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ABSTRACT 
 
Objective: Many population studies have shown that maternal prenatal nutrition deficiency may increase the 
risk of neurodevelopmental disorders in their offspring, but its potential transcriptomic effects on brain 
development are not clear. We aimed to investigate the transcriptional regulatory interactions between genes 
in particular pathways responding to the prenatal nutritional deficiency and to explore their effects on 
neurodevelopment and related disorders. 
Results: We identified three modules in rat hippocampus responding to maternal prenatal nutritional 
deficiency and found 15 key genes (Hmgn1, Ssbp1, LOC684988, Rpl23, Gga1, Rhobtb2, Dhcr24, Atg9a, Dlgap3, 
Grm5, Scn2b, Furin, Sh3kbp1, Ubqln1, and Unc13a) related to the rat hippocampus developmental 
dysregulation, of which Hmgn1, Rhobtb2 and Unc13a related to autism, and Dlgap3, Grm5, Furin and Ubqln1 
are related to Alzheimer’s disease, and schizophrenia. Transcriptional alterations of the hub genes were 
confirmed except for Atg9a. Additionally, through modeling miRNA–mRNA-transcription factor interactions for 
the hub genes, we confirmed a transcription factor, Cebpa, is essential to regulate the expression of Rhobtb2. 
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We did not find significant signals in the prefrontal cortex responding to maternal prenatal nutritional 
deficiency. 
Conclusion: These findings demonstrated that these genes with the three modules in rat hippocampus involved 
in synaptic development, neuronal projection, cognitive function, and learning function are significantly 
enriched hippocampal CA1 pyramidal neurons and suggest that three genetic regulatory subnetworks and 
thirteen key regulating genes in rat hippocampus perturbed by a prenatal nutrition deficiency. These genes and 
related subnetworks may be prenatally involved in the etiologies of major brain disorders, including 
Alzheimer’s disease, autism, and schizophrenia. 
Methods: We compared the transcriptomic differences in the hippocampus and prefrontal cortex between 10 
rats with prenatal nutritional deficiency and 10 rats with prenatal normal chow feeding by differential analysis 
and co-expression network analysis. A network-driven integrative analysis with microRNAs and transcription 
factors was performed to define significant modules and hub genes responding to prenatal nutritional 
deficiency. Meanwhile, the module preservation test was conducted between the hippocampus and prefrontal 
cortex. Expression levels of the hub genes were further validated with a quantitative real-time polymerase 
chain reaction based on additional 40 pairs of rats. 
 

INTRODUCTION 
 
A multitude of epidemiological studies, which were 
based on the Dutch Hunger Winter Famine [1] and  
the Chines Famine [2] cohorts, demonstrated that 
maternal exposure to nutrition deficiency during critical 
stages of pregnancy significantly increases the risks  
of schizophrenia, bipolar disorder in the offspring. 
Different maternal nutritional deficiencies during 
pregnancy probably lead to different types of 
neurodevelopmental disorders in the offspring. Lack of 
several common nutrients includes folate, essential fatty 
acids, retinoids, vitamin D, iron and protein-calorie 
malnutrition (PCM) [3] before delivery can lead to 
neural tube defects in offspring [4], decreased IQ in 
childhood, central nervous system malformation, 
neuronal cell growth and differentiation disorder,  
nerve junction and myelin sheath defects, as well  
as neurotransmitters, cells, electrophysiology and 
behavioral disorders [3, 5], respectively.  
 
Animal-based research showed that maternal prenatal 
nutrition deficiency is closely related to the 
neurodevelopment of offspring [6, 7]. Protein 
malnutrition has been extensively studied as an 
important research direction of maternal malnutrition 
during pregnancy. We have established a prenatal 
malnutrition (famine) rat model, named RLP50, which 
was induced by prenatal exposure to a diet restricted to 
50% of a low-protein (6%) [8]. Using gene expression 
and DNA methylation modifications profiling 
strategies, we have observed significantly different 
patterns of gene expression and trace elements in 
pregnant rats of the RLP50 group. This broadens our 
understanding of the complex biochemical perturbations 
that prenatal exposure to famine can induce, and these 
perturbations may eventually lead to impairment of fetal 

neurodevelopment [8]. However, these studies 
emphasized only on screening differentially expressed 
biomarkers rather than determining the connection 
between them, in which biomarkers with similar 
expression patterns may be functionally related. 
Moreover, the regulatory interactions between genes in 
particular pathways or biological processes responding 
to the prenatal nutritional deficiency have not been 
investigated. Additionally, potential novel regulators of 
transcription and post-transcription dominating prenatal 
nutritional deficiency-induced gene expression changes, 
including micro-RNAs, long noncoding RNAs, and 
transcription factors, have not been investigated how 
they regulate the transcription-level RNA interactions. 
Thereby understanding the functional molecular 
mechanisms regulated by these interactions is essential 
for gaining biological insights into gene functions. 
Transcriptomic network analysis enables us to cluster 
genes by assigning them to known biological functions 
in which they are involved [9]. Among the 
transcriptomic network inference algorithms, weighted 
gene co-expression network analysis (WGCNA) is a 
relatively new statistical method not only to infer 
correlation patterns between two genes but also covers 
neighborhood across expression data through 
constructing subnetworks named modules [10]. Plenty 
of evidence suggested the modules as stable units 
underlying transcriptional regulation networks whose 
function can remain the same while individual gene 
expression can be changed or replaced by other genes 
with similar redundant functions [11].  
 
In this study, we conducted a co-expression network 
analysis for identifying putative genes and subnetwork 
responding to the perturbation of prenatal nutrition 
deficiency in the rat brain hippocampus and prefrontal 
cortex. A network-driven integrative analysis was 
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performed to find significant modules and a module 
preservation test was conducted to test the robustness of 
the significant modules. Further gene ontology and 
protein-protein interaction analyses were conducted to 
determine potential hub genes. Through co-expression 
network analysis, we identified three genetic regulatory 
subnetworks and fifteen key regulating genes in rat 
hippocampus followed with independent PCR 
verification and inference of miRNA–mRNA-
transcription factor interactions that dominate prenatal 
nutritional deficiency-induced gene expression changes, 
demonstrating functional implications for Alzheimer’s 
disease, autism, schizophrenia, and other 
neuropsychiatric disorders.  
 
