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ABSTRACT 
 

The two most common aging-related diseases, Alzheimer’s disease and type 2 diabetes mellitus, are associated 
with accumulation of amyloid proteins (β-amyloid and amylin, respectively). This amylin aggregation is 
reportedly cytotoxic to neurons. We found that aggregation of human amylin (hAmylin) induced neuronal 
apoptosis without obvious microglial infiltration in vivo. High concentrations of hAmylin irreversibly aggregated 
on the surface of the neuronal plasma membrane. Long-term incubation with hAmylin induced morphological 
changes in neurons. Moreover, hAmylin permeabilized the neuronal membrane within 1 min in a manner 
similar to Triton X-100, allowing impermeable fluorescent antibodies to enter the neurons and stain 
intracellular antigens. hAmylin also permeabilized the cell membrane of astrocytes, though more slowly. Under 
scanning electron microscopy, we observed that hAmylin destroyed the integrity of the cell membranes of both 
neurons and astrocytes. Additionally, it increased intracellular reactive oxygen species generation and reduced 
the mitochondrial membrane potential. Thus, by aggregating on the surface of neurons, hAmylin impaired the 
cell membrane integrity, induced reactive oxygen species production, reduced the mitochondrial membrane 
potential, and ultimately induced neuronal apoptosis. 

mailto:weizhang@hebmu.edu.cn
mailto:jiepouky@163.com


 

www.aging-us.com 8924 AGING 

INTRODUCTION 
 

Alzheimer’s disease and type 2 diabetes mellitus (DM2) 

are the most common aging-related diseases [1, 2]. 

Multiple studies have indicated that there is a strong 

correlation between these two diseases, and about 80% 

of Alzheimer’s disease patients are estimated to have an 

impaired glucose tolerance or DM2 [3]. Protein 

aggregation has been linked to the pathogenesis of 

aging-related degenerative diseases [4]. For example, 

Alzheimer’s disease is characterized by β-amyloid 

accumulation [1]. On the other hand, amylin aggrega-

tion causes pancreatic β-cell damage and insulin 

deficiency, which are components of the pathogenesis 

of DM2 [5]. Like β-amyloid, human amylin (hAmylin) 

tends to misfold into toxic structures and form amyloid 

deposits [6, 7] as protein degradation decreases with 

aging [4].   

 

The aggregation of hAmylin has been reported to impair 

the integrity and alter the permeability of the cell 

membrane [9–11]. The negative charges on the surface 

of the phospholipid bilayer facilitate the insertion of 

positively charged hAmylin. Mirzabekov [12] reported 

that 1-10 μM hAmylin formed non-selective ion 

channels that were permeable to Ca2+, Na+, K+ and Cl- 

on the plasma membranes of islet β-cells, and dose-

dependently increased the electrical conductivity of the 

plasma membrane. Numerous other studies have 

indicated that hAmylin reduces the concentration of 

lipids in the cell membrane and forms non-selective ion 

channels during its aggregation on the membrane 

surface [17, 18]. Impaired cell membrane integrity 

alters the intracellular Ca2+ concentration ([Ca2+]i) and 

eventually induces endoplasmic reticulum stress and 

apoptosis. In the case of β-amyloid, oligomerization of 

this protein on the plasma membrane surface generates 

large amounts of reactive oxygen species (ROS) and 

thereby destroys the membrane stability [19, 20]. 

Although many studies have investigated the 

cytotoxicity of hAmylin, the mechanisms by which it 

induces membrane damage in different states (mono-

meric, oligomeric or fibrous) and induces cell death are 

still unclear. 
 

The sequence of amylin determines its propensity to 

form amyloid fibrils. For example, rodent amylin differs 

from hAmylin by only six of its 37 residues, and yet 

does not form fibrils. Five of these six residues are 

located between residues 20 and 29, the region that is 

known to be important for hAmylin fibrillation [13]. 

Furthermore, three of the six residues are occupied by 

proline (at positions 25, 28 and 29), a well-known 

disrupter of secondary structures such as β-sheets. 

While rodents, dogs and cows do not form fibrils, 

primates, cats, pigs, ferrets and guinea pigs can form 

amyloid fibrils and are prone to DM2 [14, 15]. Potter 

[16] demonstrated that the ability of hAmylin to 

aggregate and damage the cell membranes of human 

islet cells in vitro depended on a sequence of 13-28 

amino acids; thus, when this sequence was replaced, the 

survival rate of the islet cells significantly improved. 

