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INTRODUCTION 
 

Immunotherapy is one of the treatment methods for 

malignant tumors at present, which mainly uses the 

immune effects of autoimmune or alloimmune cells in 

patients to improve the symptoms, prolong the survival 

and improve the prognosis [1, 2]. In recent years, 

immunotherapy has become a novel treatment for 

cancers, whose effectiveness and safety have been 

gradually conformed [3]. With the development of 

precision medicine and immunotherapy for cancers, 

nowadays,  more and more researchers focus on  finding  

 

out more accurate therapeutic targets for immune 

treatment [4, 5]. 

 

Kidney cancer is one of the most common malignances 

around the world, which is with poor prognosis [6]. 

According to recent statistics from the International 

Agency for Research on Cancer (IARC), part of the 

World Health Organization (WHO), there were 403,262 

new cases of kidney cancer and 175,098 associated 

deaths worldwide in 2018. Renal cell carcinoma (RCC) 

accounted for approximately 90% of kidney cancers, the 

commonest histological subtype of which was clear cell 
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ABSTRACT 
 

Clear cell renal cell carcinoma (ccRCC) is the most common subtype among kidney cancer, which has poor 
prognosis. The aim of this study was to screen out novel prognostic biomarkers and therapeutic targets for 
immunotherapy, and some novel molecule drugs for ccRCC treatment. Immune scores ranged from -1109.36 to 
2920.81 and stromal scores ranged from -1530.11 to 1955.39 were firstly calculated by applying ESTIMATE 
algorithm. Then 17 DEGs associated with immune score and stromal score were further identified. 6 candidate 
hub genes were screened out by performing overall survival (OS) and disease-free survival analyses based on 
TCGA-KIRC data, one of which including TGFBI was further regarded as hub gene associated with prognosis by 
calculating the R2 (R2 = 0.011, P = 0.018) and AUC (AUC = 0.874). The prognostic value of TGFBI was validated by 
performing OS, CSS, and PFS analyses based on GSE29609 and E-MTAB-3267. CMap analysis suggested that 3 
molecule drugs might be novel choice for ccRCC treatment. Further analysis demonstrated that CNVs of TGFBI 
was associated with OS of patients with ccRCC. TGFBI expression was also correlated with histologic grade, 
pathologic stage, and immune infiltration level, significantly. TGFBI was the most relevant gene with OS among 
the candidate hub genes, which might be novel DNA methylation biomarkers for ccRCC. In conclusion, our 
findings indicated that TGFBI was correlated with prognosis of patients with ccRCC, which might be novel 
prognostic biomarkers, and targets for immunotherapy in ccRCC. Three small molecule drugs were also 
identified, which showed strong potential for ccRCC treatment. 
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renal cell carcinoma (ccRCC) [7, 8]. Although surgical 

treatment was the most effective therapy for localized 

ccRCC, there was a lack of drugs for adjuvant treatment 

[9]. What was worse, there was no effective treatment 

method for advanced ccRCC [10]. Thus, in this study, 

we tried to find out some novel prognostic biomarkers, 

which might be novel targets for immunotherapy. 

 

For the first time, in this study, we firstly calculated 

immune score and stromal score of each case from 

TCGA-KIRC data, by applying Estimation of Stromal 

and Immune cells in Malignant Tumor tissues using 

Expression data (ESTIMATE) algorithm (a method 

provided by Yoshihara et al.) [11]. Then we screened 

out 17 differentially expressed genes (DEGs) associated 

with immune score and stromal score. Based on these 

DEGs, 3 small molecule drugs were obtained, which 

showed strong potential for ccRCC treatment. Finally, 

transforming growth factor beta induced (TGFBI) was 

screened out by using four kinds of survival analyses 

and two independent datasets, which were significantly 

associated with prognosis of patients with ccRCC. 9 

different kinds analyses were further performed to 

explore the potential value of TGFBI in various aspects. 

 

In conclusion, our finding indicated that TGFBI had 

great effects for assessing prognosis of patients with 

ccRCC, which might be a novel prognostic biomarker 

and target for immunotherapy. Moreover, three 

molecule drugs were screened out, which might be 

novel choice for clinicians for ccRCC treatment. 

 

RESULTS 
 

Immune scores and stromal scores were correlated 

with clinical features of patients with ccRCC 
 

Among all the 530 ccRCC downloaded from TCGA 

database, 35.1% (n = 186) samples were female, 64.9% 

(n = 344) samples were male. As for the neoplasm 

histologic grade, patients with Gx, G1, G2, G3, G4 

grade accounted for 0.9% (n = 5), 2.7% (n = 14), 43.1% 

(n = 227), 39.1% (n = 206), 14.2% (n = 75), 

respectively. Tumors on the left accounted for 47.1% (n 

= 249) and the right side accounted for 52.9% (n = 280). 

Pathologic stage included 265 (50.0%) patients of stage 

I, 57 (10.8%) of stage II, 123 (23.2%) patients of stage 

III, and 83 (15.7%) patients of stage IV. When talking 

about person neoplasm cancer status, patients with 

tumor free accounted for 68.9% (n = 354) of the total 

number, and 31.1% (n = 160) cases were with tumor. 