RESULTS 
 
Demographic characteristics of RLP50 and neonatal 
rats 
 
Prenatal malnutrition did not significantly alter birth 
numbers. However, the neonatal birth weights in both 
the LP and RLP50 groups were lower than those in the 
control group, with the RLP50 group having the lowest 
birth weights (p < 0.001). Meanwhile, the RLP50 group 
showed significant maternal weight percent gain 
compared to the other two groups (p < 0.001). As 
previously reported in our studies [12, 13], we observed 
a tendency for the LP group to build a smaller nest and 
a complete disappearance of nest building in the RLP50 
group after gestational exposure to simulated famine (p 
< 0.001), indicating that gestational exposure to 
malnutrition and the stress of starvation resulted in 
maternal behavior disruption. Behavior tests of neonatal 
rats between groups did not find significant differences. 
The sole purpose of this low protein group was to 
provide a basis to calculate the appropriate diet for the 
"RLP50" group, (Figure 1) which was used to simulate 
the prenatal famine situation, thus only rats in RLP50 
and control groups were selected to perform the gene 
expression profiling analysis. 
 
DEGs in the hippocampus and prefrontal cortex 
 
After microarray data pre-processing, final data sets 
included 17 hippocampal tissues of rats (10 prenatal 
nutrition deficiency offspring groups and 7 normal 
offspring groups) and 17 prefrontal cortex tissues of rats 
(8 prenatal nutrition deficiency offspring groups and 9 
normal offspring groups). The distribution of gender is 
not significantly different between the RLP50 group 
and normal nourished offspring groups (Table 1).  
 
We analyzed rat hippocampus tissue including 10 prenatal 
nutrition deficiency offspring individuals and 7 normal 
offspring individuals, as well as prefrontal cortex 

including 7 prenatal nutrition deficiency offspring 
individuals and 9 normal offspring individuals, 
respectively. We found that 1844 genes were 
differentially expressed between prenatal nutrition 
deficiency and control offspring individuals, 209 of which 
were significantly different after FDR adjustment (FDR-
corrected P < 0.05) (Supplementary Figure 2, 
Supplementary Table 3) in the hippocampus. In the 
prefrontal cortex, 717 genes were differentially expressed 
between prenatal nutrition deficiency and control 
offspring individuals, while, we did not find any 
differentially expressed genes with significance after FDR 
adjustment (FDR-corrected *P < 0.05) (Supplementary 
Table 3), which is consistent with our previous report [12] 
and suggested the hippocampus is more sensitive to the 
exposure to prenatal nutrition deficiency. In this current 
study, we identified a much smaller number of DEGs 
compared with the previous one, in which 2987 DEGs in 
the hippocampus and 415 DEGs in the prefrontal cortex 
were reported, because there was no correction for 
multiple test performed in that previous study. 
 
Co-expression modules related to prenatal 
nutritional status 
 
We conducted a weighted gene co-expression network 
analysis (WGCNA). Before using the WGCNA R 
package to construct the network, we used cluster 
analysis to check the quality of hippocampal and 
prefrontal cortex samples further and no samples were 
removed (Supplementary Figure 3). Here, the power of 
β equaling 15 was selected as the soft threshold for 
constructing a scale-free network in the hippocampus 
(Supplementary Figure 4A, 4B), while the power of β 
equaling 18 is selected for prefrontal cortex 
(Supplementary Figure 4E, 4F). 
 
In all 17 subjects with hippocampal expression profiling 
data, 16 modules were identified, 3 of which (blue, pink 
and salmon modules) showed significant association 
“Factor (e.g. prenatal nutritional status)” in overall 
expression patterns (represented by MEs) (Figure 2A), 
while no module was significantly associated with 
“Gender” (Figure 2B). In all 16 subjects with prefrontal 
cortex expression profiling data, 12 modules with co-
expressed genes were identified, but no module was 
significantly correlated with “Factor” (Figure 2C) or 
“Gender” (Figure 2D).  
 
Module preservation test 
 
We performed preservation analysis of the expression 
profiles of the hippocampus and prefrontal cortex and 
found that there were some weak preserved modules 
between these two different brain tissues 
(Supplementary Figure 5), and the findings indicated 
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Table 1. Samples information included in this study. 

Samples Prenatal Nutritional Status Gender Neonatal Body Weight(g) 
Prefrontal cortex 
F3F2P Prenatal Nutrition Deficiency Offspring Female 4.65 
F3F1P Prenatal Nutrition Deficiency Offspring Female 4.83 
F6F2P Prenatal Nutrition Deficiency Offspring Female 4.91 
F2F2P Prenatal Nutrition Deficiency Offspring Female 4.71 
F7M2P Prenatal Nutrition Deficiency Offspring Male 5.11 
F5M2P Prenatal Nutrition Deficiency Offspring Male 5.01 
F6M4P Prenatal Nutrition Deficiency Offspring Male 5.08 
F7M5P Prenatal Nutrition Deficiency Offspring Male 4.67 
C2F1P Control Offspring Female 6.55 
C3F2P Control Offspring Female 6.78 
C1F3P Control Offspring Female 7.12 
C4F3P Control Offspring Female 7.01 
C5M4P Control Offspring Male 7.25 
C5M2P Control Offspring Male 7.56 
C3M4P Control Offspring Male 7.89 
C5M3P Control Offspring Male 8.41 
C4M3P Control Offspring Male 7.08 
Hippocampus 
F6F2H Prenatal Nutrition Deficiency Offspring Female 4.91 
F3F2H Prenatal Nutrition Deficiency Offspring Female 4.65 
F2F2H Prenatal Nutrition Deficiency Offspring Female 4.71 
F5M2H Prenatal Nutrition Deficiency Offspring Male 5.01 
F6M4H Prenatal Nutrition Deficiency Offspring Male 5.08 
F7M4H Prenatal Nutrition Deficiency Offspring Male 4.79 
F3F3H Prenatal Nutrition Deficiency Offspring Female 4.93 
F2F1H Prenatal Nutrition Deficiency Offspring Female 4.99 
F7M3H Prenatal Nutrition Deficiency Offspring Male 4.67 
F7M2H Prenatal Nutrition Deficiency Offspring Male 4.74 
C2F2H Control Offspring Female 6.89 
C4F3H Control Offspring Female 7.01 
C3M4H Control Offspring Male 7.89 
C5M3H Control Offspring Male 8.41 
C4M3H Control Offspring Male 6.99 
C5F1H Control Offspring Female 7.87 
C5M1H Control Offspring Male 8.23 

 

 
 

Figure 1. Flow chart of the analytic procedure. 
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by medianRank and Zsummary statistics were 
consistent, which indicated that module size has little 
effect on preservation analysis. Six hippocampal 
modules were highly preserved with the prefrontal 
cortex, including the blue module in the hippocampus, 
seven modules, including a salmon module in the 
hippocampus, were moderately preserved in the 
prefrontal cortex, and two modules, including the pink 
module in the hippocampus, were weakly preserved 
with the prefrontal cortex. These findings demonstrated 
that the gene expression patterns between the 
hippocampus and prefrontal cortex are different to a 
large extent, and prenatal malnutrition may easily 
trigger the changes of gene expression patterns in the 
hippocampus. 
 