These results suggested that hAmylin impairs the 

membrane integrity mainly by aggregating.  

 

Oligomers and plaques of hAmylin have been identified 

not only in the pancreas, but also in the temporal lobe 

gray matter of diabetic patients, demonstrating the 

potential neurotoxicity of hAmylin [8]. In addition, 

hAmylin oligomer deposits have been detected in the 

brains of late-onset Alzheimer’s disease patients [8, 24, 

25], and have been reported to impair memory in rats 

[26]. We previously found that a brief application of 

hAmylin could activate the transient receptor potential 

vanilloid 4 channels (TRPV4, the non-selective cation 

channels that are sensitive to mechanical stimulation 

and osmotic pressure [21–23]) and increase the [Ca2+]i 

in cultured hippocampal neurons [14]. Similar results 

have been observed in MIN6 cells [21]. Thus, we 

speculated that hAmylin damages neuronal cells and 

promotes neuronal sensitivity to other sources of 

damage. 
 

In the present study, we assessed hAmylin aggregation 

in neurons and investigated its effects on cell membrane 

stability, ROS levels and the mitochondrial membrane 

potential (mtΔΨ). 

 

RESULTS 
 

hAmylin induced neuronal loss in hippocampal 

tissue in vivo 
 

Previous studies have demonstrated that, similar to 

oligomeric β-amyloid, hAmylin is toxic to several 

kinds of cells in vitro [6, 27–29]. To determine the 

effects of hAmylin in vivo, we injected 5 μL of 

hAmylin (10 μM) into the right lateral ventricles of 

adult mice (Figure 1A). Terminal deoxynucleotidyl 

transferase dUTP nick end labeling (TUNEL) staining 

was used to detect neuronal apoptosis induced by 

hAmylin. Twenty-four hours after the injection, the 

proportion of apoptotic cells in the hippocampal 

dentate gyrus was significantly greater in the hAmylin 

group than in the control group (***p < 0.001, Figure 

1B and 1C). Transmembrane protein 199 

(TMEM199)+ cells (microglia) and ionized calcium 

binding adaptor molecule 1 (Iba1)+ cells (microglia 

and macrophages) were not observed (Supplementary 

Figure 1A and 1B), indicating that microglial 

migration was not involved and that neuronal cells 

were probably the main targets of hAmylin. 
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Aggregation of hAmylin on the surface of neurons 
 

Next, we fluorescently labeled the N-terminus of 

hAmylin with fluorescein amidite (FAM), and 

investigated whether the peptide entered neurons. 

Consistent with our previous findings [14], FAM-

hAmylin easily aggregated when it was incubated with 

primary cultured neurons at 37 °C for 30 min. Many 

fluorescent aggregates were observed under a micro-

scope, and FAM-hAmylin aggregation slowly increased 

with increasing incubation times (Figure 2A and 2B). 

However, after the culture dishes were washed with 

fresh medium and shaken, most of the fluorescence 

representing aggregated hAmylin disappeared (Figure 

2C), indicating that the aggregation process of hAmylin 

oligomers was irreversible, but the aggregates of 

hAmylin probably attached to the surface of the cell 

membrane instead of entering the neurons.  

 

Long-term effects of hAmylin on the morphology of 

hippocampal neurons 
 

Since hAmylin was able to aggregate on the surface of 

neurons, we used a live-cell imaging system to measure 

the effects of 10 μM hAmylin on neuronal survival over 

a long period of incubation. We used cell rupture as an 

indication of cell death (Figure 3A). Only 77.78% of 

neurons survived after being incubated with hAmylin 

for 12 h, while a significantly greater proportion of 

neurons survived in the control group (***p < 0.001, 

Figure 3B). We also used cellular immunofluorescence 

to detect the effects of hAmylin incubation on measures 

of cell morphology (Figure 3C and 3D), including cell 

size, neurite length, neurite number and synapse number 

(Figure 3E–3H, respectively). After the neurons had 

been incubated with 10 μM hAmylin for 4 h, their 

synapse numbers (***p < 0.001) and neurite lengths (*p 

< 0.05) were significantly reduced. After 9 h of 

incubation, the cell sizes (***p < 0.001) and neurite 

numbers (***p < 0.001) were significantly reduced. 

