 

improving mitochondrial biogenesis is considered to be 

a promising method of alleviating cardiac I/R injury 

[17, 18]. However, there is not yet an effective drug to 

promote mitochondrial biogenesis in the heart.  

 

Melatonin, a biological rhythm-related hormone, 

significantly protects the heart against cardiac I/R injury 

[19, 20]. The cardioprotective mechanisms of melatonin 

include the protection of mitochondria, the suppression 

of inflammation and the inhibition of oxidative stress 

[21–25]. Mitochondria seem to be the first targets of 

melatonin treatment [26–28]. Melatonin can normalize 

mitochondrial oxidative stress, thus stabilizing the 

mitochondrial membrane potential and promoting 

adenosine triphosphate (ATP) synthesis. In addition, 

melatonin regulates mitochondrial morphological 

alterations such as fission and fusion in the heart during 

I/R injury. Melatonin also improves mitophagy by 

inducing optic atrophy 1 (OPA1), FUN14 domain 

containing 1 and Parkin [7, 21, 29, 30]. Thus, melatonin 

promotes mitochondrial homeostasis. 

 

Although melatonin has been reported to accelerate 

mitochondrial biogenesis in early porcine embryos 

[31], differentiating rat dental papilla cells [32] and 

Alzheimer’s disease patients [33], its involvement in 

mitochondrial biogenesis in the setting of cardiac I/R 

injury has not been investigated. In the present study, 

we performed cellular experiments to explore the 

influence of melatonin on mitochondrial biogenesis in 

cardiac I/R injury. 

 

RESULTS 
 

Mitochondrial biogenesis impaired by hypoxia/ 

reoxygenation (H/R) injury could be improved by 

melatonin 

 

To assess the alterations in mitochondrial biogenesis 

following H/R injury, we subjected cardiomyocytes to 

six-hour hypoxia and six-hour reoxygenation. Then, we 

performed quantitative real-time PCR (qRT-PCR) and 

immunoblotting to analyze parameters associated with 

mitochondrial biogenesis. As shown in Figure 1A–1C, 

the mRNA levels of peroxisome proliferator-activated 

receptor-gamma coactivator 1 alpha (PGC1α), 

transcription factor A mitochondrial (Tfam) and nuclear 

factor erythroid 2-related factor 2 (Nrf2) were 

significantly lower in the H/R injury group than in the 

control group. Melatonin treatment dose-dependently 

increased PGC1α, Tfam and Nrf2 levels in H/R-injured 

cells (Figure 1A–1C). We also evaluated the mRNA 

levels of Sirt3, a novel biomarker of mitochondrial 

biogenesis. Sirt3 levels in cardiomyocytes were notably 

reduced after H/R injury, but were restored following 

melatonin treatment (Figure 1D). Due to the reduced 

transcription of PGC1α, Tfam and Nrf2, the protein 

levels of translocase of inner mitochondrial membrane 

23 (Tim23) and translocase of outer mitochondrial 

membrane 20 (Tom20) were also reduced in 

cardiomyocytes subjected to H/R injury, suggesting that 

the mitochondrial mass had decreased (Figure 1E and 

1F). Melatonin treatment restored the expression of 

Tim23 and Tom20 (Figure 1E and 1F). These data 

indicate that melatonin can normalize mitochondrial 

biogenesis during H/R injury. 

 

Melatonin promotes mitochondrial biogenesis by 

inducing the 5’ adenosine monophosphate-activated 

protein kinase (AMPK) pathway 
 

To determine the molecular basis for the above findings, 

we analyzed the expression of upstream regulators of 

PGC1α. Since the AMPK signaling pathway post-

transcriptionally modifies PGC1α, we performed an 

enzyme-linked immunosorbent assay (ELISA) to detect 

AMPK activity in cardiomyocytes in response to H/R 

injury. As shown in Figure 2A, AMPK activity was 

significantly lower in the H/R injury group than in the 

control group; however, melatonin treatment restored 

AMPK activity. An immunofluorescence assay confirmed 

that the expression of phosphorylated (p)-AMPK was 

reduced in cardiomyocytes exposed to H/R injury, but 

was restored by melatonin treatment (Figure 2B and 2C). 

 

To determine whether AMPK was required for 

melatonin-induced mitochondrial biogenesis, we used 

compound c (CC) to inhibit AMPK activity in 

cardiomyocytes. Blocking the AMPK pathway 

suppressed the melatonin-induced increases in Tfam and 

Nrf2 mRNA levels (Figure 2D and 2E). CC 

supplementation also abolished the melatonin-induced 

increase in the mitochondrial mass (Figure 2D and 2E). 