After calculating immune score and stromal score of 

each ccRCC from TCGA-KIRC, immune scores ranged 

from -1109.36 to 2920.81 meanwhile stromal scores 

ranged from -1530.11 to 1955.39 as the result suggested 

(Supplementary Table 1). 

Further analysis demonstrated that immune score was 

associated with gender (t = -2.220, P = 0.027, Figure 

1A), neoplasm histologic grade (F = 9.470, P < 0.001, 

Figure 1B), pathologic stage (F = 7.390, P = 0.009, 

Figure 1C), significantly. Moreover, stromal score was 

significantly related to neoplasm histologic grade  

(F = 3.020, P = 0.038, Figure 1G), and pathologic stage 

(F = 226.080, P < 0.001, Figure 1I). 

 

Immune scores and stromal scores were correlated 

with OS 
 

To explore the relationship between immune score (or 

stromal score) and survival, we performed survival 

analysis in this part. As Figure 2A showed, 1179.98 was 

set as the optimal cutoff for grouping. ccRCC patients 

were divided into high immune score group (n = 234) 

and low immune score group (n = 296). The result 

suggested that ccRCC patients with high immune score 

had worse OS compared with these with low immune 

score (P = 0.0024, Figure 2B). Meanwhile, an 

illustration of optimal cutoff identification for stromal 

score is shown in Figure 2D (stromal score cutoff = 

794.10). ccRCC patients were divided into two groups 

(high stromal score group: n = 208; low stromal group: 

n = 322). Similarly, low stromal score of cases was 

associated with better OS (P = 0.0250, Figure 2C). We 

also explored the correlation between scores and DFS, 

unfortunately, there was no significant relationship 

between them, as Figure 2C, 2F suggested. 

 

17 DEG associated with immune score and stromal 

score screening 
 

Based on “limma” in R software, 337 DEGs associated 

with immune score were screened out, including 334 

up-regulated DEGs and 3 down-regulated DEGs (Figure 

3A, 3C). Adjust P value and log2FC of each immune-

related DEG were showed in Supplementary Table 2, in 

detail. Furthermore, 218 DEGs (204 up-regulated and 

14 down-regulated) related to stromal score were picked 

out, accurately. Supplementary Table 3 showed the 

detailed information of each stromal-related DEG. 

Finally, 17 DEGs overlapped in immune-related DEGs 

and stromal-related DEGs were identified for further 

analysis (Figure 3E). 

 

Function and pathway enrichment analysis 

 

The results of GO analysis demonstrated that 17 DEGs 

were significantly enriched in 114 BPs (Supplementary 

Table 4), 4 CCs (Figure 4B), and 8 MFs (Figure 4C). 

The top 10 enriched BPs were regulation of cell-cell 

adhesion, regulation of immune effector process, 

leukocyte apoptotic process, positive regulation of cell-

cell adhesion, negative regulation of cell adhesion, 
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regulation of leukocyte cell-cell adhesion, regulation of 

T cell activation, leukocyte cell-cell adhesion, negative 

regulation of leukocyte apoptotic process, and protein 

activation cascade (Figure 4A). Moreover, DEGs were 

significantly correlated with four KEGG pathways 

including complement and coagulation cascades, 

cytokine-cytokine receptor interaction, staphylococcus 

aureus infection, and viral protein interaction with 

cytokine and cytokine receptor suggested by Figure 4D. 

 

3 small molecule drugs might be novel choices for 

ccRCC treatment 

 

The highly associated molecule drugs were identified 

by using CMap. Totally 6 molecule drugs were 

screened out (Table 1). Among them, three small 

molecule drugs including vincamine (mean = -0.493,  

n = 6, P < 0.001), clenbuterol (mean = 0.556, n = 5,  

P = 0.004), betazole (mean = 0.422, n = 5, P = 0.039) 

showed strong potential to treat ccRCC. 

 

Identification of 6 candidate hub genes 
 

The result of OS analysis demonstrated that 7 DEG 

including C1R (HR = 1.900, P = 2.1E-05, Figure 5A), 

C1S (HR = 2.100, P = 1.5E-06, Figure 5B), IGLL5 (HR = 

1.500, P = 0.016, Figure 5H), MMP7 (HR = 1.400, P = 

0.031, Figure 5L), SERPINF1 (HR = 1.500, P = 0.006, 

Figure 5N), SLC38A5 (HR = 2.100, P = 1.5E-06, Figure 

5O), and TGFBI (HR = 1.600, P = 0.002, Figure 5P) 

 

 
 

Figure 1. Distribution of immune scores of gender (A), neoplasm histologic grade (B), laterality (C), pathologic stage (D), and person 
neoplasm cancer status (E). Distribution of stromal scores of gender (F), neoplasm histologic grade (G), laterality (H), pathologic stage (I), and 
person neoplasm cancer status (J). 
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were associated with OS of patients with ccRCC. In 

addition, high expressions of C1R (HR = 2.300, P = 

7.9E-06, Figure 6A), C1S (HR = 2.300, P = 6E-06, 

Figure 6B), CP (HR = 1.500, P = 0.037, Figure 6F), 

MMP7 (HR = 1.700, P = 0.003, Figure 6L), PRIMA1 

(HR = 1.600, P = 0.007, Figure 6M), SERPINF1 (HR = 

1.800, P = 0.002, Figure 6N), SLC38A5 (HR = 1.800, P 

= 0.002, Figure 6O), and TGFBI (HR = 1.800, P = 0.001, 

Figure 6P) were significantly correlated with DFS of 

ccRCC patients. Finally, 6 genes including C1R 

(complement C1r), C1S (complement C1s), MMP7 

(matrix metallopeptidase 7), SERPINF1 (serpin family F 

member 1), SLC38A5 (solute carrier family 38 member 

5), and TGFBI (transforming growth factor beta induced) 

were selected as candidate hub genes for subsequent 

analysis. 