 

Effects of hAmylin on the cell membrane integrity 

 

It is well known that macromolecules such as primary 

antibodies cannot pass through the cell membrane 

unless it has been permeabilized, for instance, by Triton 

X-100. We took advantage of this property of 

antibodies in immunofluorescence experiments to

 

 
 

Figure 1. Immunostaining of hippocampal cells in brain slices from adult Kunming mice. (A) The right lateral ventricle was injected 
with 5 μL of hAmylin (10 μM). (B, C) Twenty-four hours after the intraventricular injection, TUNEL+ cells (markers of apoptosis) in the dentate 
gyrus of the hippocampus increased significantly.  
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Figure 2. (A, B) FAM-labeled hAmylin aggregates on the surface of a primary culture of hippocampal neurons, after 30 min of incubation. 
The fluorescence area of FAM-hAmylin aggregates increased slightly with time (A: typical image; B: fluorescence area change). (C) After the 
culture dish had been washed and shaken with fresh medium without FAM-hAmylin, the fluorescence of aggregated hAmylin was 
significantly reduced.  
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Figure 3. Long-term effects of 10 μM hAmylin on the morphology of hippocampal neurons. (A) Typical images of cultured 
hippocampal neurons were captured in fresh medium with or without 10 μM hAmylin at different time points. (B) The survival percentages in 
the control (n = 108) and 10 μM hAmylin (n = 126) groups. ***p < 0.001 versus control group (Gehan-Breslow-Wilcoxon test). (C, D) MAP2 (a 
neuronal marker) (C) and PSD95 (a synapse marker) (D) were used to detect morphological changes in neurons at different time points of 
hAmylin incubation. (E–H) Cell size (E), neurite length (G), neurite number (F) and synapse number (H) were measured. After the neurons had 
been incubated for 4 h with 10 μM hAmylin, their synapse numbers (p < 0.001) and neurite lengths (p < 0.05) were significantly reduced. 
After 9 h of incubation, the cell sizes (p < 0.001) and neurite numbers (p < 0.01) were significantly reduced. 
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evaluate the integrity of the cell membrane and to 

determine whether hAmylin damaged the neuronal 

membrane. Intracellular fluorescence (marked by 

microtubule-associated protein 2 (MAP2), a neuronal 

marker) was detected when neurons were incubated 

with Triton X-100, but was almost invisible when 

Triton X-100 was replaced with phosphate-buffered 

saline (PBS). However, when 10 μM hAmylin was used 

(for 1 min or 30 min) instead of Triton X-100, 

intracellular MAP2 fluorescence was still observed 

(Figure 4A and 4B). The percentage of positive cells 

was 31.01% for 1-min incubation and 35.15% for 30-

min incubation (Figure 4C). Intracellular fluorescence 

of an astrocytic marker (S100) was not clearly detected 

in astrocytes when 10 μM hAmylin was used instead of 

Triton X-100 (incubation for 1 min) (Figure 4D). 

However, when the incubation time with hAmylin was 

prolonged to 30 min, intracellular fluorescence was 

observed in 34.65% of astrocytes (Figure 4D–4F). 

These results indicated that hAmylin disrupts the cell 

membrane integrity in a Triton-like manner, but 

requires different amounts of time to destroy different 

types of cell membranes.  

 

Next, scanning electron microscopy was used to further 

examine the effects of hAmylin on the stability of the 

cell membrane. After the cells had been incubated with 

hAmylin (10 μM, 1 h), the integrity of the plasma 

membrane was destroyed in both neurons and astrocytes 

(Figure 5A). Several pores were visible on the surface 

of the cell membrane, and as the cell structure collapsed, 

the contours of the nucleus became apparent. 

 

Effects of hAmylin on ROS generation and the 

mtΔΨ in neurons 

 

ROS generation and changes in oxidation status are 

important contributors to the membrane impairment 

caused by β-amyloid proteins in neurons [30–33]. Like 

β-amyloid, hAmylin enhanced the generation of ROS in 

neurons when it was applied at a high concentration (10 

μM, ***p < 0.001), but not when it was applied at a low 

concentration (1 μM). In addition, the removal of 

extracellular calcium had no effect on the ROS 

generation induced by a high concentration of hAmylin 

(Figure 5B–5D). 

 

ROS, the natural byproducts of normal respiratory 

metabolism, are mainly generated by mitochondria. 