Enrichment analysis of interesting modules 
 
We conducted gene ontology enrichment analyses of 
the three modules in the hippocampus significantly 
related to prenatal nutrition deficiency and found that 
the module genes related to prenatal nutrition deficiency 
were involved in neuronal development and function. In 
the blue module, we found most genes are related to 
synaptic development, as their cellular component was 
associated with postsynaptic specialization, neuron to 
neuron synapse, postsynaptic density, asymmetric 
synapse, and synaptic membrane. And their genetic 
functions are related to learning and social behavior 

(Figure 3A, Supplementary Table 5). In the pink 
module, we found the cellular components of most 
genes were related to the synaptic membrane, 
postsynaptic membrane, and neuron to neuron synapse, 
etc. Meanwhile, their biological function was involved 
in learning, memory, and cognition (Figure 3B, 
Supplementary Table 5). In the salmon module, cellular 
components of most genes were regarding neuron 
projection terminus, synaptic vesicle, and neuron 
projection terminus, etc. Their biological function was 
major related to synaptic vesicles, such as synaptic 
vesicle cycle, synaptic vesicle transport, the 
establishment of synaptic vesicle localization, and 
synaptic vesicle exocytosis (Figure 3C, Supplementary 
Table 5). In summary, GO functional enrichment 
analysis demonstrated that prenatal nutrition deficiency 
affected the transcriptional expression of neuronal 
development-related genes.  
 
KEGG enrichment analysis demonstrated that the genes 
within the blue, pink, and salmon modules were 
involved in the ribosome, circadian entrainment and 
synaptic vesicle cycle, respectively (Figure 3, 
Supplementary Table 6). This further indicated that the 
salmon module genes are more closely related to 
synaptic development. 
 
The rat brain hippocampus cell-types enrichment 
analysis showed that the salmon module was enriched

 

 
 

Figure 2. Association test of modules with prenatal nutritional status and gender (FDR-corrected *P < 0.05). (A) Module-level 
differential expression related to prenatal nutritional status in the hippocampus. (B) Module-level differential expression related to prenatal 
nutritional status in the prefrontal cortex. (C) Module-level differential expression related to gender status in the hippocampus. (D) Module-
level differential expression related to gender status in the prefrontal cortex.    
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with genes specifically expressed in pyramidal neurons, 
which are the most common excitable neurons (Figure 
4, Supplementary Table 7) sending and receiving nerve 
impulses within the cerebral cortex, hippocampus, and 
the amygdala. In mammals, it is thought that pyramidal 
neurons play a key role in cognitive functions, such as 
perception, reasoning, remembering, thinking and 
understanding. We did not find significant enrichment 
of cell-types in blue and pink modules. 
 
To further evaluate the effects of prenatal nutrition 
deficiency on the risk of neurodevelopmental diseases, 
we conducted disease-related gene set enrichment 
analysis based on the DisGeNET database, in which 

24166 human diseases and their related-genes were 
included. We concentrated on 10 major brain diseases, 
including attention deficit hyperactivity disorder 
(ADHD), autism, anoxia, bipolar disorder, Parkinson’s 
disease, major depressive disorder, Alzheimer’s disease, 
schizophrenia, and glioma. The results demonstrated 
that the blue module was significantly overlapped with 
genes related to Alzheimer's disease, autism, and 
schizophrenia, while the pink and salmon modules were 
significantly overlapped with schizophrenia-related 
genes. These findings suggest that prenatal nutrition 
deficiency may increase the risk of neurodevelopmental 
diseases, including Alzheimer's disease, autism, and 
schizophrenia (Table 2).  

 

 
 

Figure 3. Gene Ontology and KEGG pathway enrichment analysis of the modules significantly related to prenatal nutrition 
deficiency in the hippocampus. (A) Top 5 terms significantly enriched in the blue module; (B) Top 5 terms significantly enriched in the 
pink module; (C) Top 5 terms significantly enriched in the salmon module.  

https://www.wisegeek.com/what-is-the-cerebral-cortex.htm
https://www.wisegeek.com/what-is-the-hippocampus.htm
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Identification of hub genes  
 
As shown in Figure 5A, 5D and 5G, the Factor-
associated down-regulated blue, pink and salmon 
modules were significant positive correlations between 
GS and MM in the hippocampus. This showed that 
these three modules have high quality. We selected the 
top 50 genes in each of the three modules (Figure 5B, 
5E, and 5H) with high GS and MM from blue, pink and 
salmon modules, (Supplementary Table 4) respectively. 
And we also showed the top 50 high connectivity genes 
based on the co-expression network, which may provide 
a basis for other studies (Figure 7A–7C, Supplementary 
Figure 6A–6C). We constructed PPI networks of these 
three module genes using STRING and highlighted the  
top 50 high connectivity genes (Figure 7D–7F, 
Supplementary Figure 6D–6F). Hub genes selection

 was based on features including significantly different 
between prenatal nutrition deficiency and control 
offspring, high GS and MM and connection degree ≥ 5 
in the PPI network (Figure 5C, 5F, and 5I). We found 
twelve hub genes in the blue module, including Hmgn1, 
Ssbp1, LOC684988, Rpl23, Gga1, Rhobtb2, Dhcr24, 
Atg9a, Dlgap3, Grm5, Scn2b and Furin, two hub genes 
in the pink module, including Sh3kbp1 and Ubqln1, and 
one hub gene (Unc13a) in the salmon module 
(Supplementary Figure 7A). 
 
qPCR validation of the hub genes 
 
To verify the main conclusion drawn from the 
microarray results, the relative expression levels of the 
15 key genes, including Hmgn1, Ssbp1, LOC684988, 
Rpl23, Gga1, Rhobtb2, Dhcr24, Atg9a, Dlgap3, Grm5, 

 

 
 

Figure 4. Cell-type enrichment analysis of the blue, pink and salmon modules significantly responding to prenatal nutrition 
deficiency in the hippocampus.  
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Table 2. Enrichment analysis of module with genes related to major brain diseases. 