 

 
 

Figure 2. (A) An illustration of optimal cutoff identification for immune score. Survival analysis of the association between immune score and 
overall survival (B), disease-free survival (C) time in ccRCC. (D) An illustration of optimal cutoff identification for stromal score. Survival 
analysis of the association between stromal score and overall survival (E), disease-free survival (F) time in ccRCC. 
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Figure 3. Differentially expressed genes (DEGs) analysis in ccRCC. (A) Volcano plot visualizing the immune-related DEGs. (B) Volcano 
plot visualizing the stromal-related DEGs. (C) Heatmap of immune scores of high score vs low score (P < 0.05, fold change > 1). (D) Heatmap 
of stromal scores of high score vs low score (P < 0.05, fold change > 1). (E) Identification of common DEGs between immune-related DEGs and 
stromal-related DEGs. 
 

 
 

Figure 4. Bioinformatics analysis of 17 DEGs associated with immune score and stromal score. (A) Biological process of DEGs.  
(B) Cellular component of DEGs. (C) molecular function of DEGs. (D) KEGG enrichment of DEGs. 
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Table 1. Results of CMap analysis based on DEGs in ccRCC. 

cmap name mean n enrichment p specificity % non-null 

thioridazine 0.285 20 0.346 0.01256 0.6301 50 

novobiocin 0.244 9 0.461 0.02866 0.0385 55 

vincamine -0.493 6 -0.742 0.00064 0.0059 66 

myosmine -0.256 6 -0.585 0.01788 0.0553 50 

clenbuterol 0.556 5 0.724 0.00372 0 80 

betazole 0.422 5 0.583 0.03915 0.0237 60 

 

TGFBI was identified as hub gene 
 

We firstly calculated the R2 to evaluate the relationship 

between candidate hub genes and overall survival (OS) 

days. The result demonstrated that all the six genes 

(including C1R (R2 = 0.014, P = 0.007, Figure 7A), 

C1S (R2 = 0.013, P = 0.010, Figure 7B), SERPINF1  

(R2 = 0.012, P = 0.012, Figure 7D), SLC38A5 (R2 = 0.019, 

 

 
 

Figure 5. Overall survival analyses on DEGs based on the TCGA-KIRC data. (A) C1R. (B) C1S. (C) CCL19. (D) CCL21. (E) CD163. (F) CP. 
(G) FGG. (H) IGLL5. (I) IL2RA. (J) IL7R. (K) JCHAIN. (L) MMP7. (M) PRIMA1. (N) SERPINF1. (O) SLC38A5. (P) TGFBI. (Q) VSIG4. 
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P = 0.001, Figure 7E), and TGFBI (R2 = 0.011,  

P = 0.018, Figure 7F)) except MMP7 (R2 = 0.003, P = 

0.229, Figure 7C) were negatively associated with OS 

days. Then we calculated AUC for each candidate hub 

genes. Only TGFBI reached the standard of AUC ≥ 0.80 

(AUC = 0.874, Figure 7F), which was regarded as hub 

gene in this study. 

 

Patient living days gradually decreased with an 

increasing TGFBI expression 
 

We firstly compared the mRNA expression levels of 

TGFBI between tumors and normal tissues, the result 

suggested that expressions of TGFBI in tumors were 

significantly higher than these in normal tissues (Figure 

8A). Moreover, Expression of TGFBI (F = 6.34, P = 

3.17E-04, Figure 8B) was significantly associated with 

tumor stage. High expression of TGFBI always related 

to higher tumor stage, as Figure 8B showed. 

To validate the prognostic value of TGFBI, we performed 

three different survival analyses (OS, CSS, PFS) for all 

the candidate hub genes based on GSE29609. As shown 

in Figure 8D, high expressions of TGFBI (P = 0.030) 

were associated with worse OS. Meanwhile, there was a 

trend that patients with high expression of TGFBI had 

worse CSS (P = 0.066, Figure 8E) and PFS (P = 0.062 

suggested by E-MTAB-3267 (Figure 8C), P = 0.054 

suggested by GSE29609 (Figure 8F)). Summary above, 

we thought higher TGFBI expression was significantly 

associated with a shorter survival time, which showed 

great prognostic value in ccRCC. 