Mitochondria are also particularly vulnerable to 

oxidative stress. ROS can activate the mitochondrial 

permeability transition pore (mPTP), which can 

depolarize the mtΔΨ. JC-1 dye was used to investigate 

the effects of hAmylin on the mtΔΨ in neurons. The 

mtΔΨ was significantly reduced by a high concentration 

of hAmylin (10 μM), but not by a low concentration (1 

μM). Although the reduction of the mtΔΨ induced by a 

high concentration of hAmylin was not suppressed by 

the removal of extracellular calcium, it was significantly 

inhibited (***p < 0.001) by the administration of 1 μM 

cyclosporin A (CsA, an inhibitor of mPTP opening; 

Figure 5E–5G). However, CsA did not inhibit the 

increases in [Ca2+]i (Supplementary Figure 1C and 1D) 

and ROS levels (Figure 5B and 5C) in response to 

hAmylin. 

 

DISCUSSION 
 

In the present study, we injected hAmylin directly into the 

lateral ventricles of mice, which resulted in hippocampal 

neuronal apoptosis without microglial migration. In vitro, 

a high concentration of hAmylin (10 μM) induced 

morphological changes in neurons. We assessed the 

survival, cell size, neurite length, neurite number and 

synapse number of neurons during their long-term 

incubation with hAmylin, and found that hAmylin 

directly impaired neuronal survival and morphology. 

Moreover, using FAM-hAmylin, we observed significant 

aggregation of hAmylin on the neuronal membrane. The 

irreversible aggregation of hAmylin ruptured the cell 

membrane, generated ROS, reduced the mtΔΨ and 

eventually induced neuronal death. 
 

Amylin oligomers and plaques have been identified in 

temporal lobe gray matter from diabetic patients, and 

amylin deposition has been detected in the blood vessels 

and brain parenchyma of late-onset Alzheimer’s disease 

patients without clinically apparent diabetes [8]. This 

suggests that amylin is harmful not only to the pancreas, 

but also to the central nervous system. However, the 

absence of amylin transcripts in the human brain 

indicates that amylin oligomers secreted into the blood 

from the pancreas are the main source of amylin in the 

brain [8]. There is no evidence that amylin oligomers 

can cross the blood-brain barrier, so researchers tend to 

believe that amylin can only enter the central nervous 

system from the periphery when the blood-brain barrier 

is damaged (due to aging, DM2, etc.) [34, 35]. 
 

Quasi-spherical Zn2+-β-amyloid-40 oligomers have 

been reported to irreversibly inhibit spontaneous 

neuronal activity and cause massive cell death in 

primary hippocampal neurons [36]. We previously 

explored the neuronal damage caused by hAmylin 

oligomers, and found that their cytotoxicity stemmed 

from their aggregation. This process indirectly activated 

the TRPV4 channel, thus increasing neuronal [Ca2+]i 

levels [14]. However, at the time of that study, we could 

not explain why amylin did not increase the [Ca2+]i of 

astrocytes, which also express TRPV4. Other studies 

have indicated that hAmylin can form non-selective 

ion-permeable channels on the surface of the lipid 
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Figure 4. The permeabilization effects of hAmylin on neurons and astrocytes. (A, B) Neuron-specific fluorescence (MAP2) was 
observed in neurons after their incubation with Triton X-100. When Triton X-100 was replaced with PBS, intracellular fluorescence was almost 
invisible. However, when 10 μM hAmylin was used instead of Triton X-100 (incubation for 1 min or 30 min), intracellular fluorescence could 
still be observed in neurons. (C) The percentage of positive cells was 31.01% for 1 min incubation and 35.15% for 30 min incubation. (D–F) In 
contrast, astrocyte-specific fluorescence (S100) was not clearly observed when 10 μM hAmylin was used instead of Triton X-100 (incubation 
for 1 min). However, when the incubation time was prolonged to 30 min, intracellular fluorescence could be observed (D, E) in 34.65% of 
astrocytes (F). ***p < 0.001 versus PBS group (chi-square test). 
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Figure 5. Scanning electron microscopy images of primary cultured hippocampal cells with or without hAmylin (10 μM, 1 h). 
(A) The plasma membrane was smooth and integral for primary cultured neurons and astrocytes without amylin incubation. After the cells 
had been treated with hAmylin (10 μM), significant plasma membrane damage was observed on the surface of primary cultured neurons and 
astrocytes. (B) Intracellular ROS generation induced by 10 μM hAmylin was measured in hippocampal neurons labeled with DCFH-DA dye. 
Representative traces are shown of the effects of 1 μM hAmylin, 10 μM hAmylin, 10 μM hAmylin + 1 μM CsA and 10 μM hAmylin + free Ca2+ 
on ROS generation. (C) Significant ROS generation was induced by 10 μM hAmylin, and was not inhibited by 1 μM CsA or free extracellular 
Ca2+. (D) Changes in neuronal DCFH-DA fluorescence before and after 10 μM hAmylin incubation. (E) The reduction in the mtΔΨ induced by 
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10 μM hAmylin was measured in hippocampal neurons labeled with JC-1 dye. Representative traces are shown of the effects of 1 μM 
hAmylin, 10 μM hAmylin, 10 μM hAmylin + 1 μM CsA and 10 μM hAmylin + free Ca2+ on the mtΔΨ. (F) Significant mtΔΨ reduction was 
induced by 10 μM hAmylin and inhibited by 1 μM CsA, but not by free extracellular Ca2+. (G) Changes in neuronal JC-1 fluorescence before 
and after 10 μM hAmylin incubation. ***p < 0.001 versus 10 μM hAmylin (one-way ANOVA followed by Bonferroni’s post hoc test). 
 