Disease No. Disease 
Gene 

Blue Module (795 genes) 

 

Pink Module (278 genes) 

 

Salmon Module (117 genes) 
No. 

Overlapped 
Gene 

P-value Adjusted  
P Value 

No. 
Overlapped 

Gene 
P-value Adjusted  

P Value 

No. 
Overlapped 

Gene 
P-value Adjusted  

P Value 

Intellectual 
Disability 2684 132 6.00E-04 1.50E-03 49 1.01E-02 1.59E-02 22 3.63E-02 4.50E-02 

Epilepsy 1643 98 2.93E-06 2.18E-05 43 1.04E-05 3.91E-05 15 3.68E-02 4.50E-02 
Autism 1011 66 8.64E-06 3.70E-05 28 1.65E-04 4.96E-04 14 1.37E-03 2.74E-03 
ADHD 411 23 3.75E-02 4.50E-02 11 2.03E-02 2.91E-02 9 4.64E-04 1.27E-03 
Bipolar 
Disorder 850 45 1.29E-02 1.94E-02 25 1.51E-04 4.96E-04 13 8.37E-04 1.79E-03 

Depressive 
Disorder 950 64 4.37E-06 2.18E-05 25 7.81E-04 1.79E-03 13 2.26E-03 3.99E-03 

Schizophrenia 1965 115 9.21E-07 1.38E-05 50 3.88E-06 2.18E-05 28 2.19E-06 2.18E-05 
Alzheimer's 
Disease 2061 123 1.25E-07 3.76E-06 36 4.64E-02 5.36E-02 22 1.89E-03 3.54E-03 

Parkinson' 
Disease 409 22 5.85E-02 6.50E-02 8 1.71E-01 1.77E-01 6 2.60E-02 3.55E-02 

Glioma 2389 115 2.89E-03 4.82E-03 39 8.85E-02 9.48E-02 11 7.80E-01 7.80E-01 

 

Scn2b, Furin, Sh3kbp1, Ubqln1, and Unc13a, were 
determined using qPCR. No significant difference in 
body weight and gender were detected between the two 
groups of rats. The qPCR analysis results indicated that 
the expression levels of Hmgn1, Ssbp1, LOC684988, 
Rpl23, Gga1, Rhobtb2, Dhcr24, Dlgap3, Scn2b, Furin, 
Ubqln1, and Unc13a were significantly up-regulated in 
samples from RLP50 group compared with the prenatal 
normal nourished group, whereas Grm5 and Sh3kbp1 
were significantly down-regulated. Meanwhile, there 
were no significant differences in the expression level 
of Atg9a between the two groups. 
 
Inference of miRNA–mRNA-transcription factor 
interactions 
 
The final “real” 15 hub genes were simultaneously input 
into the miRDB database to identify the microRNAs 
target sites, and were combined with DiRE database to 
identify transcription factors regulating these hub genes 
(Figure 6, Supplementary Table 10). We found a 
transcription factor, Cebpa, was differentially expressed 
with statistical significance (Supplementary Figure 7B). 
Cebpa may transcribe the hub gene Rhobtt2 in the blue 
module, whereas miR-3569 and miR-18a-3p may 
suppress the translation of Rhobtt2. Meanwhile, miR-
18a-3p may also suppress the translation of hub gene 
Furin in the blue module, which may cause the indirect 
correlated expression between Rhobtt2 and Furin in the 
blue module. All hub genes are co-regulated through 
miRNAs, or transcription factors, or other potential 
novel regulators of transcription and post-transcription 
dominating prenatal nutritional deficiency-induced gene 
expression changes. For example, miR-let-7g-3p can 
regulate both Hmgn1 and Dlgap3; meanwhile the 

transcription factor NXC may regulate both Rpl23 and 
Gga1 in the miRNA–mRNA-transcription factor 
interaction network. Detailed illustration of the inferred 
miRNA–mRNA-transcription factor interactions for the 
15 hub genes is present in Figure 6. 
 
In the study of hub genes, we additionally screened the 
Top50 connectivity gene (Figure 7A–7C, Supplementary 
Figure 6A–6C, Supplementary Tables 8 and 9) in the  
co-expression network and the Top50 connectivity gene 
(Figure 7D–7F and Supplementary Figure 6D–6F) in the 
PPI network. These contents are not highly related to the 
main ideas of this article, but could provide some basis 
for the follow-up study.” 
 
DISCUSSION 
 
In our previous study, we demonstrated that prenatal 
exposure to malnutrition results in systematical changes 
of transcriptome and DNA methylome associated with 
neuropsychiatric diseases [12]. However, the changes in 
gene expression and modifications were generally mild, 
and we focused on individual DEGs and the correlation 
between epigenetic and transcriptome programming. In 
the present study, we performed weighted gene co-
expression network analysis to investigate the joint effect 
of multiple genes and key regulators. We identified three 
genetic regulatory subnetworks, fifteen key regulating 
genes along with their regulating transcription factors  
and microRNAs in rat hippocampus perturbed by a 
prenatal nutrition deficiency. These findings provide a 
further understanding of how prenatal nutritional 
deficiency perturbs hippocampus development through 
transcriptomic regulatory network level. We did not 
identify gender -specific changes in gene co-expression 
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networks in the hippocampus and the prefrontal cortex. 
We thought this was plausible since prenatal exposure to 
famine increases the risk of schizophrenia in both males 
and females [1, 2]. Our rat model (RLP50 offspring) 
simulated the prenatal malnutrition occurred in famine. 
Compared with the widely used prenatal protein 
malnutrition model, in which a low protein diet would be 
used five weeks before mating [14–16], our treatment 
was more severe but limited to the gestational period. 
The difference between the two models may result in 
different findings associated with prenatal malnutrition. 
The findings from our RLP50 model reflected the role of 
prenatal extreme malnutrition on the brain development 

of embryo and fetus, while those findings in the prenatal 
protein malnutrition model might probably be caused by 
abnormal development of oocytes as well.  
 