Thus, AMPK was required for melatonin-induced 

mitochondrial biogenesis in H/R-treated cardiomyocytes. 

 

Silencing of PGC1α abolishes the protective effects of 

melatonin on mitochondrial bioenergetics 
 

Next, we assessed the effects of mitochondrial biogenesis 

on mitochondrial function in cardiomyocytes damaged 

by H/R injury. Since our earlier findings indicated that 
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melatonin induced PGC1α, we used small interfering 

RNA (siRNA) to silence PGC1α in cardiomyocytes. We 

found that mitochondrial ATP production in 

cardiomyocytes was reduced by H/R treatment and 

restored by melatonin treatment; however, the effects of 

melatonin were nullified when PGC1α was knocked 

down (Figure 3A). Given that ATP levels were reduced 

upon H/R injury, we then measured mitochondrial  

ROS production in cardiomyocytes. As shown in  

Figure 3B and 3C, mitochondrial ROS fluorescence was 

greater in the H/R group than in the control group; 

however, melatonin attenuated mitochondrial ROS 

production. Notably, when melatonin-treated H/R-injured 

cardiomyocytes were transfected with siRNA against 

PGC1α, mitochondrial ROS fluorescence increased again 

(Figure 3B and 3C). The mitochondrial membrane 

potential in cardiomyocytes was also reduced in response 

to H/R injury (Figure 3D and 3E). Melatonin treatment 

stabilized the mitochondrial membrane potential, but not 

in PGC1α-silenced cells (Figure 3D and 3E). These data 

indicate that melatonin enhanced mitochondrial 

bioenergetics and suppressed oxidative stress by inducing 

PGC1α. 

 

PGC1α-induced mitochondrial biogenesis also alters 

the mitochondrial morphology 
 

In addition to monitoring mitochondrial function,  

we assessed the mitochondrial morphology in 

cardiomyocytes. As shown in Figure 4A and 4B, H/R

 

 
 

Figure 1. Melatonin treatment restores mitochondrial biogenesis in H/R-treated cardiomyocytes. Cardiomyocytes were 
subjected to H/R injury, with or without previous melatonin treatment to protect the cardiomyocytes. (A–D) qPCR assays were used to 
evaluate the transcription of PGC1α, Tfam, Nrf2 and Sirt3. (E, F) Western blots were used to evaluate the alterations in the mitochondria-
related proteins Tom20 and Tim23. *p<0.05. 
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injury induced mitochondrial fragmentation, suggesting 

that H/R injury either increased mitochondrial fission or 

reduced mitochondrial fusion. The average length of the 

mitochondrial mass was lower in the H/R group than in 

the control group (Figure 4A and 4B). Melatonin 

treatment inhibited the formation of fragmented 

mitochondria and thus sustained the mitochondrial 

length; however, this effect depended on the expression 

of PGC1α (Figure 4A and 4B). At the molecular level, 

H/R injury significantly repressed the transcription of 

mitofusin 2 (Mfn2) and Opa1, whereas melatonin 

upregulated these genes (Figure 4C and 4D). Loss of 

PGC1α abolished the melatonin-induced upregulation 

of Mfn2 and Opa1. These data indicate that 

mitochondrial biogenesis restored mitochondrial fusion 

in H/R-treated cardiomyocytes.  

 

 
 

Figure 2. Melatonin activates the AMPK pathway to induce mitochondrial biogenesis. Cardiomyocytes were subjected to H/R 
injury, with or without previous melatonin treatment to protect the cardiomyocytes. (A) An ELISA was used to evaluate AMPK activity. (B, C) 
An immunofluorescence assay was used to evaluate the expression of p-AMPK. (D, E) qPCR was used to evaluate the transcription of Tfam 
and Nrf2. CC was used to inhibit the activity of AMPK. *p<0.05. 
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Next, we used the mt-kemia assay to observe the level 

of mitophagy in H/R-treated cardiomyocytes. As 

shown in Figure 4E and 4F, mitophagy was 

downregulated in the H/R injury group compared with 

the control group, as evidenced by the reduced number 

of acidic mitochondria in cardiomyocytes. Melatonin 

restored mitophagy activity, but the loss of PGC1α 

prevented the melatonin-induced upregulation of 

mitophagy in cardiomyocytes (Figure 4E and 4F). 

These results indicate that melatonin normalized  

the mitochondrial morphology in H/R-treated 

cardiomyocytes.  

