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INTRODUCTION 
 

Chronic obstructive pulmonary disease (COPD) is 

characterized by persistent respiratory symptoms and 

concurrent progressive airflow limitation [1–3]. Patients 

may experience episodes of exacerbated respiratory 

symptoms, and the frequency of exacerbations requiring 

hospitalization increases, resulting in significant social 

and economic burden and one of the major causes of 

morbidity and mortality worldwide [4, 5]. The   

 

pathogenesis of COPD and exacerbations may be 

associated with inflammatory cells, including 

macrophages, neutrophils, and T lymphocytes [6, 7]. 

These cells are crucial in parenchymal destruction and 

development of airflow limitation in patients with 

COPD [8, 9]. 

 

Chemokines and their receptors regulate leukocyte 

adhesion and homing, and these receptors play a critical 

role in trafficking of leukocytes to sites of injury and 
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ABSTRACT 
 

Inflammation is an important cause of chronic obstructive pulmonary disease (COPD) and its acute 
exacerbation. However, the critical role of C-C chemokine receptor (CCR)1 in progression of cigarette smoke-
induced chronic inflammation remains unclear. We studied CCR1 expression using immunohistochemistry, 
immunofluorescence, and real-time polymerase chain reaction (RT-PCR) in COPD patients and controls. 
Cytokine levels in peripheral blood were measured by enzyme-linked immunosorbent assay (ELISA). In vitro, we 
investigated Janus kinase/signal transducers and activators of transcription (JAK/STAT)/nuclear factor-κB (NF-
κB) signaling in cigarette smoke extract-induced or CCR1 deficiency/overexpressed mouse macrophage cell line 
MH-S by RT-PCR and western blot, and measured the cytokine levels in the supernatant with ELISA. We found 
that CCR1 expression was upregulated in COPD patients and there was a negative correlation between CCR1 
mRNA levels and predicted % forced expiratory volume in 1 min. Inflammatory cytokine levels in the peripheral 
blood were higher in COPD patients than controls, and these were positively correlated with CCR1 levels. CCR1 
was shown to play a critical role in regulating smoke-induced inflammation via JAK/STAT3/NF-κB signaling in 
vitro. CCR1 may play a critical role in airway inflammation in COPD. Additionally, understanding the molecular 
mechanism may help develop novel methods for the treatment of COPD. 
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inflammation [10]. In fact, the cell surface of T cells, 

natural killer cells, monocytes, macrophages, lympho-

cytes, and neutrophils express the C-C chemokine 

receptor (CCR)1 [11]. Previous studies have shown that 

elevated blood inflammation cells, chemokine levels, and 

CCR1 expression are associated with increased risk of 

exacerbations in patients with COPD [12–16]. However, 

the critical role of CCR1 in the progression of cigarette 

smoke-induced chronic inflammation remains unclear. 

We therefore hypothesize that CCR1 enhances airway 

inflammation via regulation of Janus kinase/signal 

transducers and activators of transcription (JAK/STAT) 

/nuclear factor-κB (NF-κB) signaling. 

 

In this study, we aimed to assess CCR1 expression in 

peripheral blood and bronchial tissues of patients with 

COPD and participants who served as controls. 

Furthermore, we investigated chemokine levels in 

plasma and correlation with lung function and CCR1 

expression. We also aimed to examine the inflammatory 

responses of MH-S cells that overexpressed or were 

deficient in CCR1 expression that were treated with 

cigarette smoke extract (CSE).  

 

RESULTS 
 

Immunohistochemistry of CCR1 in bronchial 

mucosa of patients with COPD and controls  
 

Immunohistochemistry staining showed the presence of 

CCR1 protein mainly in the airway epithelial cells (Figure 

1). We found that expression levels of CCR1 in bronchial 

mucosa were significantly increased in patients with 

COPD compared with controls (Figure 1A–1E). 

 

Immunofluorescence of CCR1 in bronchial mucosa 

of patients with COPD and controls  
 

The CCR1 expression in the trachea was detected by 

immunofluorescence and confocal microscopy, and was 

shown as green fluorescence (Figure 2). The ratio of 

green fluorescence for CCR1 expression was 

significantly increased in patients with COPD compared 

with controls. In addition, the enhanced fluorescence 

was mainly distributed in the mucosa of the trachea 

(Figure 2). These results were consistent with those 

illustrated in Figure 1, which indicated that CCR1 

expression was significantly increased in patients with 

COPD.  