Consistent with previous findings, prenatal protein 
malnutrition has a more severe impact on the 
hippocampus than in the prefrontal cortex [17–19]. For 
example, studies have shown that protein malnutrition 
during pregnancy reduced the total number of neurons 
in the hippocampus CA1 subarea and had important 
implications for the perisomatic of hippocampal 
pyramidal neurons, which will have an important 
impact on the formation of the hippocampus [5]. Based

 

 
 

Figure 5. Identification of final hub genes from the hippocampus tissue. Scatter plotting of the correlation between gene 
significance (GS) and module membership (MM), top 50 module genes with high GS and MM, and Venn diagram of the overlapping genes 
belonging to the PPI network with degree ≥ 5, top 50 module genes with high GS and MM, and  the differentially expressed genes (DEGs) in 
the blue (A–C), pink(D–F), and salmon (G–I) modules. 



www.aging-us.com 8443 AGING 

on the results of network analysis, we conducted a 
preservation analysis of the expression profiles between 
the hippocampus and prefrontal cortex (Supplementary 
Figure 5). The results showed that there were some 
modules in the hippocampus that were not preserved 
with those in the prefrontal cortex. These findings may 
indicate that there are regional differences in the effects 
of maternal nutritional deficiency on the genetic 
changes of the offspring brain. The hippocampus plays 
an important role in learning and memory and is 
believed to be crucially involved in the pathophysiology 
of many neuropsychiatric disorders, including 
schizophrenia and autism. And many reports have found 
that hippocampus dysfunction is caused by deficits of 
some gene expression in synapses in subjects with 
schizophrenia, or autism, and that the changes probably 
result from altered brain development rather than tissue 
damage [20]. The most commonly reported genes 

associated with schizophrenia and autism were 
expressed during prenatal life and affected prenatal 
development in multiple brain regions, including the 
hippocampus [21, 22]. Therefore, the impairment of 
hippocampal development and functions may be 
important for the increased risk of schizophrenia and 
autism after prenatal exposure to malnutrition. The 
prefrontal cortex is responsible for complex cognitive 
behavior and its dysfunction is associated with many 
neuropsychiatric disorders. However, we did not 
identify the genetic regulatory subnetworks and key 
regulating genes in the prefrontal cortex perturbed by 
prenatal nutrition deficiency. A possible explanation is 
the statistic corrections for multiple tests. In this study, 
the differentially expressed genes were screened after 
rigorous correction, and therefore a much smaller 
number of DEGs was identified compared with our 
previous report, which used real-time PCR to validate 

 

 
 

Figure 6. Illustration of miRNA–mRNA-transcription factor interaction for hub genes identified in the blue, pink and salmon 
modules in the hippocampus. Each hub gene is denoted as solid circle; each transcription factor is denoted as solid square; and each 
miRNA is denoted as a solid delta. 
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Figure 7. Top 50 genes with high network connectivity. (A–C) Top 50 genes determined through co-expression networks in the blue, 
pink, and salmon modules, respectively; (D–F) Top 50 genes determined through PPI networks in the blue, pink, and salmon modules, 
respectively. 
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DEGs [12]. Neuropsychiatric disorders are multifaceted 
diseases with complex and heterogeneous etiology. 
Prenatal nutrition deficiency alone may have a limited 
impact on prefrontal cortex development. In this study, 
malnutrition was restricted in the gestational period. It 
has been known that the stress during gametal or 
postnatal development affects brain functions and  
gene expression [23, 24]. Moreover, neuropsychiatric 
disorders have strong but largely undiscovered heritable 
components [25]. Prenatal nutrition deficiency may 
exert their effect on the prefrontal cortex in a specific 
genetic background. 
 
Network analysis screened out three modules associated 
with prenatal malnutrition in the hippocampus, including 
blue, pink and salmon one (Figure 2A). The GO and 
KEGG analysis suggested genes in these modules were 
involved in synaptic development, neuronal projection, 
cognitive function, and learning function. Cell-types 
analysis showed that salmon module significantly 
enriched hippocampal CA1 pyramidal neurons (Figure 4, 
Supplementary Table 7). The abundance of pyramidal 
neurons in the hippocampus suggests that their proper 
function is necessary for cognitive processing, and thus 
defects in pyramidal neuron function could be a reason 
for the cognitive impairment in neuropsychiatric 
disorders, such as Alzheimer’s disease or schizophrenia 
[26]. Overlap analysis of genes associated with major 
brain diseases demonstrated that dysregulated genes 
associated with Alzheimer's disease, autism, and 
schizophrenia were overrepresented. All these findings 
based on enrichment analysis demonstrated that these 
three modules in rat hippocampus represented the key 
gene regulatory networks and pathways related to the 
impact of prenatal malnutrition on neuropsychiatric 
diseases, including Alzheimer's disease, autism, and 
schizophrenia (Table 2).  
 
Screening of hub genes is based on three conditions, 
including: whether it is a differentially expressed gene; 
whether it is a high GS and high MM gene in the co-
expression network: and whether the connectivity in the 
PPI network is more than 5 (Figure 5). The finally 
identified15 hub genes, which were differentially 
expressed in PLP50 offspring, showed high GS and 
high MM scores, and have more than 5 connection 
degrees in PPI network, were compelling candidates for 
the key regulators responding to the prenatal nutritional 
deficiency.  
 
Twelve hub genes were identified in the blue module, 
including Hmgn1, Ssbp1, LOC684988, Rpl23, Gga1, 
Rhobtb2, Dhcr24, Atg9a, Dlgap3, Grm5, Scn2b, and 
Furin. The hub gene Hmgn1 encodes the high mobility 
group N1 protein that affects the structure and function 
of chromatin [27]. It locates on chromosome 21 and 