 

Hub gene validation 
 

Based on ccRCC data from Oncomine database, TGFBI 

expression comparison between tumors and normal 

tissues across 7 analyses were identified. The result 

demonstrated that the mRNA expression of TGFBI 
 

 
 

Figure 6. Disease-free survival analyses on DEGs based on the TCGA-KIRC data. (A) C1R. (B) C1S. (C) CCL19. (D) CCL21. (E) CD163. 
(F) CP. (G) FGG. (H) IGLL5. (I) IL2RA. (J) IL7R. (K) JCHAIN. (L) MMP7. (M) PRIMA1. (N) SERPINF1. (O) SLC38A5. (P) TGFBI. (Q) VSIG4. 
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(P = 9.89E-05, Figure 9A, 9B) was lower in normal 

tissues compared with ccRCCs. Furthermore, we 

explored the translational-level expression of hub genes. 

As Figure 9C, 9D showed, the translational-level 

expressions of TGFBI were higher in ccRCCs compared 

with normal tissues. 

 

mRNA expressions of TGFBI in cancer cell lines 
 

Based on GEPIA and CCLE, we explored hub genes 

expressions in all types of cancer cell lines. The 

expressions of TGFBI were different in these types of 

cancers. The expression of TGFBI was higher in  

GBM, HNSC, KIRC, KIRP, LGG, PAAD, SARC, 

STAD compared with corresponding normal tissues 

(Figure 10A). Moreover, we found that not only the 

mRNA expression (Figure 10B) but also the CNV level 

(Figure 10C) of TGFBI ranked as the first highest of all 

types of cancer cell lines. All the results made the hub 

genes reliable. 

Genetical alteration of TGFBI 
 

According to the result, TGFBI altered in 75 (14%) of 

533 ccRCC patients (Figure 11A). And the main type 

was amplification (Figure 11B). Meanwhile, there was 

no differences of TGFBI expression between cases 

with CNVs and cases without CNVs (Figure 11C). 

When talking about the association between CNVs of 

TGFBI and survival of patients with ccRCC, there was 

a trend that amplification of TGFBI caused better OS 

(Figure 11D) and DFS (Figure 11E) of patients with 

ccRCC. 
 

Associations between TGFBI expression and clinical 

factors 
 

Cases with complete clinicopathological data from 

TCGA database were included for this analysis. The 

result demonstrated that TGFBI expression was 

significantly associated with stromal score (P < 0.001), 

 

 
 

Figure 7. Identification of hub genes. Correlation between candidate hub genes and ccRCC patient overall survival days; ROC curve for 
candidate hub genes ((A) C1R; (B) C1S; (C) MMP7; (D) SERPINF1; (E) SLC38A5; (F) TGFBI). 
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immune score (P < 0.001), gender (P < 0.001), 

neoplasm histologic grade (P < 0.001), pathologic  

stage (P = 0.011), and person neoplasm cancer status  

(P < 0.001) (Table 2). 

 

Prognostic value of TGFBI 

 

According to the result (Figure 12A), immune score 

(Hazard Ratio = 1.000, 95%CI of ratio: 1.000-1.000,  

P = 0.041), TGFBI (Hazard Ratio = 1.124, 95%CI of 

ratio: 1.054-1.198, P < 0.001), age (Hazard Ratio = 

1.629, 95%CI of ratio: 1.209-2.196, P = 0.001), 

laterality (Hazard Ratio = 0.706, 95%CI of ratio: 0.523-

0.953, P = 0.023), neoplasm histologic grade (Hazard 

Ratio = 2.661, 95%CI of ratio: 1.889-3.750 P < 0.001), 

and pathologic stage (Hazard Ratio = 3.841, 95%CI of 

ratio: 2.795-5.278, P < 0.001) were influence features of 

OS as suggested by univariate Cox analysis. Even being 

adjusted by other features, TGFBI (Hazard Ratio = 

1.071, 95%CI of ratio: 0.998-1.148, P = 0.049) was still 

relevant to OS among patients with ccRCC suggested 

by multivariate Cox analysis (Figure 12B). 

 

TGFBI expression was correlated with immune 

infiltration level in ccRCC 
 

Immune infiltration level played important role  

in survival in tumors. Therefore, we explored the 

 

 
 

Figure 8. (A) Expression comparison of hub gene in ccRCCs and normal tissues by GEPIA. (B) Stage plot of TGFBI across different pathological 
stages in the TCGA-KIRC data. (C) Survival analysis of the association between TGFBI expression and progression free survival time in ccRCC 
(E-MTAB-3267). Survival analysis of the association between TGFBI expression and overall survival (D), cancer specific survival (E), progression 
free survival (F) time in ccRCC (GSE29609). 
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relationship between hub genes and immune infiltration 

level. We found that TGFBI expression was negatively 

relevant to tumor purity (cor = -0.250, P = 5.14E-08) 

and positively related to macrophages (cor = 0.232,  

P = 7.08E-07), Figure 13A). Summary above we found 

TGFBI expression was significantly correlated with 

tumor purity in ccRCC, which suggested that TGFBI 

played an important role in immune infiltration in 

ccRCC. 

 

TGFBI might be potential DNA methylation 

biomarkers for ccRCC 

 

We also explored the relationship between hub genes 

and methylation in this study by using MEXPRESS. 

The result demonstrated that the promoter region of 

TGFBI (Figure 14) showed higher methylation levels in 

ccRCC compared with normal tissues. 

