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INTRODUCTION 
 

Postmenopausal osteoporosis (PMO) is an estrogen 

deficiency-induced metabolic bone disorder characterized 

by reduced bone mass and microarchitectural deterioration 

that increases the risk of bone fragility and susceptibility 

to fracture in postmenopausal women [1]. Approximately 

10% of the world’s population and over 30% of 
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ABSTRACT 
 

Reduced bone mineral density (BMD) is associated with an altered microbiota in senile osteoporosis. However, 
the relationship among gut microbiota, BMD and bone metabolic indexes remains unknown in postmenopausal 
osteoporosis. In this study, fecal microbiota profiles for 106 postmenopausal individuals with osteopenia (n=33) or 
osteoporosis (n=42) or with normal BMD (n=31) were determined. An integrated 16S rRNA gene sequencing and 
LC-MS-based metabolomics approach was applied to explore the association of estrogen-reduced osteoporosis 
with the gut microbiota and fecal metabolic phenotype. Adjustments were made using several statistical models 
for potential confounding variables identified from the literature. The results demonstrated decreased bacterial 
richness and diversity in postmenopausal osteoporosis. Additionally, showed significant differences in abundance 
levels among phyla and genera in the gut microbial community were found. Moreover, postmenopausal 
osteopenia-enriched N-acetylmannosamine correlated negatively with BMD, and distinguishing metabolites were 
closely associated with gut bacterial variation. Both serum procollagen type I N propeptide (P1NP) and C-terminal 
telopeptide of type I collagen (CTX-1) correlated positively with osteopenia-enriched Allisonella, Klebsiella and 
Megasphaera. However, we did not find a significant correlation between bacterial diversity and estrogen. These 
observations will lead to a better understanding of the relationship between bone homeostasis and the 
microbiota in postmenopausal osteoporosis. 
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postmenopausal women aged over 50 years suffer  

from osteoporosis [1–3]. Aging, estrogen deficiency, 

continuous calcium loss and smoking are strong 

independent risk factors for a high risk of PMO [1, 4]. In 

general, osteoporotic fracture imposes great public 

health, medical, and economic burdens [5–7]. 

 

The microorganisms that inhabit the gastrointestinal tract 

are known collectively as the gut microbiota, which 

consists of approximately 10 trillion bacteria [8]. 

Importantly, the intestinal microbiome contributes to the 

pathogenesis of multiple human chronic diseases, such 

as musculoskeletal diseases, neurological disorders, 

cardiovascular disease and liver diseases [9–13]. In 

addition, recent findings provide substantial evidence for 

the existence of a gut microbiota-bone axis [14–18], and 

the gut microbiota is a major regulator of bone mineral 

density (BMD) via the effects of the immune system [18, 

19]. A previous study suggested that the gut microbiota 

regulates bone mass in mice by altering the immune 

status in bone and affecting osteoclast-mediated bone 

resorption [20]. The microbiome or its metabolites also 

induce bone remodeling, which is likely mediated by 

elevated serum IGF-1 levels [21]. Therefore, gut 

microbiota modulation may provide new therapeutic 

strategies to promote bone health. 

 

To date, several studies have reported a close 

relationship between the intestinal microbiota and 

reduced BMD in elderly adults [22–24], and alterations 

in the gut microbiota may serve as biomarkers or 

therapeutic targets for individuals at high risk decreased 

BMD [23, 24]. Although such epidemiologic analyses 

demonstrate the underlying gut microbiota-bone axis 

mechanism in bone mineral loss and osteoporosis, they 

have mainly focused on senile osteoporosis instead of 

PMO. The pathogenesis between PMO and senile 

osteoporosis is completely different; in the latter type 

typically occurs after age 70, with low-turnover bone 

metabolism. The major consequence of reduced 

estrogen in PMO is the acceleration of bone resorption 

during menopause [25]. Hence, it is meaningful to study 

PMOs separately and explore gut microbiota-related 

fecal metabolic phenotype alterations, which would be 

helpful to further assess the role of the gut microbiota in 

the development of PMO and for understanding the 

pathophysiological mechanism. 

 

Bone turnover markers (BTMs) are biomarkers for 

fracture risk that are used for the diagnosis and 

evaluation of the effects of therapy on PMO; the 

reference BTMs are serum procollagen type I N 

propeptide (P1NP) and serum C-terminal telopeptide of 

type I collagen (CTX-1), markers for bone formation 

and resorption, respectively [26]. Furthermore,  

the International Osteoporosis Foundation (IOF) 

recommends the use of CTX-1 and P1NP as BTMs in 

clinical studies on osteoporosis [27]. Nonetheless, the 

evidence for an association between bone metabolism 

and the gut microbiota in PMO remains inadequate. The 

aim of the present study was to investigate whether 

intestinal microbiota features are associated with BMD 

and BTMs in PMO using 16S rRNA gene sequencing 

and LC/MS-based metabolomics (Figure 1). 

 

RESULTS 
 

Characteristics of the participants involved in this 

study 

 

In the present study, samples and clinical information for 

106 individuals were analyzed. Differences in bone 

density measurements (T-score and BMD of the lumbar 

spine (L1-L4), neck of femur and total hip) and estrogen 

(E2) were confirmed (p<0.001, respectively), and 

differences in osteocalcin (OC), CTX-1 and P1NP were 

noted (p<0.05, respectively). No significance differences 

in other variables, such as age, body mass index (BMI), 

alcohol consumption, smoking status, the presence of 

common chronic diseases (e.g., hypertension, diabetes, 

and osteoarthritis) and medication use (e.g., angiotensin 

receptor blockers, metformin, and NSAIDs), among the 

three groups were observed (Table 1 and Supplementary 

Table 1). 

 

Intestinal bacterial diversity and enterotype in 

postmenopausal osteopenia and osteoporosis 
 

A total of 12,463,289 high-quality reads were obtained 

after paired-end read merging and error correction of 

16S rRNA gene sequencing data obtained from 106 

stool samples, with a mean of 117,578±20,575 

sequences per specimen (ranging from 74,483 to 

182,563). Based on the unoise3 algorithm [28], 3323 

features (OTUs) were obtained from the total high-

quality reads. To check whether the sequencing data 

were sufficient and to characterize bacterial richness, 

rarefaction analysis was performed by randomly 

sampling 125 times with replacement and estimating the 

observed species, Chao1, and ACE indices calculated 

for these samples. The curves in each group were near 

saturation (Figure 2A), which suggested that the 

sequencing data were sufficiently robust, with very few 

new species undetected. 