bilayer [12, 37]. Considering that TRPV4 is an ion 

channel that senses changes in the osmotic pressure of 

cells [38], we speculated that hAmylin might destroy 

the integrity of the cell membrane before activating 

TRPV4.  

 

In this paper, we further explored the damaging effects of 

amylin oligomers on the cell membrane. In accordance 

with previous studies, our results indicated that when 

hAmylin was applied at a high concentration, it 

aggregated and induced neuronal loss both in vitro [14] 

and in vivo [26, 39]. We first demonstrated this by using 

specific impermeable immunofluorescent antibodies to 

stain neurons and astrocytes. We replaced the common 

permeabilization reagent Triton X-100 with hAmylin, and 

observed neuron-specific fluorescence after 1 min of 

incubation. However, in the same incubation period, no 

intracellular fluorescence was detected in astrocytes. 

When the incubation time was prolonged to 30 min, 

intracellular fluorescence could be detected in both 

neurons and astrocytes. In addition, scanning electron 

microscopy clearly revealed the plasma membrane 

damage induced by hAmylin. These results indicated that 

hAmylin damages the cell membrane during its surface 

aggregation, and that different incubation periods are 

required for hAmylin to disrupt the membranes of 

different cell types, with neurons being particularly 

vulnerable. 

β-amyloid can also form pores on the surface of the cell 

membrane, and the time required for this process 

correlates with the cholesterol content of the membrane 

[44]. We speculate that hAmylin and β-amyloid disrupt 

the cell membrane integrity by similar mechanisms. The 

membrane cholesterol content is higher in astrocytes 

than in neurons [45], which may explain why 10 μM 

hAmylin damaged the neuronal membrane more rapidly 

than the astrocyte membrane [45]. The non-selective 

damage to the cell membrane integrity during prolonged 

incubation with hAmylin suggests that this protein may 

destroy the membranes of neurons [14, 26, 39], 

cardiomyocytes [40], pancreatic β-cells [41–43], etc 

through similar mechanisms. Considering that most 

DM2 patients have neurological and cardiovascular 

system complications, we hypothesize that plasma 

membrane damage caused by hAmylin may be an 

important contributor to the complications of DM2 

patients. 
 

Previous studies have demonstrated that β-amyloid 

proteins damage the cell membrane by generating large 

amounts of ROS while aggregating [20, 46, 47]. 

Similarly, our results revealed that a high concentration 

of hAmylin significantly increased ROS generation in 

neurons, while a low concentration of hAmylin (1 μM) 

did not. ROS, which may contain oxygen free radicals, 

are highly reactive molecules. ROS are mainly

 

 
 

Figure 6. Schematic diagram of hAmylin-induced apoptosis. hAmylin irreversibly aggregates and forms pores on the surface of the 
cell membrane, thus increasing ROS generation. On the other hand, changes in cellular osmotic pressure activate TRPV4 channels, leading to 
extracellular calcium ion influx. Increased [Ca2+]i and ROS levels reduce the mtΔΨ and eventually induce apoptosis. 
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generated in mitochondria as the byproducts of 

respiratory metabolism, although they may also be 

produced in the endoplasmic reticulum, peroxisome, 

cytosol, plasma membrane and extracellular space [48]. 

Although we found that hAmylin upregulated ROS 

production in neurons, further investigation is needed to 

determine the subcellular site of ROS generation. 

 

Mitochondria are also vulnerable to oxidative stress. In 

mitochondria, the ROS-triggered release of additional 

ROS is associated with the opening of the mPTP [49]. 