 

Hub genes related KEGG signaling pathways 

 

The result of GSEA (Table 3) suggested that TGFBI 

was significantly associated with two KEGG signaling 

pathways including cytokine cytokine receptor 

interaction (nominal P = 0.006, |ES| = 0.623, gene size 

= 257 and FDR = 14.763%), and chemokine signaling 

pathway (nominal P = 0.018, |ES| = 0.604, gene size = 185 

and FDR = 14.794%). 

 

DISCUSSION 
 

As the most common subtype in kidney cancer, ccRCC 

was difficult to be cured. Patients with ccRCC always 

had poor prognosis [6]. Because of the lack of effective 

therapy target and molecule drugs for ccRCC treatment, 

the objective of this study was to screen out novel 

prognostic biomarkers and small molecule drugs in 

ccRCC. 

 

Tumor microenvironment (TME) was the internal 

environment of tumor cells producing and survival, 

which described the non-cancerous cells present in the 

tumor [12]. These cells included but not limited to 

fibroblasts, immune cells and cells that comprise the 

blood vessels [13]. Some proteins (such as these 

produced by all of the cells present in the tumor which 

support the growth of the cancer cells) were also 

included in TME [14]. Among all the non-cancerous 

cells, immune cells and stromal cells were two major 

types, which had been proved to be correlated with 

prognosis of cancers [14]. Thus, in this study, we firstly 

used ESTIMATE algorithm for immune score and 

 

 
 

Figure 9. Validation of hub gene (TGFBI) in mRNA level (A, B) by Oncomine database and translational level (C, D) by The Human Protein 
Atlas database (IHC). 
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stromal score calculation. Then we divided cases from 

TCGA database into two groups (high-immune score 

group, and low-immune score group/high-stromal score 

group, and low-stromal score group). DEGs between 

the two groups were selected. 337 immune-related 

DEGs including 334 up-regulated and 3 down-regulated 

and 218 stromal-related DEGs including 204 up-

regulated and 14 down-regulated were identified. 17 

DEGs overlapped in the two kinds of DEGs were 

identified for further analysis. 6 genes including C1R 

(complement C1r), C1S (complement C1s), MMP7 

(matrix metallopeptidase 7), SERPINF1 (serpin family 

F member 1), SLC38A5 (solute carrier family 38 

member 5), and TGFBI (transforming growth factor 

beta induced) were picked out as candidate hub genes 

by performing OS and DFS analyses based on TCGA-

KIRC data. Then we picked out one hub gene (TGFBI) 

by calculating the R2 and AUC for each candidate hub 

gene, which were validated in mRNA level and 

translational-level. The prognostic value of TGFBI was 

 

 
 

Figure 10. Comparison of TGFBI mRNA expression between tumors and normal tissues across all the types of cancers from TCGA data (A). 
Cancer Cell Line Encyclopedia analysis of TGFBI mRNA expression (B) and copy number variation level (C) in kidney (black boxes) and other 
cancer cell lines. 
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validated by applying OS, CSS, and PFS analyses based 

on GSE29609 and E-MTAB-3267. In addition, high 

expression of TGFBI was correlated to higher tumor 

stage. The result of TGFBI genetical alteration 

demonstrated that hub gene altered in 75 of 533 ccRCC 

patients, and the main type was amplification. Further 

analysis suggested that TGFBI expression was 

associated with gender, neoplasm histologic grade, and 

pathologic stage. Cox regression analysis also indicated 

that TGFBI was influence feature of OS of patients with 

ccRCC. 

 

Considering about that immune infiltration level were 

significantly correlated with survival in tumors, we 

explored the relationship between hub gene expression 

level and immune infiltration level in ccRCC. The result 

demonstrated that TGFBI expression was correlated 

with tumor purity in ccRCC, which indicated that 

TGFBI played an important role in immune infiltration 

in ccRCC. We also explored the correlation between 

TGFBI and methylation around in the promoter region. 

The methylation levels of the promoter region of 

TGFBI were higher in ccRCC compared with normal 

tissues. 

 

According to the function analyses, 17 DEGs were 

significantly enriched in 114 BPs, 4 CCs (blood 

microparticle, external side of plasma membrane, side 

of membrane, and extracellular matrix) and 8 MFs 

(main type: serine hydrolase activity). The top 10 BPs 

were regulation of cell-cell adhesion, regulation of 

immune effector process, leukocyte apoptotic process, 

positive regulation of cell-cell adhesion, negative 

regulation of cell adhesion, regulation of leukocyte cell-

cell adhesion, regulation of T cell activation, leukocyte 

cell-cell adhesion, negative regulation of leukocyte 

apoptotic process, and protein activation cascade. 

Summary above we found that these DEGs showed 

strong correlation with immune response and tumor 

immune microenvironment. 

 

 
 

Figure 11. A summary of mutations and CNVs of hub genes. (A) Genetic alterations associated with hub genes and expression 
heatmap of hub genes based on the data from TCGA. (B) The total alteration frequency of TGFBI in TCGA-ACC is illustrated. Correlation 
between different CNV patterns and mRNA expression levels of TGFBI (C), respectively. (D, E) Survival analysis of ccRCC patients with CNVs of 
TGFBI based on TCGA-ccRCC data. 
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Table 2. Associations between TGFBI expression and clinicopathological factors of patients with ccRCC (based on 
TCGA-KIRC). 