 

The bacterial community richness indicated by the 

observed species estimators was significantly lower in 

the PMO group than in the control or postmenopausal 

osteopenia group, whereas the index was significantly 

higher in the osteopenia group than in the control  

group (Figure 2B). Similarly, the community diversity 

estimated by the Shannon index was significantly  
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lower in the PMO group than in the control or 

postmenopausal osteopenia group, and it was higher  

in the postmenopausal osteopenia group than in the 

control group and statistically significant (Figure 2B). 

Additionally, Spearman correlation analysis showed that 

LS BMD was positively associated with observed 

species and Shannon indices (Figure 2C), though no 

statistically significant correlations between E2 and the 

observed species or Shannon index were observed 

(Supplementary Figure 1). To investigate whether 

different enterotypes were present among the three 

groups, identification based on the abundance of genera 

was performed. The total samples clustered into three 

distinct enterotypes (Supplementary Figure 2A). 

Prevotella_9 was the most enriched genus in enterotype 

2, Bacteroides in enterotype 3, and Escherichia/Shigella, 

Klebsiella and Phascolarctobacterium in enterotype 1 

(Supplementary Figure 2B). However, Fisher’s exact test 

revealed no significant differences in the percentage 

distribution of the different enterotypes among the three 

groups (Supplementary Figure 2C). 

 

To investigate potential differences in bacterial 

community structure among the groups, we further 

performed PCA, PCoA and PERMANOVA based on 

OTU abundances and found significant differences 

among the three groups. In detail, significant differences 

were observed between the postmenopausal osteopenia 

 

 
 

Figure 1. Flow diagram of this study. Osteoporosis: postmenopausal osteoporosis; Osteopenia: postmenopausal osteopenia. 
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Table 1. Clinical information of the participants. 

Participants, n=106 Normal BMD=31 Osteopenia=33 Osteoporosis=42 p-value 

Basic characteristics 
    

Age(years) 57.35±3.98 57.42±5.06 59.69±5.51 0.137 

weight (kg) 60.71±6.6 58.79±7.5 57.29±5.85 0.207 

BMI (kg/m2)  24.28±2.79 24.21±3.05 23.8±2.17 0.737 

BMD 
    

LS Z-score * 1.20±1.06 -0.49±0.62 -1.65±0.74 <0.001 

LS T-score * 0.06±0.93 -1.69±0.56 -3.14±0.62 <0.001 

LS BMD(g/cm2) * 1.19±0.11 0.98±0.07 0.80±0.07 <0.001 

FN Z-score * 1.10±0.74 -0.12±0.62 -0.83±0.76 <0.001 

FN T-score * -0.01±0.69 -1.16±0.77 -2.21±0.78 <0.001 

FN BMD(g/cm2) * 0.98±0.08 0.83±0.08 0.72±0.10 <0.001 

Total hip Z-score * 0.98±0.77 -0.10±0.66 -0.92±0.87 <0.001 

Total hip T-score * 0.13±0.72 -1.00±0.67 -2.00±0.92 <0.001 

Total hip BMD(g/cm2) * 1.02±0.09 0.88±0.08 0.76±0.11 <0.001 

Blood indices 
    

E2 (pmol/L) * 45.85±29.35 31.94±13.02 24.42±7.47 <0.001 

25(OH)VD3 (nmol/L) 50.86±17.7 44.35±15.38 56.28±20.46 0.126 

OC (ng/ml) # 19.96±7.45 26.29±10.03 24.24±13.25 0.031 

CTX-1(ng/ml) # 0.38±0.18 0.56±0.24 0.48±0.33 0.021 

P1NP (ng/ml) # 54.92±21.35 70.61±26.3 64.91±43.46 0.024 

PTH (pg/ml) 45.4±21.59 45.02±16.42 47.65±26.08 0.287 

Group-wise comparisons of the clinical variables. Kruskal Wallis or χ2 statistic was used to determine significance. The values 
represent mean ± S.D. or number of samples per group. Significant difference, * p<0.001 # p<0.05. BMI: body mass index. LS: 
lumbar spine 1-4. FN: femoral neck. BMD: bone mineral density. E2: estrogen. 25(OH)D3: serum 25-hydroxyvitamin D3. OC: 
osteocalcin. CTX-1: type I collagen cross-linked c-telopeptide. P1NP: procollagen type 1 n-terminal propeptide. PTH: 
parathyroid hormone. The complete list of sample characteristics along with pairwise comparisons is available in 
Supplementary Table 1. 
 

and control conditions, as well as between 

postmenopausal osteopenia and PMO; only marginally 

significant differences between the PMO and control 

conditions were found (Supplementary Figure 3 and 

Supplementary Table 2). In contrast, no significant 

association between E2 and bacterial community 

structure was detected (Supplementary Table 2). 

According to the results the Kruskal-Wallis rank sum 

test, Mann-Whitney test and linear discriminant analysis, 

there was a significantly higher abundance of 

Proteobacteria and Synergistetes and a significantly 

lower abundance of Bacteroidetes at the phylum level in 

the postmenopausal osteopenia group compared to the 

control group. At the genus level, the relative abundances 

of Klebsiella, Morganella, Escherichia/Shigella, 

Enterobacter, Citrobacter, Pseudomonas, Succinivibrio 

and Desulfovibrio, belonging to the Proteobacteria 
phylum, were significantly higher in the postmenopausal 

osteopenia group than in the control group (Figure 3A, 

3B). Furthermore, the relative abundances of Blautia, 

Fusicatenibacter, Lachnospiraceae_UCG-001, 

Lachnospiraceae_UCG-004 and Prevotella_7 were 

significantly higher in the control group than in the 

postmenopausal osteopenia group (Figure 3A, 3B). At 

the class level, the relative abundances of Lactobacillales 

and Coriobacteriales were significantly higher in the 

PMO group than in the control group. In addition, 

Parabacteroides and Lactobacillus were more abundant 

in the osteoporosis group than in the control group 

(Supplementary Figure 4), and the relative abundances of 

Bacteroides massiliensis, Lachnospira pectinoschiza, 

Bacteroides coprocola and Blautia were significantly 

higher in the control group than in the PMO and 

postmenopausal osteopenia groups (Figure 3B and 

Supplementary Figure 4). Moreover, the relative 

abundances of Megasphaera, Veillonella, Roseburia 

inulinivorans, Roseburia intestinalis, Klebsiella, and 

Escherichia/Shigella were significantly higher in the 

postmenopausal osteopenia group than in the PMO 

group, but a significantly lower abundance of Bacteroides
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eggerthii was found in the postmenopausal osteopenia 

group than in the PMO group (Supplementary Figure 5). 