 

 
 

Figure 3. Melatonin preserves mitochondrial function in H/R-treated cardiomyocytes by inducing the AMPK/PGC1α 
pathway. Cardiomyocytes were subjected to H/R injury, with or without previous melatonin treatment to protect the cardiomyocytes. The 
cardiomyocytes were transfected with siRNA to knock down PGC1α. (A) An ELISA was used to assess ATP production. (B, C) An 
immunofluorescence assay was used to measure mitochondrial ROS in cardiomyocytes. (D, E) An immunofluorescence assay was used to 
measure the mitochondrial membrane potential. *p<0.05. 
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Melatonin requires PGC1α-induced mitochondrial 

biogenesis to inhibit mitochondrial apoptosis in H/R-

treated cardiomyocytes 
 

Damaged mitochondria are associated with 

cardiomyocyte death. Therefore, we evaluated the anti-

apoptotic effects of mitochondrial biogenesis. Caspase-

9 activity increased rapidly in response to H/R injury, 

and melatonin prevented this alteration (Figure 5A). 

However, when PGC1α was silenced, caspase-9 was re-

activated in melatonin-treated cardiomyocytes (Figure 

5A). The opening rate of the mitochondrial permeability 

transition pore (mPTP) also increased in response to 

H/R injury. Melatonin treatment reduced the mPTP 

opening rate in a manner dependent on PGC1α 

expression (Figure 5B).  

 

Due to the increased mPTP opening rate and elevated 

caspase-9 activity, the number of terminal 

deoxynucleotidyl transferase dUTP nick end labeling 

(TUNEL)-positive cells was greater in the H/R group 

than in the control group (Figure 5C and 5D). Fewer 

 

 
 

Figure 4. Melatonin alters the mitochondrial morphology in cardiomyocytes by inducing the AMPK/PGC1α pathway. 
Cardiomyocytes were subjected to H/R injury, with or without previous melatonin treatment to protect the cardiomyocytes. The 
cardiomyocytes were transfected with siRNA to knock down PGC1α. (A, B) An immunofluorescence assay was used to assess the 
mitochondrial morphology. (C, D) A qPCR assay was used to evaluate the transcription of Opa1 and Mfn2. (E, F) An mt-kemia assay was used 
to evaluate mitophagy activity. *p<0.05. 
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apoptotic cells were found in the melatonin group,  

but the loss of PGC1α abolished the inhibitory effect  

of melatonin on mitochondrial apoptosis. More 

importantly, H/R injury significantly reduced the 

fluorescence intensity of myosin (Figure 5E and 5F), 

indicating that the cardiomyocyte cytoskeleton had been 

degraded. Melatonin treatment increased the expression 

of myosin by upregulating PGC1α, confirming  

that melatonin exerted anti-apoptotic effects on 

cardiomyocytes during H/R injury. These results 

indicate that melatonin inhibited mitochondrial 

apoptosis in H/R-treated cardiomyocytes by stimulating 

PGC1α-induced mitochondrial biogenesis.  

 

DISCUSSION 
 

In order to pump blood, cardiomyocytes require 

mitochondria; therefore, mitochondrial homeostasis is 

vital for cardiomyocyte function. Many studies have 

demonstrated that enhancing mitochondrial activity is a 

promising strategy to improve cardiomyocyte viability 

and cardiac function during myocardial I/R injury. 

Cardiac I/R injury has been attributed to three molecular 

mechanisms: cardiomyocyte death, inflammation and 

oxidative stress [34–38]. However, defective energy 

metabolism and microvascular damage have also been 

noted in the reperfused heart [39–41]. 

 

Mitochondria seem to be involved in every aspect of the 

various physiological and pathological events during the 

development of cardiac I/R injury. For example, 

mitochondria can induce cardiomyocyte death by 

releasing pro-apoptotic proteins and activating the 

endogenous apoptotic pathway. Oxidative stress is 

primarily caused by ROS overload, and mitochondria 

are the main producers of ROS through impaired

 

 
 

Figure 5. Melatonin-induced mitochondrial biogenesis promotes cardiomyocyte survival. Cardiomyocytes were subjected to H/R 
injury, with or without previous melatonin treatment to protect the cardiomyocytes. The cardiomyocytes were transfected with siRNA to knock 
down PGC1α. (A) An ELISA was used to assess caspase-9 activity. (B) The mPTP opening rate was determined in cardiomyocytes. (C, D) TUNEL 
staining for apoptotic cells in cardiomyocytes. (E, F) An immunofluorescence assay was used to measure the expression of myosin. *p<0.05. 
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oxidative phosphorylation [42]. Mitochondrial damage-

induced oxidative stress also promotes cardiomyocyte 

death by inducing membrane oxidation and protein 

post-transcriptional modifications. The inflammatory 

response may be secondary to cardiomyocyte death and 

oxidative stress, because the inflammatory response is 

triggered by inflammatory cell accumulation, which 

results from cardiomyocyte apoptosis [43–45]. 