Characteristics 
TGFBI expression 

Chi-square/F P 
Low High 

Stromal score 

Low 177 88 59.781 <0.001 
High 88 177   

Immune score 
Low 166 99 33.879 <0.001 
High 99 166   

Age 
≤65 164 169 0.202 0.653 
>65 101 96   

Gender 

Male 148 196 19.085 <0.001 
Female 117 69   

Laterality 
Left 122 127 0.227 0.634 
Right 143 137   
NA  1   

Grade 
GX 4 1 24.392 <0.001 

G1 10 4   
G2 125 102   
G3 103 119   
G4 20 55   
NA 3 0   

Stage 
Stage I 148 117 11.178 0.011 
Stage II 32 25   

Stage III 53 70   
Stage IV 32 51   

Discrepancy 
Cancer status 

Tumor free 194 160 14.169 <0.001 
With tumor 59 101   
NA 12 4   

 

 
 

Figure 12. Forest plot summary of analyses of OS. Univariable (A) and multivariable analyses (B) of the stromal score, immune score, 
TGFBI, age, gender, grade, laterality, and tumor stage on all 530 patients. 
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To provide clinicians some novel choice for ccRCC 

treatment, CMap analysis was performed and the result 

indicated that 3 small molecule drugs including 

vincamine, clenbuterol, betazole showed strong potential 

for ccRCC treatment. 

A literature review for hub genes was carried out in 

order to understand hub genes deeper and better. TGFBI 

encoded an RGD-containing protein that binds to type I, 

II and IV collagens, which played an important role in 

the regulation of a variety of BPs [15]. Ozawa et al. 

 

 
 

Figure 13. Correlation of TGFBI expression with immune infiltration level in ACC. (A) TGFBI expression was negatively relevant to 
tumor purity and positively related to macrophages. (B) Survival analyses across the six different tumor-infiltrating immune cells including B 
cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. 
 

 
 

Figure 14. Visualization of the TCGA data for TGFBI in ccRCC using MEXPRESS. Samples were ordered by their expression value. This 
figure showed the correlation between hub gene expression and promoter methylation, with the Pearson correlation coefficients on the right 
(* p < 0.05, ** p < 0.01, *** p < 0.001). 
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Table 3. Genet set enrichment analysis (GSEA) of C1S and TGFBI. 

Genes NAME SIZE ES NES NOM p-val FDR 

TGFBI KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 257 -0.62328 -1.58451 0.005976 0.14763 

 KEGG_CHEMOKINE_SIGNALING_PATHWAY 185 -0.60441 -1.63432 0.017613 0.147942 

 

found that TGFBI expression in esophageal squamous 

cell carcinoma was associated with poor prognosis and 

hematogenous metastasis recurrence [16]. Chen et al. 

demonstrated that TGFBI was an important factor in 

epithelial-mesenchymal transformation (EMT) and 

malignant progression of prostate cancer [17]. Combining 

the literature review with this study, we believed that 

TGFBI played an important role in many events during 

immune response and tumor immune microenvironment. 

 

However, this study also had certain limitations. Firstly, 

CD8+ cells played key role in tumor elimination. But in 

this study, the result (showed in Figure 13B, panel 2) 

demonstrated that CD8+ T cell infiltration had no or little 

significant effect on cumulative survival. Perhaps 

because of the unreasonable grouping and the TCGA 

data itself. Therefore, we will use novel dataset for this 

analysis in the short future. Secondly, CSS and PFS 

analyses of hub genes not showed significant results 

based on GSE29609 as we expected. Perhaps because of 

the few numbers of cases in GSE29609, which is related 

to too few data sets and the data itself. Thirdly, though 

we designed this research well and used strict thresholds 

for each part in this study, we did not conduct experiments 

to verify the results. Therefore, we will explore the 

related mechanisms of TGFBI in ccRCC through in vivo 

and in vitro experiments in further analysis. 

 

CONCLUSIONS 
 

In summary, we identified 17 DEGs associated with 

immune score and stromal score by using TCGA-KIRC 

data. TGFBI was screened out as hub gene calculating 

the R2 and AUC for each candidate hub gene, which was 

validated in mRNA level and translational-level. The 

prognostic value of TGFBI was validated by applying 

OS, CSS, and PFS analyses based on GSE29609 and E-

MTAB-3267. Further analysis indicated that TGFBI 

might be a novel prognostic biomarker and therapy target 

for immunotherapy. In addition, three molecule drugs 

including vincamine, clenbuterol, and betazole were 

identified, which showed strong potential to treat ccRCC. 

 

MATERIALS AND METHODS 
 

Data collection and data preprocessing 
 

Microarray data of ccRCC (TCGA-KIRC data) was 

downloaded from The Cancer Genome Atlas (TCGA) 

database (https://genomecancer.ucsc.edu/). After 

excluding unqualified samples, totally 530 ccRCC 

samples from ccRCC patients were used in this study, 

which contained complete clinical information. 

Moreover, GSE29609 [18] performed on GPL1708 

was retrieved from Gene Expression Omnibus  

(GEO) database (http://www.ncbi.nlm.nih.gov/geo/). 