 

Fecal metabolism profiles in osteopenia and 

osteoporosis 

 

To assess whether the profiles of fecal metabolites are 

associated with osteoporosis, we performed metabolic 

profiling of all stool samples. A significant difference in 

the composition of fecal metabolites was observed 

between the PMO group and the control group (p=0.048 

and fdr=0.095 for PERMANOVA, p=0.010 and 

fdr=0.027 for CV-ANOVA) (Supplementary Figure 6 

and Supplementary Table 3). Conversely, we observed 

no significant difference between the postmenopausal 

osteopenia group and the control group (p=0.160 and 

fdr=0.160 for PERMANOVA, p=0.120 and fdr=0.120 

for CV-ANOVA) or between the PMO group and the 

postmenopausal osteopenia group (p=0.085 and 

fdr=0.113 for PERMANOVA, p=0.037 and fdr=0.049 

for CV-ANOVA) (Supplementary Table 3). 

 

Further stratified analysis by metabolite categories 

revealed that N-acetylmannosamine, deoxyadenosine, 

adenosine, levulinic acid, linoleic acid and Arg-Ile were 

significantly more abundant in the PMO group than  

in the control group (Figure 4B). However, glutamic 

acid, nicotinamide, linoleoyl ethanolamide, salicylic 

acid, jasmine lactone and 1-palmitoyl-sn-glycero-3-

phosphocholine were significantly less abundant in the 

PMO group than in the control group (Figure 4A). 

Compared with the control group, the postmenopausal 

osteopenia group displayed significantly higher  

levels of N-acetylmannosamine, N-acetylputrescine, N-

acetylcadaverine, levulinic acid, Arg-Ile and histamine 

but significantly lower levels of pantothenate, 

 

 
 

Figure 2. Decreased bacterial richness and diversity in postmenopausal osteoporosis and the alpha metrics were significant 
associated with LS.BMD. (A) Rarefaction curves for alpha richness in postmenopausal osteopenia, postmenopausal osteoporosis and 
control. The different facets show the different richness metric cures, the x-axis shows the number of reads, and the y-axis shows the 
richness metric. The shadow area shows standard deviation of each group. The curves in each group are near smooth when the number of 
reads is great enough with few OTUs undetected. (B) Comparison of α-diversity (Observe Species and Shannon) based on the OTU profile in 
each group. The p values are from Mann-Whitney test. (C) Correlation between bacterial diversity and LS.BMD. The x-axis shows the LS.BMD, 
and the y-axis shows the diversity values. The correlation is calculated with Spearman method. 
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thymidine, Val-Pro and Pro-Ala. Interestingly, L-lysine 

and L-threonate were more abundant among the  

fecal metabolites of the postmenopausal osteopenia 

group than the other groups (Figure 4B). In addition,  

2-hydroxy-3-methylbutyric acid, taurocholatem, N-

acetylcadaverine, and histamine were more abundant in 

the postmenopausal osteopenia group than in the PMO 

group, but L-citrulline, thymidine, N6-acetyl-L-lysine 

and L-pipecolic acid were significantly less abundant 

(Supplementary Figure 7). 

 

The relationships among the different bacteria, different 

metabolites and clinical profilers were examined by 

correlation analysis (Spearman) to evaluate the 

relationship between the gut bacteria and fecal 

metabolites and between the gut bacteria and clinical 

profiles. We found that osteopenia-enriched N-

acetylmannosamine correlated negatively with LS. BMD, 

FN. BMD and total hip BMD. A previous study reported 

that treatment with N-acetylmannosamine inhibited 

arthritis-mediated bone loss in mice [29]. We also  

found that N-acetylputrescine and N-acetylcadaverine 

correlated positively with N-acetylmannosamine  

(Figure 5 and Supplementary Table 4). Histamine, which 

is related to PMO, was positively associated with N-

acetylcadaverine. PMO-enriched Arg-Ile correlated 

negatively with LS. BMD and FN. BMD (Figure 5 and 

Supplementary Table 4). Conversely, there was a positive 

association between Prevotella_7 enrichment in  

controls and BMD, including LS. BMD and total hip 

BMD. Blautia was positively associated with LS. BMD 

(Figure 5 and Supplementary Table 4). Interestingly, 

osteopenia-enriched L-threonate correlated positively 

with Escherichia/Shigella, Enterobacter, and Citrobacter 

(Figure 5 and Supplementary Table 4), which are from 

Proteobacteria and enriched in the postmenopausal 

osteopenia group. Postmenopausal osteopenia-enriched 

L-lysine correlated negatively with Blautia and 

Fusicatenibacter (Figure 5 and Supplementary Table 4), 

which were enriched in the control group. In addition, we 

found that osteopenia-enriched Allisonella, Klebsiella 

and Megasphaera correlated positively with P1NP  

and CTX-1 (Figure 5 and Supplementary Table 4). 

Altogether, these results indicate that the distinguishing 

metabolites were closely related to gut bacteria variation 

and that the distinguishing metabolites and intestinal 

bacteria were related to postmenopausal osteopenia and 

PMO, even though it remains to be explored whether 

these metabolites are directly produced by the intestinal 

bacteria. 