Therefore, mitochondrial homeostasis is linked to the 

extent of cardiac I/R injury. 

 

Mitochondrial homeostasis is maintained through 

structural and functional alterations. Mitochondrial 

morphological adaptions (also known as 

mitochondrial dynamics) include mitochondrial 

fission, fusion and mitophagy [46–49], and have been 

carefully discussed in several articles [50–52]. In this 

study, we explored the contribution of mitochondrial 

biogenesis to mitochondrial homeostasis. 

Mitochondrial biogenesis regenerates mitochondria 

and ultimately increases the mitochondrial mass, as 

evidenced by increased levels of mitochondrial DNA 

and mitochondria-related proteins [53, 54]. 

Mitochondrial biogenesis rapidly augments the 

mitochondrial population in a short time, which is 

necessary for cell metabolism under stress. Although 

several studies have described the alterations in 

mitochondrial biogenesis in the setting of cardiac I/R 

injury [55–57], the protective mechanism of 

mitochondrial biogenesis has not been fully 

elucidated. Herein, we found that mitochondrial 

biogenesis was inhibited in cardiomyocytes subjected 

to H/R injury. Consequently, mitochondrial 

bioenergetics were impaired, the mitochondrial 

morphology was disrupted and mitochondrial function 

was reduced. Improving mitochondrial biogenesis 

elevated cardiomyocyte ATP production, prevented 

mitochondrial fragmentation, enhanced mitochondrial 

function, stimulated mitophagy and inhibited 

mitochondrial apoptosis. Therefore, mitochondrial 

biogenesis may be a critical determinant of 

mitochondrial structure, function and homeostasis.  

 

Melatonin is an effective drug for the treatment of 

cardiac I/R injury. Cytoplasmic melatonin can 

accumulate in the mitochondria and enhance 

mitochondrial redox balance and bioenergetics. 

Although melatonin is thought to sustain mitochondrial 

function through its anti-oxidative actions, melatonin 

also controls mitochondrial fission, fusion, mitophagy, 

apoptosis, necroptosis and calcium balance during 

cardiac I/R injury. In this study, we observed that 

melatonin stimulated mitochondrial biogenesis. 

Melatonin activated the AMPK pathway, which thus 

upregulated PGC1α, Tfam, Nrf2 and Sirt3. Tfam, Nrf2 

and Sirt3 have been reported to increase mitochondrial 

DNA levels and oxidative phosphorylation-related 

protein translation. Melatonin treatment also increased 

the mitochondrial mass and improved mitochondrial 

function. Thus, we have provided a method of restoring 

mitochondrial biogenesis in the reperfused heart. 

 

There are several limitations to our experiments. First, 

we did not obtain animal data to support the function of 

mitochondrial biogenesis in the reperfused heart. 

Second, we only tested the effects of one concentration 

of melatonin on mitochondrial biogenesis. Nevertheless, 

our results indicated that melatonin improved 

mitochondrial biogenesis and promoted the 

transmission of protective signals for mitochondria in 

H/R-treated cardiomyocytes.   

 

MATERIALS AND METHODS 
 

Cell isolation, culture, treatment and transfection  

 

Primary cultures of neonatal mouse ventricular 

cardiomyocytes were prepared from the ventricles of 

three- to five-day-old mice as described previously [58]. 

Cardiomyocytes were plated on type I collagen-coated 

cover glasses or culture plates, and were incubated with 

Dulbecco’s modified Eagle’s medium supplemented 

with bovine serum albumin or palmitate-bovine serum 

albumin. Cardiomyocytes were also transfected with 

siRNA against PGC1α. After 12 hours of transfection, 

the cardiomyocytes were incubated in Dulbecco’s 

modified Eagle’s medium with or without palmitate, as 

described above. H/R injury was induced through six-

hour hypoxia and six-hour reoxygenation, as previously 

described. Melatonin (5 μM) was used 12 hours prior to 

H/R treatment. CC (10 μM, Selleck Chemicals, 

Houston, TX, USA) was added to the medium for two 

hours to prevent AMPK activation [59]. 

 

Mitochondrial function 

 

Mitochondrial function was evaluated with a JC-1 

Mitochondrial Membrane Potential kit (Cayman 

Chemical) according to the manufacturer’s instructions. 