The mPTP is located in the inner membrane of 

the mitochondria, where it regulates the mitochondrial 

membrane permeability and mtΔΨ. The mtΔΨ is 

abolished once the mPTP is opened by molecules such as 

ROS and Ca2+, and this results in cell death [50]. We 

found that a high concentration of hAmylin significantly 

reduced the mtΔΨ in neurons. CsA significantly inhibited 

this reduction of the mtΔΨ, although it did not inhibit the 

increases in [Ca2+]i and ROS levels induced by hAmylin. 

These results indicated that the hAmylin-induced 

reduction of the mtΔΨ was a downstream response to 

ROS generation (Figure 6). Increased [Ca2+]i and ROS 

levels were probably the underlying factors leading to the 

abolished mtΔΨ and the initiation of neuronal death.  

 

In conclusion, our study has provided evidence that 

hAmylin irreversibly aggregates on the surface of the cell 

membrane and disrupts its integrity. This process is 

accompanied by increased intracellular ROS generation. 

On the other hand, previous work has indicated that 

changes in the osmotic pressure of cells activate TRPV4 

channels, leading to the influx of extracellular calcium 

ions. Increased [Ca2+]i and ROS levels activate the mPTP, 

which subsequently reduces the mtΔΨ and induces 

apoptosis. Our results also demonstrate that hAmylin 

induces non-selective cell membrane damage, although 

neuronal cell membranes are more vulnerable to hAmylin 

than astrocyte cell membranes. Thus, inhibiting hAmylin 

aggregation may be a new target for treating associated 

diseases.  

 

MATERIALS AND METHODS 
 

Animals and primary hippocampal cultures 

 

Pregnant adult Sprague-Dawley rats (RRID: 

MGI:5651135) and adult Kunming laboratory mice 

(RRID: MGI:5651867) were purchased from the Hebei 

Laboratory Animal Center. All animal care and 

experimental procedures complied with the regulations 

of the Animal Care and Management Committee of the 

Second Hospital of Hebei Medical University (permit 

No. HMUSHC-130318) and the Animal Research: 

Reporting In Vivo Experiments (ARRIVE) guidelines 

for subsequent experiments [51, 52]. 

Primary cultures of hippocampal neurons and astrocytes 

were prepared from Sprague-Dawley rats according to 

previously described methods [53]. 

 

Main chemicals  

 

Dulbecco’s modified Eagle’s medium, fetal bovine serum, 

fura-2-acetoxy-methyl ester, 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), glucose and PBS 

were obtained from Invitrogen (USA). Penicillin and 

streptomycin, NaCl, KCl, MgCl2, CaCl2 and glucose were 

purchased from Sigma (USA). CsA, JC-1, an In Situ 

BrdU-Red DNA Fragmentation (TUNEL) Assay Kit 

(ab66110), anti-TMEM119 (ab209064), anti-Iba1 

(ab153696), anti-S100 (ab868), anti-MAP2 (ab11267) 

and anti-PSD95 (ab18258) were obtained from Abcam 

(USA). Donkey anti-mouse IgG (Cat#A-21202, Alexa 

Fluor 488), donkey anti-rabbit IgG (Cat#A-21206, Alexa 

Fluor 488) and donkey anti-rabbit IgG (Cat#A-21207, 

Alexa Fluor 594) were purchased from Thermo Fisher 

(USA). Finally, 2’,7’-dichlorofluorescin-diacetate 

(DCFH-DA) was purchased from Beyotime (China). 

 

hAmylin (Tocris, UK) was dissolved to 500 μM in 

sterile water and immediately diluted with HEPES 

buffer (see calcium imaging methods) to a final 

concentration of 1 or 10 μM at room temperature. 

FAM-hAmylin was purchased from Shanghai Science 

Peptide Biological Technology Co., Ltd. (China). The 

sequence of hAmylin is KCNTATCATQRLANFL 

VHSSNNFGAILSSTNVGSNTY (Modifications: Tyr-

37 = C-terminal amide, Disulfide bridge between 2 - 7). 

 

Lateral ventricle injection 
 

Six adult male Kunming mice were randomly divided into 

two groups. The mice were subjected to isoflurane 

inhalation anesthesia (initial concentration 3%, main-

tenance concentration 1.5%). Their teeth were buckled 

onto a tooth bar and their noses were fastened with a clip. 

Ear bars were inserted into the external ear canals of both 

ears so that the scales of the two bars were consistent. 