 

DISCUSSION 
 

In this study, symbiotic bacteria and fecal metabolites 

were altered in PMO and postmenopausal osteopenia 

compared with control conditions. Bacterial richness 

 

 
 

Figure 3. Discriminative taxa between postmenopausal osteopenia and control. (A) The point plot of LDA (Linear discriminant 
analysis) shows the features detected as statistically and biologically differential taxa between the different communities. (B) The 
taxonomic representation of statistically and biologically differences between postmenopausal osteopenia and control. The color of 
discriminative taxa represents the taxa is more abundant in the corresponding group (Control in green, postmenopausal osteopenia  
in purple). The size of point shows the negative logarithms (base 10) of p-value. The bigger size of point shows more significant  
(lower p-value). 
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and diversity were decreased in PMO. We observed  

that some bacteria belonging to the Proteobacteria 

phylum, such as Klebsiella, Escherichia/Shigella, 

Enterobacter, Citrobacter, Pseudomonas, Succinivibrio 

and Desulfovibrio, were enriched in postmenopausal 

osteopenia, and that Parabacteroides, Lactobacillus  

and Bacteroides intestinalis were more abundant in 

PMO. Blautia, Fusicatenibacter, Lachnospiraceae_ 
UCG-001, Lachnospiraceae_UCG-004 and Prevotella_ 

7 were enriched in controls. In addition, higher levels  

of N-acetylmannosamine, histamine, adenosine, 

deoxyadenosine, L-lysine and L-threonate were found 

in the postmenopausal osteopenia and PMO groups  

than in the control group. Furthermore, several 

distinguishing intestinal bacteria were also associated 

with distinguishing metabolites related to BMD. 

 

In concert with decreases in estrogen, both bone 

formation and bone resorption are greatest at 7-8 years 

after menopause [30], correlating well with the 

acceleration of bone turnover observed in the osteopenia 

and osteoporosis groups in the present study. Moreover, 

osteoporosis group individuals had lower BMD than 

both control and osteopenia group individuals, and the 

cumulative loss was greater at the lumbar spine than at 

the hip. It has been reported that estrogen deprivation 

increases the permeability of the intestinal epithelium, 

facilitating the intrusion of intestinal pathogens, 

initiating immune reactions, and ultimately leading to 

increased osteoclastic bone resorption [31]. In this study, 

OC, CTX-1, and P1NP were increased in the osteopenia 

group compared with the control group, but they were 

decreased in the osteoporosis group compared with the 

osteopenia group (Supplementary Table 1). The bone 

turnover rate decreases again at approximately 10 years 

after menopause [30], and the average age of the 

individuals in the osteoporosis group was approximately 

2 years older than that of the individuals in the control 

and osteopenia groups in our study. Hence, it is likely 

that the bone turnover rate was declining in some of the 

subjects in the osteoporosis group. We also observed 

both P1NP and CTX-1 to be positively associated with 

osteopenia-enriched Allisonella, Klebsiella and 

Megasphaera. These microbiota constituents might 

reflect high bone metabolic turnover in PMO. 

 

Numerous studies in rodents have reported that 

alterations in the gut microbiome are associated with 

changes in bone mass [16, 32]. The findings of our study 

suggest that the α-diversity of symbiotic bacteria 

differed among postmenopausal osteopenia, PMO and 

control groups. Compared to the control condition, α-

diversity was increased in postmenopausal osteopenia 

but decreased in osteoporosis. A study involving a  

few specimens showed a significant difference in α-

diversity between postmenopausal osteopenia and control 

 

 
 

Figure 4. Discriminative fecal metabolites between postmenopausal osteopenia and control. (A), As well as between 
postmenopausal osteoporosis and control (B). The x-axis shows the logarithms (base 10) of LDA (Linear discriminant analysis). The y-axis 
shows the discriminative fecal metabolites. 
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conditions, though reduced α-diversity was also found in 

PMO [22]. Another study on cohorts with reduced bone 

density in Ireland suggested that overall microbiota α-

diversity did not correlate with BMD. We believe that 

these conflicting results might be due to the number of 

specimens and different populations of these studies. 

Blautia, Lachnospira, Anaerostipes, Coprococcus_3, 

Fusicatenibacter, Lachnospiraceae_UCG-001 and 

Lachnospiraceae_UCG-004, belonging to the 

Lachnospiraceae family, may provide protection against 

colon cancer in humans by producing butyric acid and 

short-chain fatty acids (SCFAs) [33–35]. In our study, 

their abundances were decreased in the osteopenia and 

osteoporosis groups compared to the control group. 

Blautia comprises a group of various butyrate and 

acetate producers that are reported to have higher 

relative abundance in control subjects than in patients 

with type 2 diabetes mellitus [35, 36]. A beneficial anti-

inflammatory association of Blautia has also been found 

in several clinical settings, including in colorectal cancer 

[37], cirrhosis [38], and inflammatory pouchitis 

following ileal pouch-anal anastomosis [39]. In the 

present study, we also detected a positive association of 

Blautia abundance with lumbar spine BMD, which 

suggests that the gut microbiota is associated with BMD. 

In contrast, the abundances of members of the 

Enterobacteriaceae and Pseudomonadaceae families, 

such as Enterobacter, Klebsiella, Escherichia/Shigella, 

Citrobacter, Pseudomonas, Succinivibrio and 

Desulfovibrio, were enriched in the osteopenia and 

osteoporosis groups. These bacteria belong to the 

Proteobacteria phylum, and recent studies have shown 

that mice with a disrupted microbiota exhibit reduced 

femur bending strength but an increased abundance of 

 

 
 

Figure 5. The relationship among the discriminative genera, discriminative fecal metabolites and the clinical index associated 
with osteoporosis. The colors of points show the different phyla of the genera. The size of points of genera shows the mean relative 
abundance. The circle points represent the clinical indexs, triangle points represent the discriminative genera, and diamond points represent 
the discriminative fecal metabolites. The transparency of lines represents the negative logarithms (base 10) of p-value of correlation 
(Spearman), the red lines represent the negative correlation and blue lines represent positive correlation, and the width of lines represents 
the size of correlation (Spearman). 
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Proteobacteria. These results suggest that the abundance 

of Proteobacteria correlates negatively with bone mass 

[16], consistent with our results. Moreover, some studies 

have shown that the gut microbiota regulates bone 

metabolism through the immune system [40, 41]. The 

prevalence of Proteobacteria has been associated with an 

increased incidence of microbial dysbiosis, metabolic 

disease, and inflammation, all factors known to 

influence host physiology and the immune system [42–

44]. These findings indicate that several members of 

Proteobacteria are associated with osteoporosis, but 

further studies are required to address questions on the 

potential detrimental impact and mechanisms of action 

in postmenopausal osteopenia or PMO. 

 

Calcium absorption and metabolism are also associated 

with osteoporosis, as levels of calcium in the body are 

related to the quality and content of bone [45, 46]. 

Nonetheless, no distinguishing metabolites related to 

this metabolism were observed among the groups. We 

found that the abundances of adenosine and 

deoxyadenosine were higher among the fecal 

metabolites of the PMO group than the control group. 