over-expressed in Down syndrome. It has been reported 
that Hmgn1 regulated the expression of methyl CpG 
binding protein 2 (MeCP2) by altering the chromatin 
structure and histone modification of its promoter. 
Changes in the expression level of Hmgn1 can lead to 
abnormal activity and anxiety in mice. MeCP2, a well-
known gene for Rett syndrome, was also differentially 
expressed in our original microarray data. These results 
suggested that Hmgn1 affected the psychiatric behavior 
of mice and these epigenetic changes caused by changes 
in its expression level may play a role in 
neurodevelopmental disorders, such as Rett syndrome 
and autism [28]. Rhobtb2, an atypical Rho GTPases, 
plays an important role in synaptic plasticity and 
cognitive function. Missense variants in Rhobtb2 have 
been reported to cause a developmental and epileptic 
encephalopathy in humans, and altered levels triggering 
neurological defects in drosophila [29]. To further 
understand the role of these hub genes, we employed an 
online database to model the interaction of the upstream 
regulating factors including transcription factors and 
microRNAs with these hub genes (Supplementary Table 
5). And we further identified Cebpa, a transcription 
regulatory factor of Rhobtb2, was differentially 
expressed after exposure to prenatal malnutrition 
(Supplementary Figure 7B). Cebpa may promote the 
transcription of the hub gene Rhobtt2 in the blue 
module, whereas miR-3569 and miR-18a-3p may 
suppress the translation of Rhobtt2. Meanwhile, miR-
18a-3p may also suppress the translation of hub gene 
Furin in the blue module, which may cause the indirect 
correlated expression between Rhobtt2 and Furin in the 
blue module. One study found that schizophrenia-
associated rs4702 G allele-specific down-regulation of 
Furin by miR-338-3p reduces mature BDNF 
production, which affected neurodevelopmental 
disorder [30]. GRM5 (coding for metabotropic 
glutamate receptor 5, mGluR5) is a promising target for 
the treatment of cognitive deficits in schizophrenia, 
which may be related to the reduction of hippocampal 
volume [31]. People have reported that Dlgap3 and its 
interaction protein Slc1a1 may serve drug targets of 
some neuropsychiatric disorders, which are associated 
with adverse reactions to atypical antipsychotics (AAP), 
including obsessive-compulsive disorder in 
schizophrenia [32, 33] 
 
Two hub genes in the pink module were identified, 
including Sh3kbp1 and Ubqln1. Ubqln1 is highly 
correlated with differentially expressed genes associated 
with neurodegenerative diseases, like Alzheimer’s 
disease, and may affect neurodevelopment [34] 
(Supplementary Figure 7A).  
 
The salmon module enriched pyramidal neurons (Figure 
4, Supplementary Table 7) in the hippocampal CA1 

http://www.scholarpedia.org/article/Schizophrenia
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region. One hub gene named Unc13a was identified in 
this module. The hub gene Unc13a encodes a protein 
bind to phorbol esters and diacylglycerol and play 
important roles in neurotransmitter release at synapses. 
A new heterozygous mutation of Unc13a was reported 
in a patient with dyskinesia, cognitive retardation, 
speech disorder, autism and hyperactivity [35]. Findings 
from multiple GWAS analyses demonstrated that 
Unc13a is associated with Alzheimer’s disease [36, 37]. 
 
There were some limitations in our study. In our RLP50 
model, we mainly focused on maternal protein 
deficiency that would result in low birth weights. 
However, some micronutrients, such as folate, Vitamin 
D, and iron, may also be involved in the association 
between famine and neurodevelopment and related 
neuropsychiatric disorders. It will be of great interest to 
compare our results to those where the reprogramming 
of gene expression and epigenetic modifications occur 
in models in which only specific micronutrients are 
restricted. Meanwhile, we inferred an undirected 
network in which connectivity between nodes does not 
indicate the causal regulatory relationships.  
 
In conclusion, these findings demonstrated that these 
genes with the three modules in rat hippocampus 
involved in synaptic development, neuronal projection, 
cognitive function, and learning function are 
significantly enriched hippocampal CA1 pyramidal 
neurons and suggest that three genetic regulatory 
subnetworks and thirteen key regulating genes in rat 
hippocampus perturbed by a prenatal nutrition 
deficiency. These hub genes and their related miRNA–
mRNA-transcription factor interaction subnetworks, 
which dominate prenatal nutritional deficiency-induced 
gene expression changes, may be prenatally involved in 
the etiologies of some neuropsychiatric disorders, 
including Alzheimer’s disease, autism, and 
schizophrenia. Further in vivo and in vitro functional 
analyses warrant deciphering the precision biological 
mechanisms on how the potential novel regulators of 
transcription and post-transcription, including micro-
RNAs, long noncoding RNAs, and transcription factors, 
regulate the transcription-level RNA interactions. 
 
MATERIALS AND METHODS 
 
Animal model 
 
Sprague-Dawley rats (Shanghai Slack Laboratory 
Animal Co. Ltd.), were used in all experiments under 
the Guide for the Care and Use of Laboratory Animals 
(Washington, DC: National Academic Press). All 
experimental procedures and protocols were approved 
by the Institutional Animal Care and Use Committee at 
the Shanghai Jiao Tong University. 

Seventeen Sprague–Dawley female rats were 
randomly separated into three groups on the first day 
after mating, and were fed their respective diets until 
E18 (embryo, 18 days), two days before parturition 
(control: 5 dams; malnourished group [LP]: 5 dams; 
famine group [RLP50]: 7 dams). The control group 
was given a standard rodent diet (20% protein, 
Research Diets, Inc. D12450B) and water ad libitum 
and the LP group was given a low-protein (6% protein, 
Research Diets, Inc. D06022301) diet and water ad 
libitum. The RLP50 group was given 50% of the LP 
group’s low-protein diet, reflecting both the protein 
malnutrition and food-deficiency likely to prevail 
during the famine. All the female rats were fed with 
the standard rodent diet after E18. After parturition, all 
litters were culled to 8 pups, which were fostered by 
their own mothers. On day 21, all pups were weaned 
and placed on a standard rodent diet. Rats were raised 
to be 10 weeks old and were anesthetized before being 
killed. The PFC and hippocampus from the adult 
offspring of both control (n = 60) and RLP50 (n = 60) 
rats were then isolated and stored in RNAlater® 
Solution Life technologies). The treatment of the 
pregnant rats in RLP50 was according to our previous 
model [12, 13] 
 
Microarray data pre-processing and identification of 
DEGs in the hippocampus and prefrontal cortex 
 
Total RNA was extracted from the hippocampus and 
prefrontal cortex tissues derived from 10 control and 10 
RLP50 rats using mirVana™ miRNA Isolation Kit. The 
RNA integrity number (RIN) was detected by Agilent 
Bioanalyzer and the samples with RIN > 7.5 were 
selected for microarray gene expression analysis using 
NimbleGen Rat Gene Expression 12 x 135K Arrays. 
(Supplementary Table 1) Quantile normalization of 
microarray data was performed to obtain standardized 
using preprocessCore package in R [38] (Supplementary 
Figure 1A, 1B, 1H, 1G and Supplementary Table 2). A 
total of 26419 microarray probes were converted into 
9532 Ensembl gene IDs by using the biomaRt package 
[39]. Samples defined as outliers based on standardized 
sample network connectivity Z-scores < -2 were removed 
[40] (Supplementary Figure 1C and 1I). The batch effect 
of expression profiles was treated by using the ComBat 
function of the sva package in R (Supplementary Figure 
1D, 1E, 1J, 1K, and Supplementary Table 2). We 
balanced maternal prenatal nutrition deficiency/control 
status across gender and there was no significant 
difference in gender between the two groups (p-value > 
0.05) (Supplementary Figure 1F and 1I). Differential 
expression analysis using a linear empirical Bayes model 
based on the limma package [41]. Differentially expressed 
genes with statistical significance were identified after  
p-value correction with a false discovery rate (FDR). 