This dataset including 39 ccRCCs with complete 

clinical information. Furthermore, E-MTAB-3267 

including 53 ccRCCs with complete survival 

information was retrieved from ArrayExpress database 

(https://www.ebi.ac.uk/arrayexpress/). Both the two 

datasets were used for validating our findings. 

 

Figure 15 showed the flow diagram of this study. For 

the TCGA-KIRC data displayed as counts number, 

normalized and log2 transformation were performed 

based on R package “DEseq.2” [19]. For GSE29069, 

the raw expression data was normalization and 

transformation by using R package “affy” [20]. For E-

MTAB-3267, we directly downloaded the normalized 

expression matrix for ArrayExpress database. 

 

Immune score and stromal score calculation and 

their correlation with clinical phenotype 
 

Based on TCGA-KIRC data, we firstly calculated 

immune score and stromal score of each sample by 

using ESTIMATE algorithm, which was applied by 

“estimate” [11] in R software. Then we compared the 

score difference between different gender (female vs 

male), neoplasm histologic grade (Gx, G1, G2, G3, G4), 

laterality (left vs right), pathologic stage (I, II, III, IV), 

and person neoplasm cancer status (tumor free vs with 

tumor), in order to explore the relationship between 

immune score or stromal score and important clinical 

phenotype. Moreover, survival analysis was performed 

to explore the correlation between immune score (or 

stromal score) and survival by using R package 

“survival” [21]. 

 

Differentially expressed gene (DEG) screening 
 

To pick out biomarkers associated with immune score 

and stromal score, we identified DEGs in this part. We 

firstly used R package “maxstat” for identifying the best 

score cutoff for grouping samples most significantly by 

applying a method called maximally selected rank 

statistics. To screen out DEGs related to immune score, 

https://genomecancer.ucsc.edu/
http://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
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we firstly divided 530 ccRCC samples into high-immune 

group and low-immune group based on the optimal 

immune score cutoff calculated by “maxstat”. Then 

“limma” [22] package in R was used for DEG screening. 

As for DEGs correlated to stromal score, we also divided 

530 samples into two groups (high-stromal, and low-

stromal) based on the optimal stromal score cutoff and 

screened out DEGs based on “limma” mentioned above. 

In this study, genes with Adjust P value < 0.05 and |log2 

fold change (FC) | ≥ 1.0 were regarded as DEGs. The 

 

 
 

Figure 15. Flow diagram of data preparation, processing, analysis, and validation in this study. 
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DEGs which exhibited the same expression trends in 

immune related DEGs and stromal related DEGs were 

picked out for further analysis. 

 

Function enrichment analysis 

 

To explore potential functions of DEGs, Gene Ontology 

(GO) [23] enrichment analysis and Kyoto encyclopedia 

of Genes and Genomes (KEGG) [24] pathway analysis 

were performed through “clusterProfiler” [25] in R 

software. Gene sets were regarded as significantly 

enriched gene sets when P < 0.05. 

 

Candidate molecule drug identification 
 

Connectivity map (CMap) [26] could help researchers 

to quickly identify molecule drugs with high correlation 

with diseases (https://portals.broadinstitute.org/cmap/). 

Thus, based on the DEGs we screened out before, we 

performed Connectivity map (CMap) analysis to 

explore molecule drugs (which had high correlation 

with ccRCC). In this study, drugs were thought to be 

highly correlated to ccRCC when number of instances 

(n) > 5 and P value < 0.05. Moreover, small molecule 

drugs with |mean| ≥ 0.40 were thought to have great 

potential for ccRCC treatment in this study. 

 

Candidate hub gene identification 

 

In this study, we aimed to screen out some stromal-

immune related prognostic biomarkers in ccRCC. 

Therefore, we performed two kinds of survival analyses 

(overall survival (OS) and disease-free survival (DFS)) 

for each DEG to screen out candidate hub genes based 

on Gene Expression Profiling Interactive Analysis 

(GEPIA) (http://gepia.cancer-pku.cn/) [27]. GEPIA 

collected 516 ccRCC samples with complete survival 

information, we divided 516 ccRCCs into high-

expression group (n = 258) and low-expression group (n 

= 258) by evaluating the median value of each DEG. 

DEGs with P value < 0.05 in both the two survival 

analyses were thought as candidate hub genes. 

 

Hub gene identification 

 

After screening out candidate hub genes, by using R 

package “basicTrendline” [28], we firstly calculated the 

R2 to see if candidate hub genes were associated with 

OS. P value < 0.05 was significant in this analysis. 

Furthermore, in order to evaluate the potential of 

distinguishing normal tissues and ccRCCs, we plotted 

receiver operating characteristic (ROC) curve and 

calculated AUC (area under curve) for each candidate 

hub gene (based on R package “pROC” [29]). In this 

study, we thought genes with P value < 0.05 in both the 

two analyses and AUC ≥ 0.80 were hub genes. 

Hub gene expressions comparison in tumors and 

normal tissues and in different pathologic stages 

 

In this part, we firstly explore the expression levels of 

hub genes in tumors and normal tissues by using 

GEPIA. Unpaired t test was performed to measure the 

statistical significance. Based on TCGA-KIRC data 

with complete stage information, tumor stage (I, II, III 

and IV) boxplots were also performed. We used One-

way Analysis of Variance (ANOVA) test to measure the 

statistical significance. 