Adenosine released locally mediates physiologic and 

pharmacologic actions via interactions with G-protein 

coupled receptors, and recent studies have indicated that 

these receptors are involved in the regulation of 

osteoclast differentiation and function, as well as 

osteoblast differentiation and bone formation [47–50]. 

Adenosine receptor stimulation has also been reported 

to improve glucocorticoid-induced osteoporosis in a rat 

model [47], and an experimental study in mice showed 

that 3’-deoxyadenosine can downregulate pro-

inflammatory cytokines in an inflammation-induced 

osteoporosis model [51]. We also found that the 

abundance of N-acetylmannosamine was higher among 

fecal metabolites in PMO and osteopenia than in 

controls. A recent study showed that treatment with N-

acetylmannosamine inhibited arthritis-mediated bone 

loss in mice. Moreover, enrichment of L-threonate and 

L-lysine was observed in osteopenia in our study [29]. 

However, laboratory studies have shown that L-lysine 

supplements can cause bone-building cells to be more 

active, with enhanced collagen production [52]. The 

calcium salt of L-threonate has been developed for 

osteoporosis treatment [53]. These findings appear to be 

inconsistent with our results, but much of the relevant 

existing literature is based on rodent studies, a small 

number of specimens or a specific type of osteoporosis. 

 

Correlation analysis allowed us to identify several new 

bacterial genera potentially implicated in host metabolic 

health [54]. We found negative associations of control-

enriched Blautia and Fusicatenibacter abundance  

with osteopenia-enriched L-lysine, whereas positive 

associations of Escherichia/Shigella, Enterobacter and 

Citrobacter abundances with L-threonate were observed. 

In addition, Blautia correlated positively with  

lumbar spine BMD, whereas levulinic acid and N-

acetylmannosamine correlated negatively with lumbar 

spine BMD and total hip BMD. Interestingly, we found 

that osteopenia-enriched histamine correlated positively 

with Citrobacter and Morganella abundances. Previous 

studies have demonstrated that isolates of the two genera 

produce histamine [55–57]. Notably, recent research has 

indicated that histamine deficiency directly protects the 

skeleton from osteoporosis [58], suggesting a potential 

mechanism through which metabolites affect bone 

parameters via gut bacteria. It has also been reported  

that interleukin-33 (IL-33) elicits an inflammatory 

response synergistically with histamine [59] and plays  

an important role in regulating components of the 

microbiome [60]. IL-33 also represents a significant 

bone-protecting cytokine that may be beneficial in 

treating bone resorption in PMO [61]. Therefore, the 

relationship between IL-33 and the gut microbiome in 

PMO is an important research direction. 

 

A limitation of this study was that this cross-sectional 

design prevented causality inference from microbiome 

alterations to both bone mineral loss and BTMs in PMO 

patients. All subjects were recruited from two 

communities on Xiamen Island, a small modern city in 

the coastal area of southern China. As the subjects were 

from a relatively concentrated environment, differences 

in geographical and climatic factors were relatively 

small. Nevertheless, potential dietary habits and 

differences may still affect the results to some extent. 

Hence, our findings need validation with a larger sample 

size in other regions. Due to the physiological interaction 

between organs and microbial communities, several 

diseases have been investigated for associations with 

shifts in the gut microbiome. Thus, patients with cancer, 

kidney disease, genetic bone disease, digestive system 

disease and psychiatric disease were excluded from this 

study. All the participants in the osteoporosis group were 

newly diagnosed PMO patients who had not yet received 

anti-osteoporotic treatment. Patients using medications 

such as antibiotics, probiotics, prebiotics and estrogens 

were also excluded, and differences in the consumption 

of other drugs were not significant among the three 

groups. Therefore, it is unlikely that medications 

consumed directly influenced the genomes and 

metabolites of the gut microbiome in these subjects. In 

contrast to previous studies, we applied 16S rRNA gene 

sequencing and quantitative fecal metabolomics, which 

allowed us to understand both the intestinal bacterial 

response and metabolites to gain additional information 

about host-gut microbiota metabolic interactions in 

response to postmenopausal osteopenia or PMO. In the 

future, it may be possible to develop a potential auxiliary 

method for the diagnosis of PMO by analysis and  
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a proposed model for distinguishing bacteria and 

metabolites. Deep exploration and mechanistic studies 

are warranted. The deepening of knowledge about the 

mechanisms of intestinal bacteria shifts in PMO may 

provide novel targets for intervention in clinical practice. 

 

CONCLUSIONS 
 

In summary, we described the disordered profiles  

of intestinal bacteria and fecal metabolomes in 

postmenopausal women with osteopenia and 

osteoporosis. We identified distinguishing bacteria and 

metabolites and discussed the relationship between 

them and bone parameters. These findings provide new 

clues regarding the link between intestinal bacteria and 

PMO. 

 

MATERIALS AND METHODS 
 

Study subjects 

 

Our study included participants from Xiamen city  

of Fujian Province, China. The enrolled subjects  

were asked to complete a questionnaire regarding  

age, ethnicity, menstrual status, medication history,  

and disease history. No menstruation for at least 12 

months after the last menopause was considered a 

postmenopausal status. Participants with cancer, kidney 

disease, metabolic or genetic bone disease, digestive 

system disease (inflammatory bowel disease, hepatic 

disease, constipation, previous partial or total colectomy), 

psychiatric disease (e.g., schizophrenia, depression,  

or cognitive impairment), or use of antibiotics in the  

past 3 months or patients using medications (e.g., 

estrogen, glucocorticoids, diphosphonate, teriparatide or 

denosumab) that might influence bone metabolism were 

excluded. Between 1 December 2018 and 1 February 

2019, 140 postmenopausal women were screened, and 

108 were found to be potentially eligible after applying 

IOF One-Minute Osteoporosis Risk Test [62]. In this test, 

those who answered YES to any of the questions of risk 

factor that you can change (e.g., avoiding daily foods, 

getting enough sunlight, little physical activity) were 

excluded. As a result, all eligible participants were 

affected by risk factors that could not be changed (e.g., 

age, low BMI, diabetes). The consistency of the subjects 

was maintained through the questionnaire. Secondary 

osteoporosis was detected in 2 cases, who were excluded 

from the analysis, resulting in a final dataset comprising 

106 participants. 

 

Clinical measurements 

 

Age, height (m) and weight (kg) were recorded for  

every participant. BMI was calculated as weight/height2. 