javascript:;
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Weighted gene co-expression network construction  
 
To assess the inter-correlation of the intensities of the 
9532 Ensembl gene IDs (that remained after 
preprocessing) and the relationship between them and 
feature data, signed co-expression analysis was 
performed using the WGCNA R package. The pair-wise 
correlation matrix was calculated by biweight 
midcorrelation, and an adjacency matrix is calculated by 
raising the correlation matrix to power [42]. Based on a 
fit to scale-free topology (R2 > 0.8) [40] (Supplementary 
Figure 4D and 4H), the powers of 15 (Supplementary 
Figure 4A and 4B) and 18 (Supplementary Figure 4E and 
4F) were used for the construction of hippocampus and 
prefrontal cortex networks, respectively. Next, the 
dynamic tree cut methods were used to construct the 
basic network and the topological overlap dissimilarity 
matrix (1-TOM) was then used as input average linkage 
hierarchical clustering to create the network 
dendrogram [43] (Supplementary Figure 4C and 4G). 
For the basic network, we set the minimum number of 
modules to be 100 and the deep split parameter in 2 for 
a medium sensitivity of cluster splitting. Finally, 
modules were defined as branches of the dendrogram, 
which was cut based on the hybrid dynamic tree-cutting 
method [40, 42, 43].  
 
Modules were summarized by their first principal 
component (ME, module eigengene) and the 
mergeCloseModules function in the WGCNA R 
package was used to merged modules whose eigengenes 
were more than 0.85 correlated [40]. We define module 
membership of each gene in each module (kME) by 
correlating its gene expression values with the module 
eigengene of a given module [44]. Pearson correlation 
values between MEs and “Factor” (famine offspring vs 
control offspring) or “Gender” were calculated, and p-
values were adjusted with FDR. For each module, the 
correlation of two parameters [the gene significance 
(GS) and the module membership (MM)] was 
evaluated. GS stood for the magnitude of the correlation 
between the intensities of individual expression genes in 
the module and “Factor”, and MM meant the magnitude 
of the correlation between the intensities of individual 
expression genes in the module and MEs of the module. 
 
Module preservation test between the hippocampus 
and prefrontal cortex 
 
To examine whether the co-expression structure 
(density and connectivity) is similar between the 
hippocampus and prefrontal cortex samples, we 
conducted module preservation analysis based on the 
modulePreservation function in the WGCNA R 
package. We used a composite preservation statistics 
method to analyze the conservativeness of the module 

[45]. For each module, the Z-summary statistic was 
used to measure module density and intramodular 
connectivity metrics. In correlation networks, the 4 
density preservation statistics are summarized by 
Zdensity (function 1), the 3 connectivity-based 
statistics were summarized by Zconnectivity (function 
2), and for each module, the Zsummary (function 3) 
was used to measure that combines module density 
and intramodular connectivity metrics defined as 
follows: 
 
Zdensity = median (ZmeanCor, ZmeanAdj, ZpropVarExpl, 
ZmeanKME) (function 1) 
Zconnectivity = median (Zcor.kIM, Zcor.kME, Zcor.cor) 
(function 2) 
Zsummary = (Zdensity + Zconnectivity)/2 (function 3) 
 
We usually defined: if Zsummary > 10 indicated high 
preservation among modules; if 2 < Zsummary < 10 
indicated weak to moderate preservation; if Zsummary < 2 
indicated no evidence that the module preserved.  
 
The module size has a great influence on Z statistics. 
Therefore, when comparing the preservation statistics of 
different sized modules, we need to conduct medianRank 
for preservation analysis. It shows that modules with 
lower median rank tend to show stronger preservation 
statistics than those with higher median rank.  
 
Functional enrichment analysis of modules 
associated with prenatal nutritional status 
 
Gene ontology (GO) terms, including biological 
processes, molecular functions and cellular components, 
and KEGG pathway enrichment analyses in the 
modules, were conducted with the R package, 
clusterProfiler (version 3.5) [45]. We used the 
annotation function in clusterProfiler to group 
significant GO terms and pathways based on co-
associated genes to remove redundant terms. GO terms 
and pathway groups were considered significant when 
the FDR-corrected P-value of the clustered GO terms 
and pathways is below 0.05.  
 
Cell-type enrichment analysis for interesting modules 
was conducted using the R package anRichment [44]. 
For enrichment analysis of cell-type-specific genes, 
we used cell type-specific genes identified in gene 
expression datasets from neurons, astrocytes, 
myelinating oligodendrocytes, microglia, and 
endothelial cells [46]. Genes were considered cell-
type specific, if their expression levels had more than 
ten-fold higher compared to the mean levels of 
expression in the other cell types. The statistical 
significance of enrichment was determined by 
Fisher’s exact test. 
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The R package GeneOverlap(version 1.22.0) [47] was 
employed for overlap analysis of the module genes 
with disease-related genes annotated in a database 
named DisGeNET (http://www.disgenet.org) to evaluate 
if the modules are enriched with neuropsychiatric genes. 
This package uses Fisher's exact test to calculate the 
significance of each pair of gene lists in comparison to 
the genomic background. The function returns the 
number of intersecting genes between the two lists, the P-
value, and the estimated odds ratio. The null hypothesis is 
that the odds ratio is no larger than 1, and values larger 
than this indicate a positive association between two lists. 
Therefore, if a disease gene set in DisGeNET is 
significantly overlapped with the gene set of a module 
responding to prenatal nutritional deficiency, it indicates 
that this disease is closely related to hippocampus 
dysregulation responding to prenatal malnutrition. All 
analyses with an FDR adjusted P-value of < 0.05 were 
selected as statistical significance. 
 
Protein-protein interaction network construction 
and identification of hub genes in interesting 
modules 
 
The Protein-Protein Interaction (PPI) network of the 
genes in the selected co-expression module was 
constructed according to the STRING v11.0 database 
[48] and was visualized using Cytoscape. 
 