 

Prognostic value of hub genes validation 
 

Based on E-MTAB-3267 and GSE29609, three 

different survival analyses including OS, cancer specific 

survival (CSS), and progression free survival (PFS) 

were performed to validate the prognostic value of hub 

genes. P value < 0.05 was thought significantly. 

 

Oncomine analysis and translational-level expression 

validation 

 

After screening out the hub genes, we assessed the 

mRNA expression levels of hub genes in ccRCC  

and normal tissue based on Oncomine database 

(https://www.oncomine.org/) [30]. Student t test was 

used to measure the statistical significance. Moreover, 

we validated the translation-level expression levels of 

hub genes by using The Human Protein Atlas database 

(https://www.proteinatlas.org/) [31]. 

 

Cancer cell line encyclopedia (CCLE) analysis 
 

To understand the hub genes better, we explored the 

mRNA expression levels and copy number variation 

(CNV) levels of hub genes in 40 types of tumors based on 

CCLE database (https://portals.broadinstitute.org/ccle/). 

 

Hub gene genetical alteration 

 

To explore mutations and CNVs of hub genes, based on 

CBio Cancer Genomics Portal (http://www.cbioportal.org/) 

[32, 33], we first explored the genetic alterations of hub 

genes. Combined with relative mRNA expression levels 

of hub genes, the correlation between CNVs and mRNA 

expression levels of hub genes was also explored. 

Furthermore, we identified the relationship between 

CNVs and survival (OS, and DFS) of ccRCC patients 

by performing survival analysis. 

 

Exploring relationship between hub genes and 

clinical features of patients with ccRCC 
 

Based on TCGA-KIRC data, we divided 530 ccRCCs 

into high-expression group (n = 265) and low-

https://portals.broadinstitute.org/cmap/
http://gepia.cancer-pku.cn/
https://www.oncomine.org/
https://www.proteinatlas.org/
https://portals.broadinstitute.org/ccle/
http://www.cbioportal.org/
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expression group (n = 265) by evaluating the median 

value of each hub gene expression. Then χ2 test or 

ANOVA was performed to analyze the correlations 

between hub gene expressions and clinical features 

(age, gender, laterality, neoplasm histologic grade, 

pathologic stage, and person neoplasm cancer status). 

 

Cox proportional hazards regression analysis 
 

In this part, expression levels of hub genes and some 

important features (age, gender, laterality, neoplasm 

histologic grade, pathologic stage, and person neoplasm 

cancer status) were included for univariable Cox 

analysis of overall survival (OS) by using TCGA-KIRC 

data. Factors were included for multivariate Cox 

analysis when P value < 0.05. To do this, we could 

make sure if these hub genes were irrelevant to other 

clinical features for predicting OS of ccRCC. 

 

Exploring correlation between hub genes and 

immune microenvironment 
 

By using TIMER (https://cistrome.shinyapps.io/timer/) 

[34], we explored the correlation between hub genes 

expressions and the abundance of immune infiltrates. Six 

kinds of tumor-infiltrating immune cells (B cells, CD8+ 

T cells, CD4+ T cells, macrophages, neutrophils, and 

dendritic cells) were included for this analysis [34]. Hub 

genes were thought to be significant associated with 

infiltrating level of an immunocyte when |correlation 

coefficient (cor) | ≥ 0.2 and P value < 0.05. Survival 

analysis was also performed between high infiltrating 

levels and low infiltrating levels of immunocyte. 

 

Exploring relationship between hub gene expression 

and methylation around in the promoter region 
 

Considering about that MEXPRESS [35, 36] was a 

webtool for DNA methylation, expression, and clinical 

data visualization (https://mexpress.be/), we used this 

web tool to explore correlation between hub gene 

expression and methylation level. We calculated the 

Pearson correlation for difference (between expression 

value and methylation level) evaluation. For clinical 

factors contained two levels, P value was calculated to 

measure the difference. Furthermore, false discovery rate 

was calculated to compare the difference for clinical 

parameters which contained more than two levels. 

 

Gene set enrichment analysis (GSEA) 
 

To explore the potential functions of hub genes, GSEA 

[37] was conducted by using TCGA-KIRC data.  

530 ccRCCs were firstly divided into two groups  

(high-expression, and low-expression) based on the 

median of hub genes expression levels. We set 

“c2.cp.kegg.v7.0.symbols.gmt” as the reference gene 

sets. KEGG signaling pathways with nominal P < 0.05, 

|ES| > 0.6, gene size ≥ 100 and FDR < 25% were 

considered to be significantly enriched in this study. 
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Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

Supplementary Table 1. Stromal score and immune score of each patient with KIRC (based on TCGA-KIRC). 
 

Supplementary Table 2. Differentially expressed genes (DEGs) between low-immune samples and high-immune 
samples. 
 

Supplementary Table 3. Differentially expressed genes (DEGs) between low-stromal samples and high-stromal 
samples. 
 

Supplementary Table 4. GO biological processes of common DEGs. 