Daily calibrated Hologic 4500 A dual-energy X-ray 

absorptiometry (DXA) scanner (Lunar Expert 1313, 

Lunar Corp, USA) was utilized for measuring BMD 

(g/cm2) for the lumbar spine (L1-4) and total hip (femoral 

neck, trochanter, and intertrochanteric region). The 

coefficient of variation (CV), as the precision indicator, 

was 0.9% and 1.4% for the spine and hip BMD, 

respectively. BMD was recorded as the ratio of bone 

mineral content (g) and bone area (cm2), and the data are 

expressed as g/cm2. The T-score threshold was used to 

define three groups based on BMD. The 106 participants 

were divided into a control group (n=31) with a T-score 

of ≥-1, an osteopenia group (n=33) with a T-score 

between -1 and -2.5, and an osteoporosis group (n=42) 

with a T-score of -2.5 or less [63]. 

 

BTMs are affected by circadian variability, with peak 

values in the early morning and nadirs in the early 

afternoon and evening [64]. Therefore, we strictly 

collected all venous blood samples at similar time points 

in the morning to minimize these fluctuations. Fasting 

levels of BTMs, including OC, CTX-1, P1NP, parathyroid 

hormone (PTH), E2, and serum 25-hydroxyvitamin D3 

[25(OH)VD3], were measured with an automated Roche 

Osteoporosis Int electrochemiluminescence system 

(Roche Diagnostics GmbH, Germany). The inter- and 

intra-assay CVs were 4.0% and 2.9% for osteocalcin, 

3.5% and 2.5% for CTX-1, 2.8% and 2.3% for P1NP, 

2.9% and 1.7% for PTH, 2.9% and 2.3% for E2 and 8.0% 

and 5.6% for 25(OH)VD3, respectively. 

 

Sample collection, DNA extraction, amplification, 

and sequencing 
 

Fecal samples were collected in sterile plastic cups, 

frozen, and stored at -80°C within 1 h until further 

processing. Fecal microbial DNA was extracted using a 

QIAamp DNA Stool Mini Kit (Qiagen, Hilden, 

Germany). PCR amplification was carried out using an 

ABI 2720 Thermal Cycler (Thermo Fisher Scientific, 

USA). We used Multiskan™ GO spectrophotometry 

(Thermo Fisher Scientific, USA) to quantify bacterial 

genomic DNA as the template for amplification of the 

V3-V4 hypervariable region of the 16S rRNA gene in 

three replicate reactions with forward (Illumina adapter 

sequence 1 + 5’-CCTACGGGNBGCASCAG) and 

reverse (Illumina adapter sequence 2 + 5’-

GGACTACNVGGGTWTCTAAT) primers. Replicate 

PCR products were pooled and purified with Agencourt 

AMPure XP magnetic beads (Beckman Coulter, USA). A 

TopTaq DNA Polymerase kit (Transgen, China) was 

used. The purity and concentration of sample DNA were 

assessed using a NanoDrop 2000 Spectrophotometer 

(Thermo Fisher Scientific, USA). Paired-end sequencing 

was performed by Treatgut Biotech Co., Ltd. with a 

HiSeq 2500 (Illumina, San Diego, CA, USA) with PE 

250 bp reagents. 
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Fecal metabolite extraction 
 

Fifty milligrams of sample was placed in an EP tube, 

and then 1000 μL of extraction liquid containing an 

internal target (V methanol:V acetonitrile:V 

water=2:2:1, which was kept at -20°C before extraction) 

was added. The samples were homogenized in a bead 

mill for 4 min at 45 Hz and ultrasonicated for 5 min 

(incubated in ice water). After homogenization 3 times, 

the samples were incubated for 1 h at -20°C to 

precipitate proteins. The samples were centrifuged at 

12,000 rpm for 15 min at 4°C. The supernatant (750 μL) 

was transferred to fresh EP tubes, and the extracts were 

dried in a vacuum concentrator without heating; 100 μL 

of extraction liquid (V acetonitrile:V water=1:1) was 

added for reconstitution. The samples were vortexed for 

30 s, sonicated for 10 min (4°C water bath), and 

centrifuged for 15 min at 12,000 rpm and 4°C. The 

supernatant (60 μL) was transferred to a fresh 2 mL 

LC/MS glass vial, and 10 μL was collected from each 

sample and pooled as QC samples; 60 μL of supernatant 

was used for UHPLC-QTOF-MS analysis. 

 

LC-MS/MS analysis and annotation 
 

LC-MS/MS analyses were performed using a UHPLC 

system (1290, Agilent Technologies) with a UPLC BEH 

Amide column (1.7 μm 2.1×100 mm, Waters) coupled 

to a TripleTOF 6600 (Q-TOF, AB Sciex) and QTOF 

6550 (Agilent). The mobile phase consisted of 25 mM 

NH4OAc and 25 mM NH4OH in water (pH=9.75) (A) 

and acetonitrile (B), which was applied in an elution 

gradient as follows: 0 min, 95% B; 7 min, 65% B; 9 

min, 40% B; 9.1 min, 95% B; and 12 min, 95% B, 

which was delivered at 0.5 mL/min. The injection 

volume was 2 μL. A TripleTOF mass spectrometer was 

used due to its ability to acquire MS/MS spectra on an 

information-dependent basis (IDA) during an LC/MS 

experiment. In this mode, the acquisition software 

(Analyst TF 1.7, AB Sciex) continuously evaluates the 

full-scan survey MS data as it collects and triggers the 

acquisition of MS/MS spectra depending on preselected 

criteria. In each cycle, 12 precursor ions with intensities 

greater than 100 were chosen for fragmentation at a 

collision energy (CE) of 30 V (15 MS/MS events with a 

product ion accumulation time of 50 msec each). ESI 

source conditions were set as follows: ion source gas 1 

at 60 Psi, ion source gas 2 at 60 Psi, curtain gas at 35 

Psi, source temperature at 650°C, and ion spray voltage 

floating (ISVF) at 5000 V or - 4000 V in positive or 

negative modes, respectively. 

 

MS raw data files were converted to the mzXML format 

using ProteoWizard [65] and processed by the R 

package XCMS (version 3.2). The preprocessing results 

generated a data matrix that consisted of the retention 

time (RT), mass-to-charge ratio (m/z) values, and peak 

intensity. The R package CAMERA was used for peak 

annotation after XCMS data processing [66]. 