Hub genes have high connectivity within a gene module 
and are functionally significant [44]. In our study, after 
an interesting module was chosen, hub genes were 
defined by top50 module genes with high gene 
significance (GS) and module membership (MM). In 
the PPI network, genes with a combined score of ≥0.6 
and a connectivity degree of ≥5 were also defined as 
hub genes. The shared hub genes in both the co-
expression network and PPI network were regarded as 
“real” hub genes for further analyses. A Venn diagram 
(http://bioinformatics.psb.ugent.be/webtools/Venn/) was 
constructed to identify these “real” hub genes [49]. 
 
Verification of hub genes with qPCR based on 
independent samples 
 
Hub genes were selected for validation using quantitative 
real-time polymerase chain reaction (qPCR) in the 
different samples including 40 prenatal malnourished 
rats(RLP50 group) and 40 prenatal normal nourished 
rats(control group), as used for the microarray 
experiments. For the quantification of mRNAs, 1 μg of 
the total RNA was converted into cDNA using a reverse 
transcription kit (Promega) following the manufacturer's 
instruction. The TaqMan® Gene Expression Assay was 
then used to detect the gene expression of the hub genes. 
The qPCR was conducted using SYBR Premix Ex Taq 

(Takara, Japan) in 20 μl reaction solution containing 10 
μl SYBR Premix Ex Taq (2X), 0.4 μl forward primer and 
0.4 μl reverse primer, 0.4 μl ROX reference dye, 1μl 
cDNA and 8.2 μl ddH2O. The PCR amplification 
procedure was carried out at 95°C for 10 s; 40 cycles of 
95°C for 5 s and 60°C for 34 s; followed by disassociation 
curve analysis in an ABI 7500 fast real-time PCR system 
(Applied Biosystems, USA). The amplification reaction 
without the template was used as a no template control. 
All reactions were performed in triplicate. The β-actin 
gene was used as an internal reference. Primers used for 
gene amplification are available on request. The relative 
mRNA abundance was calculated using the 2-ΔΔCt 
method. Statistical comparison of the levels was analyzed 
using two-tail unpaired Student's t-test, and differences 
were considered significant if P < 0.05. 
 
Modeling miRNA–mRNA-transcription factor 
interactions for hub genes 
 
To explore transcription factors (TFs) and miRNA–
mRNA interaction in particular modules and to predict 
the possible regulatory relationships between them that 
dominate prenatal nutritional deficiency-induced gene 
expression changes, we used two common online 
databases, respectively. The TFs that bind onto hub 
genes were screened using DiRE [50] (https://dire. 
dcode.org), a web server can predict common REs  
for any set of input genes. microRNAs of hub genes 
were screened using miRDB [51] (http://mirdb.org/ 
mining.html). This database collected miRNA-genes 
regulatory relationships. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 
 

 

 
 

Supplementary Figure 1. Quality control and data preprocessing. (A, B) Pre- and post-normalization of expression profiles in 
hippocampus; (C) Detection of outlier based on standardized network connectivity z-scores in hippocampus; (D, E) Pre- and post-processing 
of batch effect in hippocampus; (F) Gender distribution for hippocampus samples between two groups treated with different prenatal 
nutritional status; (G, H) Pre- and post-normalization of expression profiles in prefrontal cortex. (I) Detection of outlier based on standardized 
network connectivity z-scores in prefrontal cortex. (J, K) Pre- and post-processing of batch effect in prefrontal cortex. (L) Gender distribution 
for prefrontal cortex samples between two groups treated with different prenatal nutritional status.  
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Supplementary Figure 2. Heatmap of 209 differentially expressed gene in hippocampus (Factor: C, control offspring; F, 
famine offspring, Gender: M, Male; F, Female). 

 

 

 
 

Supplementary Figure 3. Sample clustering analysis for detecting outliers in the hippocampus (A) and prefrontal cortex (B).  
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Supplementary Figure 4. Parameter selection for construction of weighted gene co-expression network in hippocampus and 
prefrontal cortex. (A) Selection of the scale-free fit index based on different soft-threshold powers (β) in hippocampus (β 15 was 
determined); (B) Selection of the mean connectivity of different soft-threshold powers in hippocampus; (C) Dendrogram of 9553 expressed 
genes clustered based on a dissimilarity measure (1-TOM) in hippocampus; (D) Check of scale-free topology with soft-threshold power β 
equaling 15 in hippocampus; (E) Selection of the scale-free fit index based on different soft-threshold powers (β) in prefrontal cortex (β 17 
was determined); (F) Selection of the mean connectivity of different soft-threshold powers in prefrontal cortex; (G) Dendrogram of 9553 
expressed genes clustered based on a dissimilarity measure (1-TOM) in prefrontal cortex; (H) Check of scale-free topology with soft-threshold 
power β equaling 17 in prefrontal cortex. 
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Supplementary Figure 5. Module preservation analysis between hippocampus and prefrontal cortex. The Y-axis represents 
preserved values and the X-axis represents module size. (A) median Rank test; and (B) Z summary statistics test. 

 

 

 
 

Supplementary Figure 6. Co-expression (A–C) and PPI networks (D–F) for the corresponding blue, pink, and salmon modules. 
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Supplementary Figure 7. Differentially expressed hub genes (A), and transcription factors (B) between two groups related to prenatal 
nutritional status in the interesting modules. 
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Supplementary Tables 
 
 
Please browse Full Text version to see the data of Supplementary Tables 1 to 10. 
 
Supplementary Table 1. Original microarray data from hippocampus and prefrontal cortex. 

Supplementary Table 2. Normalized data from hippocampus and prefrontal cortex. 

Supplementary Table  3. Differentially expression genes in hippocampus and prefrontal cortex. 

Supplementary Table 4. Module Membership of Genes within the significant blue, pink and salmon modules. 

Supplementary Table 5. Gene ontology enrichment analysis for blue, pink and salmon modules related to prenatal 
nutritional status. 

Supplementary Table 6. KEGG pathway enrichment analysis for blue, pink and salmon modules related to prenatal 
nutritional status. 

Supplementary Table 7. Cell type pathway enrichment analysis for blue, pink and salmon modules related to 
prenatal nutritional status. 

Supplementary Table 8. Cytoscape-format node list for the blue, pink and salmon modules. 

Supplementary Table 9. Cytoscape-format edge list the blue, pink and salmon modules. 

Supplementary Table 10. MicroRNAs or transcription factors regulating hub genes in the interesting modules. 