After the head was fixed, the height of the body was 

adjusted so that the body and head were horizontal. The 

head skin was disinfected with iodine volt cotton swabs. 

A midline incision was made at the top of the head to 

expose the bregma, and a marker was used to denote a 

point 1 mm to the right and 0.22 mm to the rear of the 

bregma at a needle depth of 2.3 mm. An electric skull drill 

was used to drill a small hole with a diameter of about 0.5 

mm at the marked location, and a fixed micro-injector was 

slowly inserted to the specified depth. Then, 5 μL of 10 

μM hAmylin was injected with a micro-pump at a speed 

of 1 μL/min. The mice in the control group were injected 

with saline. After the injection, the mice were monitored 

for 5 min to ensure that the entire drug dose in the micro-
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injector had entered the lateral ventricle. The micro-

injector was extracted over a period of 5 min, and the 

incision was sutured. The mice were sacrificed 24 h after 

the injection, and three brain slices near the pinhole were 

collected. To avoid left and right confusion, we only 

retained right brain tissue during sampling.  

 

Immunochemistry 
 

Brains were collected after the mice had been perfused 

with 0.9% NaCl followed by 4% paraformaldehyde. 

Immunofluorescence analysis of the hippocampus was 

conducted according to previously described methods 

[54]. Cerebral sections were cut from frozen blocks 

with a sliding microtome at a thickness of 30 μm. Fixed 

brain slices were permeabilized with 0.5% Triton X-100 

in PBS for 20 min at room temperature and then 

blocked with 10% donkey serum for 30 min. The slices 

were incubated at 4°C overnight with the following 

primary antibodies: anti-TMEM119 (1:200), anti-Iba1 

(1:200), anti-S100 (1:200), anti-MAP2 (1:200) and anti-

PSD95 (1:200). After being washed with PBS three 

times, the slices were incubated for 1 h at 37 °C with 

secondary antibodies (1:100), and then were washed in 

PBS for 5 min three times. Cell nuclei were visualized 

with 4’,6-diamidino-2-phenylindole (DAPI) in PBS for 

10 min at room temperature. A laser scanning confocal 

microscope (Olympus BX61+DP71, Japan) was used to 

observe immunofluorescence.  

 

For the primary cultured hippocampal cell analysis, 

neurons or astrocytes were applied to coverslips, washed 

with PBS three times and then fixed with 4% 

paraformaldehyde in PBS for 15 min at room temperature. 

The cells were then permeabilized with 0.5% Triton X-

100 in PBS for 20 min at room temperature. The 

subsequent steps of immunochemistry were the same as 

those described above for the brain slices. In the 

fluorescence experiments to assess whether hAmylin 

disrupted the integrity of the cell membrane, we incubated 

the cells with 10 μM hAmylin or PBS instead of Triton X-

100 (1 min or 30 min), but the other steps were the same. 

 

TUNEL staining was performed according to the In situ 

BrdU-Red DNA Fragmentation (TUNEL) Assay Kit 

instructions. The proportion of apoptotic cells was 

calculated as the number of TUNEL+ cells / the number 

of DAPI+ cells × 100%. 

 

Scanning electron microscopy 
 

The specimen was fixed with 2.5% glutaraldehyde in 

phosphate buffer (pH 7.0) for more than 4 h, and then 

was washed three times in phosphate buffer. Next, the 

specimen was post-fixed with 1% OsO4 in phosphate 

buffer (pH 7.0) for 1 h, and was subsequently washed 

three times in phosphate buffer. The specimen was 

dehydrated in a graded series of ethanol solutions (30%, 

50%, 70%, 80%, 90%, 95% and 100%) for about 15 to 

20 min at each step. Then, it was transferred to a 

mixture of ethanol and isoamyl acetate (v:v = 1:1) for 

about 30 min, and transferred to pure isoamyl acetate 

for about 1 h. The specimen was then dehydrated in a 

Hitachi Model HCP-2 critical point dryer with liquid 

CO2. The dehydrated specimen was coated with gold-

palladium and observed with an S-3500N scanning 

electron microscope (Hitachi, Japan). 

 

Live cell imaging 
 

To investigate the long-term effects of hAmylin on 

neurons, we used a large BL incubator (PeCon, 

Germany) with a Leica microscope (Leica, #11600198) 

to image living cells at 37 °C with 5% CO2. Neurons 

treated with FAM-labeled hAmylin were imaged every 

30 min for 12 h. In the cell survival experiment with 10 

µM hAmylin, images were taken every 10 min for 12 h. 