 

Bioinformatic analyses of 16S rRNA gene sequencing 

 

Raw paired-end reads were assembled using FLASH 

[28]. Primers were removed using cutadapt [67]. Chimera 

checking and OTU clustering were performed with the 

clean tags by unoise3 of usearch [28], following the 

pipeline [28]. In detail, all reads were demultiplexed into 

one file and clustered using unoise3 of usearch [28]; 

chimaera checking was performed using the internal 

function of usearch [28]. Representative sequences were 

generated, singletons were removed, and a final OTU 

table was created. Representative sequences of OTUs 

were aligned using the Silva database [68] for taxonomic 

classification with assignTaxonomy in the R package 

dada2 [69]. For downstream analysis, the feature table, 

taxonomy table, representative sequences, phylogenetic 

tree and metadata were imported and stored as a phyloseq 

object by the R package phyloseq [70]. The OTU table 

was rarefied to 50,000 reads per sample using rarefy_ 
even_depth in phyloseq [70]. 

 

Statistical analyses and visualization 
 

Estimates of α-diversity were based on an evenly rarefied 

OTU abundance matrix and included observed richness 

for observed species, Shannon, Simpson, ACE, Chao1 

indices and Pielou’s evenness (J’) using get_alphaindex 

in the in-house R package MicrobiotaProcess. The 

significance of differences in the measured α-diversity 

indices across samples were tested and visualized using 

nonparametric Mann-Whitney tests with ggbox in 

MicrobiotaProcess. The β-diversity, which estimates the 

difference in community structure between samples, of 

the samples was measured using the Bray-Curtis distance 

based on an evenly rarefied OTU abundance table. 

Statistical differences of the measured β-diversity metrics 

across groups were determined using PERMANOVA 

with 9999 permutations and adonis in R package  

vegan [71]. Taxon abundance was measured and plotted 

using get_taxadf and ggbartax in the R package 

MicrobiotaProcess. Taxa and metabolites with differential 

abundances in the groups were identified using 

diff_analysis in the R package MicrobiotaProcess, which 

is an algorithm for high-dimensional biomarker discovery 

and explanation that identifies genomic features 

characterizing differences between two or more 

biological conditions. The results of different analyses 

were visualized using ggdiffclade and ggeffectsize in 

MicrobiotaProcess. Enterotypes were identified based on 

the abundance of genera using kmeans. Correlations 

between different taxa and fecal metabolites, as well as 

clinical variables, were calculated by Spearman’s rank 
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test. The results were visualized using R packages ggraph 

[72] and ggplot2 [73]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Correlation between bacterial diversity and E2. The x-axis shows the diversity values, and the y-axis shows 
the E2. The correlation is calculated with spearman method.  
 

 
 

Supplementary Figure 2. No shift of gut enterotypes in postmenopausal osteoporosis and osteopenia. (A) Total samples are 
clustered into three types of enterotypes, the major contributors in the three enterotypes are Klebsiella (Phascolarctobacterium, 
Escherichia/Shigella), Prevotella_9, and Bacterodies, respectively. (B) Relative abundance of the top genera in the three enterotypes.  
(C) Proportions of enterotypes in each group. No statistically significant differences were observed among the groups. 
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Supplementary Figure 3. PCA (Principal components analysis) and PCoA (Principal coordinate analysis) of bacterial β-
diversity in the three groups. (A) Clustering of the first two principal components. (B) Clustering of the first principal components and 
third principal components. (C) Clustering of the first two principal coordinates. (D) Clustering of first principal coordinates and third principal 
coordinates. 
 

 
 

Supplementary Figure 4. Discriminative taxa between postmenopausal osteoporosis and control groups. (A) The point plot of 
LDA (Linear discriminant analysis) shows the features detected as statistically and biologically differential taxa between the different 
communities. (B) The taxonomic representation of statistically and biologically differences between postmenopausal osteoporosis and 
control. The color of discriminative taxa represents the taxa is more abundant in the corresponding group (control in green, postmenopausal 
osteoporosis in orange). The size of point shows the negative logarithms (base 10) of p-value. The bigger size of point shows more significant 
(lower p-value). 
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Supplementary Figure 5. Discriminative taxa between postmenopausal osteopenia and postmenopausal osteoporosis 
groups. (A) The point plot of LDA (Linear discriminant analysis) shows the features detected as statistically and biologically differential taxa 
between the different communities. (B) The taxonomic representation of statistically and biologically differences between postmenopausal 
osteopenia and postmenopausal osteoporosis. The colors of discriminative taxa represent the taxa is more abundant in the corresponding 
group (postmenopausal osteopenia in purple, postmenopausal osteoporosis in orange), the size of point shows the negative logarithms (base 
10) of p-value. The bigger size of point shows more significant (lower p-value). 
 

 
 

Supplementary Figure 6. PLS-DA score plots comparing the fecal metabolites in the three groups. 
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Supplementary Figure 7. Discriminative fecal metabolites between postmenopausal osteopenia (purple) and 
postmenopausal osteoporosis (orange). The x-axis shows the logarithms (base 10) of LDA (Linear discriminant analysis). The y-axis 
shows the discriminiative fecal metabolites. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 4. 

 

Supplementary Table 1. Characteristics of the participants involved in this study. 

 
Meta-data 

Normal BMD 

(n=31) 

Osteopenia 

(n=33) 