An ELISA was performed, and the signal was detected 

on a plate reader (EnSpire® Multimode Plate Reader, 

Perkin Elmer). 

 

The extracellular oxygen consumption rate was evaluated 

with a fluorescence-based oxygen consumption rate 

assay kit (Abcam) according to the manufacturer’s 

instructions [60]. Briefly, cells were treated with 20 μM 

octyl-α-ketoglutarate or 10 μM AA6. Dimethyl sulfoxide 

was used as a solvent. The fluorescent signal was 

detected every minute for one hour on a multi-well  

plate reader (EnSpire® Multimode Plate Reader) set at 

37 °C, excitation/emission=380/650 nm. Signals were 
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normalized to the total DNA content, which was assessed 

with DRAQ5 (1:1000, Biostatus) [61].  

 

Immunofluorescence and confocal microscopy 
 

Confocal analysis was performed as reported 

previously. Paraffin-embedded and cryosectioned 

samples were prepared according to standard 

histological procedures [62]. Mitochondria were 

visualized with MitoTracker Red CMXRos (1:2000, 

Thermo Scientific) and JC-1 (5 μM, AdipoGen). The 

samples were analyzed on a Leica TCS SP8 confocal 

microscope [63]. 

 

Cell counting kit-8 (CCK-8) assay 

 

A CCK-8 assay was used to assess cell viability [64]. 

Briefly, adherent cells were detached with trypsin, 

seeded in 96-well plates at 5×103 cells/well, and 

allowed to attach to the bottom of the plate for 24 hours 

at 37 °C. The cells were then subjected to H/R injury 

with or without melatonin. Lastly, the cell viability was 

measured at 450 nm using CCK-8 [65]. 

 

Western blotting 

 

Western blotting was performed as described 

previously. Briefly, samples were lysed in complete 

radioimmunoprecipitation assay buffer (10 mM Tris-

HCl pH 7.4, 150 mM NaCl, 1% NP40, 0.1% sodium 

dodecyl sulfate, 1 mM phenylmethylsulfonyl fluoride 

and 1x protease inhibitor cocktail [Roche]) and 

homogenized with a Sonic Dismembrator 100 (Fisher 

Scientific) [66]. The protein concentration of the sample 

homogenate was measured with a Bio-Rad Protein 

Assay, and equal amounts of soluble proteins were 

separated on 10% polyacrylamide gels, transferred onto 

nitrocellulose membranes and subjected to routine 

Western blot analysis [67]. 

 

TUNEL staining 

 

The paraffin-embedded sections obtained from the 

experiment above were dewaxed with fresh xylene 

(twice, for 10 min each) and dehydrated using a serial 

alcohol gradient [68]. Then, the tissue slides were treated 

with 20 µg/mL DNase-free protease K, incubated at 20-

37 °C for 15-30 min, and washed three times with 

phosphate-buffered saline [69]. Then, 50 µL of TUNEL 

solution was added to the tissue slides, and the slides 

were incubated at 37 °C for 60 min in the dark. After 

being washed three times with phosphate-buffered saline, 

the slides were treated with an anti-fluorescence 

quenching agent and observed via fluorescence 

microscopy at an excitation wavelength of 450-500 nm 

and an emission wavelength of 515-565 nm [70]. 

qRT-PCR analysis 
 

An RNAiso Plus Purification Kit (TaKaRa 

Biotechnology Co., Ltd, 9108) was used to extract total 

RNA from the cardiomyocytes. The RNA concentration 

was evaluated based on the optical density of the 

sample at 260 nm, and the RNA integrity was assessed 

through 2% agarose gel electrophoresis. The RNA was 

reverse-transcribed into cDNA using a PrimeScript™ 

RT Reagent Kit with gDNA Eraser (TaKaRa 

Biotechnology Co., Ltd, RR047A) [71, 72]. Real-time 

PCR was performed on a LightCycler machine (Roche) 

with a commercial SYBR Green reaction reagent 

(TaKaRa Biotechnology Co., Ltd, RR820A). GAPDH 

was used as an internal control. The cDNA was 

denatured for 30 s at 95 °C, followed by 40 cycles of 5 s 

at 95°C [73].  

 

Statistical analysis 
 

Statistical analyses were performed with GraphPad 

Prism. The sample sizes (n) are reported in the 

corresponding figure legends. The present study was 

exploratory and primarily mechanistic. For all analyses, 

the observer was blind to the identity of the samples. 

The variables were analyzed using non-parametric 

Student’s t-tests or analysis of variance (one-way or 

two-way). A value of p<0.05 was deemed statistically 

significant. Results are shown as the mean ± standard 

error. 
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