 

Calcium imaging 
 

Calcium imaging was performed as described 

previously [14]. Fura-2-acetoxymethyl ester (2 µM) was 

loaded into cultured rat hippocampal neurons for 20 min 

at 37 °C. After the loading step, the hippocampal 

neurons were washed with HEPES buffer to remove the 

extracellular dye, the cells were observed through an 

inverted microscope (Leica DMI3000), and images 

were captured with a ratiometric imaging system 

(Metafluor, CA) at room temperature. The calcium 

signals were generated using 340 and 380 nm excitation 

(monochromator, Polychrome V, TILL Photonics, NY, 

USA) and imaged with a cooled electron multiplying 

charge-coupled device camera (Andor, Germany). The 

HEPES buffer contained 145 mM NaCl, 3 mM KCl, 2 

mM MgCl2, 2 mM CaCl2, 10 mM glucose and 10 mM 

HEPES (adjusted to pH 7.4 with NaOH). The 340/380-

nm fluorescence intensity ratio was calculated as 

previously described [14]. All agents for calcium 

imaging were dissolved in HEPES buffer. The drugs 

were applied locally to the cells through an eight-

channel pressure-controlled drug application system 

(ALA Scientific, USA).  

 

Measurement of ROS generation 

 

As described in our previously published paper [53], we 

assessed the intracellular ROS generation induced by 

the drug intervention by measuring fluorescence 

intensity using DCFH-DA. Hippocampal neurons were 

loaded with DCFH-DA in the dark at 37 °C for 20 min, 

and then were washed and perfused with HEPES buffer 

according to the same method used for calcium 
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imaging. ROS signals were excited at 488 nm on a 

Leica DMI3000B microscope (Leica Microsystems 

Inc.) equipped with a ratiometric imaging system, and 

images were recorded at 1-s intervals using a cooled 

electron multiplying charge-coupled device camera 

(Andor). ROS generation, as indicated by the 

fluorescence intensity at 488 nm in cells loaded with 

DCFH-DA, was calculated as follows: ROS generation 

(488 nm) = [(P488 nm – B488 nm) / B488 nm] × 100%, 

where P488 nm is the peak fluorescence intensity after 

the intervention, and B488 nm is the baseline 

fluorescence intensity before the intervention. 

 

Measurement of the mitochondrial membrane 

potential 

 

The mtΔΨ was measured as previously described [53]. 

JC-1 dye (10 μg/mL, 20 min, 37 °C) was loaded into 

hippocampal neurons, and images were captured on a 

Leica DMi8 two-photon confocal laser scanning 

microscope (Leica Microsystems Inc., Germany). 

Wavelengths of 488 and 519 nm were used for the 

mtΔΨ signals, and the ratio of 519/488 nm represented 

the change in the mtΔΨ. 

 

Statistical analysis 
 

Data are presented as the mean ± standard deviation. A 

Gehan-Breslow-Wilcoxon test was used to analyze the 

neuronal survival curve, and a chi-square test was used 

to evaluate differences in the percentage of positive 

cells between the groups. One-way analysis of variance 

(ANOVA) followed by Bonferroni’s post hoc test was 

used to compare the ROS levels and mtΔΨ of the 

groups. Differences between pre- and post-treatment 

values in the same cell type were assessed with a paired 

t test. A p value less than 0.05 was considered 

statistically significant. Data were analyzed with 

GraphPad Prism software (v. 5.00, USA) and SPSS 

software (v. 20.0, USA). The sample sizes were based 

on previous international research experience and 

published papers. No randomization methods were used 

in this study. The experimenters were not blinded to the 

conditions of the study. Our experiments did not 

involve any missing data, lost data or excluded data. 
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Supplementary Figure 1. (A, B) Twenty-four hours after hAmylin was injected into the lateral ventricle, no fluorescence of TMEM199 
(microglial labeling) (A) or Iba1 (microglial and macrophage labeling) (B) was observed in the hippocampal dentate gyrus. (C) Typical traces 
showing the effects of 10 μM hAmylin and 10 μM hAmylin + 1 μM CsA on [Ca2+]i in hippocampal neurons. (D) CsA did not change the 
hAmylin-induced increase in [Ca2+]i. The ratio in parentheses is the positive percentage of neurons responding to hAmylin. p > 0.05 versus the 
response before CsA treatment (paired t test). 

 
 