Osteoporosis 

(n=42) 
p-value 

Normal BMD - 

Osteopenia 

Normal BMD- 

Osteoporosis 

Osteopenia- 

Osteoporosis 

Age(years) 57.35±3.98 57.42±5.06 59.69±5.51 0.137 1 0.112 0.19 

weight (kg) 60.71±6.6 58.79±7.5 57.29±5.85 0.207 0.248 0.031 0.332 

BMI (kg/m2)  24.28±2.79 24.21±3.05 23.8±2.17 0.737 1 0.818 0.89 

LS Z-score  1.20±1.06 -0.49±0.62 -1.65±0.74 <0.001 <0.001 <0.001 <0.001 

LS T-score  0.06±0.93 -1.69±0.56 -3.14±0.62 <0.001 <0.001 <0.001 <0.001 

LS BMD(g/cm2)  1.19±0.11 0.98±0.07 0.80±0.07 <0.001 <0.001 <0.001 <0.001 

FN Z-score  1.10±0.74 -0.12±0.62 -0.83±0.76 <0.001 <0.001 <0.001 <0.001 

FN T-score  -0.01±0.69 -1.16±0.77 -2.21±0.78 <0.001 <0.001 <0.001 <0.001 

FN BMD(g/cm2)  0.98±0.08 0.83±0.08 0.72±0.10 <0.001 <0.001 <0.001 <0.001 

Total hip Z-score  0.98±0.77 -0.10±0.66 -0.92±0.87 <0.001 <0.001 <0.001 <0.001 

Total hip T-score  0.13±0.72 -1.00±0.67 -2.00±0.92 <0.001 <0.001 <0.001 <0.001 

Total hip 

BMD(g/cm2)  
1.02±0.09 0.88±0.08 0.76±0.11 <0.001 <0.001 <0.001 <0.001 

E2(pmol/L) 45.85±29.35 31.94±13.02 24.42±7.47 <0.001 0.058 0.001 0.014 

25(OH)VD3(nmol/L) 50.86±17.7 44.35±15.38 56.28±20.46 0.126 0.155 0.212 0.006 

OC(ng/ml) 19.96±7.45 26.29±10.03 24.24±13.25 0.031 0.017 0.231 0.831 

CTX-1(ng/ml) 0.38±0.18 0.56±0.24 0.48±0.33 0.021 0.004 0.253 0.557 

P1NP(ng/ml) 54.92±21.35 70.61±26.3 64.91±43.46 0.024 0.032 0.486 0.861 

PTH(pg/ml) 45.4±21.59 45.02±16.42 47.65±26.08 0.287 0.946 0.67 0.612 

Smoking Status  

(Yes/No) 
1/30 2/31 2/40 0.863       

Drinking Status 

(Yes/No) 
2/29 1/32 3/39 0.703       

Diabetes Type II 

(Yes/No) 
4/27 5/28 6/36 0.967       

Hypertension 

(Yes/No) 
5/26 6/27 8/34 0.949       

Hyperlipemia 

(Yes/No) 
5/26 4/29 3/39 0.475       

Chronic gastritis 

(Yes/No) 
2/29 1/32 1/41 0.664       

Osteoarthritis 

(Yes/No) 
2/29 2/31 2/40 0.946       

Number of 

medications 
1±0.97 0.79±0.99 0.88±0.89 0.669       

Metformin (Yes/No) 2/29 2/31 2/40 0.946       

Dipeptidyl peptidase-4 

(DDP-4) inhibitors 

(Yes/No) 

1/30 2/31 3/39 0.75       

Insulin(Yes/No) 1/30 1/32 2/40 0.912       

β-blockers (Yes/No) 1/30 2/31 1/41 0.709       
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ARBs ACEi (Yes/No) 5/26 6/27 8/34 0.949       

Cholesterol 

medications  (Yes/No) 
5/26 4/29 3/39 0.475       

PPIs (Yes/No) 2/29 1/32 1/41 0.664       

NSAIDs  (Yes/No) 2/29 2/31 2/40 0.946       

Nutritional 

Supplements  

(Yes/No) 

3/28 3/30 5/37 0.914       

Calcium supplements 

(Yes/No) 
3/28 2/31 4/38 0.824       

Vitamins (Yes/No) 3/28 1/32 5/37 0.322       

 

Supplementary Table 2. The results of PERMUNATION ANOVA analysis based on the OTU profilers in the three 
groups. 

Factors Df SumsOfSqs MeanSqs F.Model R2 pvalue compare FDR 

group 2 0.65122 0.32561 1.929175 0.036213 4.00E-04 three group 0.0024 

E2 1 0.183476 0.183476 1.087061 0.010203 0.3152 three group 0.556629 

group:E2 2 0.269903 0.134952 0.799561 0.015009 0.8892 three group 0.9568 

group 1 0.384969 0.384969 2.479287 0.038481 3.00E-04 Control-VS-Osteopenia 0.0024 

E2 1 0.184224 0.184224 1.186442 0.018415 0.2101 Control-VS-Osteopenia 0.50424 

group:E2 1 0.118545 0.118545 0.763453 0.011849 0.8325 Control-VS-Osteopenia 0.9568 

group 1 0.218132 0.218132 1.266553 0.017541 0.139 Control-VS-Osteoporosis 0.417 

E2 1 0.186088 0.186088 1.080493 0.014964 0.3247 Control-VS-Osteoporosis 0.556629 

group:E2 1 0.148086 0.148086 0.859841 0.011908 0.6715 Control-VS-Osteoporosis 0.914267 

group 1 0.379569 0.379569 2.146261 0.028743 0.0012 Osteopenia-VS-Osteoporosis 0.0048 

E2 1 0.116269 0.116269 0.657438 0.008804 0.9568 Osteopenia-VS-Osteoporosis 0.9568 

group:E2 1 0.153548 0.153548 0.868233 0.011627 0.6857 Osteopenia-VS-Osteoporosis 0.914267 

 

Supplementary Table 3. The results of orthogonal projection to latent structure-discriminant analysis and 
PERMUNATION ANOVA analysis based on fecal metobolites profilers in the three groups. 

R2X(cum) R2Y(cum) Q2(cum) RMSEE pre ort pR2Y pQ2 fdr comparison 

0.19 0.28 0.0072 0.403 2 0 0.1 0.066666667 0.088889 three groups 

0.197 0.688 0.319 0.286 2 0 0.14 0.006666667 0.013333 Control_vs_Osteopenia 

0.161 0.697 0.252 0.278 2 0 0.026667 0.006666667 0.013333 Control_vs_Osteoporosis 

0.172 0.593 0.0524 0.323 2 0 0.28 0.136666667 0.136667 Osteopenia_vs_Osteoporosis 

 

Factors Df SumsOfSqs MeanSqs F.Model R2 pvalue compare FDR 

group 2 0.40969119 0.204846 1.559638 0.029513 0.0395 three group 0.0954 

group 1 0.1775052 0.177505 1.366989 0.021595 0.16 Control-VS-Osteopenia 0.16 

group 1 0.22537407 0.225374 1.737694 0.024098 0.0477 Control-VS-Osteoporosis 0.0954 

group 1 0.20819501 0.208195 1.551384 0.020854 0.0854 Osteopenia-VS-Osteoporosis 0.113867 

 

Supplementary Table 4. The results of correlation analysis between discriminative genera, metabolites, and clinical 
information in the three groups. 