 

The expression of CCR1 mRNA expression in 

peripheral blood of patients with COPD and 

controls  
 

We collected peripheral blood from 35 patients with 

COPD and 16 controls, then isolated the bone marrow-

derived macrophages and analyzed the mRNA level of 

CCR. Relative mRNA expression of CCR1 compared 

with the housekeeping gene Glyceraldehyde-3-
Phosphate Dehydrogenase (GAPDH) was significantly 

higher in macrophages from patients with COPD than 

controls (Figure 3). 

 

Cytokine levels in plasma 
 

The IL-8, IL-6, LIF, MCP-1, MIP-1α/β, RANTES, 

SCF, and TNF-α levels were higher in the plasma of 

patients with COPD than in controls (Figure 4A–4I). 

These chemokines indicated persistent airway inflam-

mation in patients with COPD. As a result, we conclude 

that the elevated level of CCR1 found in the peripheral 

blood of patients with COPD is consistent with chronic 

inflammation. 
 

 
 

Figure 1. Immunohistochemistry of CCR1 in the bronchial 
mucosa of patients with COPD and control. (A) CCR1 
expression (brown staining) from a patient with COPD. (B) CCR1 
expression (brown staining) from a control. (C) Representative 
CCR1 expression (brown staining) from a patient with COPD. (D) 
Representative CCR1 expression (brown staining) from a control. 
(E) Quantification of the histochemistry results, expressed as 
integral optical density of brown staining in the different views of 
patients with COPD and controls. The results are presented as 
mean ± SEM. Original magnification ×200 or ×400. ** p <0.01. 
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Relationships between CCR1 mRNA and cytokine 

expression levels and predicted % forced expiratory 

volume in 1 min (FEV1%pred) 
 

A negative correlation was observed between CCR1 

mRNA levels in the peripheral blood and FEV1%pred 

in patients with COPD (Figure 5A). Moreover, there 

were significant positive correlations between CCR1 

mRNA levels and IL-8, IL-6, MIP-1α/β, RANTES, 

SCF, and TNF-α concentration in patients with COPD 

(Figure 5B–5H). 

 

Expression of CCR1 and downstream pathways in 

CSE-induced MH-S cells 
 

The RT-qPCR results revealed that once the CCR1 

mRNA expression was inhibited, the CCR1/JAK/ 

STAT3/NF-κB mRNA expression decreased 

significantly in CSE-induced MH-S cells (Figure 6A, 

6C–6E), but not the RANTES and toll-like receptor 4 

(TLR-4) mRNA expression (Figure 6B, 6F). Similarly, 

the protein expression detected by western blots were 

consistent with RT-qPCR results (Figure 7). 

 

Cytokine secretion in MH-S cellular supernatant 
 

The CCR1 positive expression may promote the 

secretion of TNF-α, IL-6, and MIP-1β in cellular 

supernatant, but these cytokine secretions were also 

increased in CSE-induced MH-S cells although CCR1 

mRNA expression was inhibited (Figure 8A–8C). 

However, the concentration of INF-β in cellular 

supernatant is not correlated with CCR1 positive 

expression or CSE stimulation (Figure 8D). 

 

 
 

Figure 2. Immunofluorescence of CCR1 in the bronchial mucosa of patients with COPD and control. Representative CCR1 
expression (green fluorescence) in sections from control (A–C) and COPD (D–F). 

 

 

 

Figure 3. The expression of CCR1 mRNA in peripheral blood of patients with COPD and control participants. RT-qPCR detection 
of CCR1 mRNA expression of peripheral blood. COPD patients show a significantly higher level of CCR1 mRNA compared with the control 
sample. The results are presented as mean ± SEM (****p <0.0001 vs the control group). 
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DISCUSSION 
 

Our study demonstrated higher expression of CCR1 in 

patients with COPD, importantly, this study’s finding 

supports our hypothesis that the critical role of CCR1 in 

the regulation of smoke-induced inflammation via 

JAK/STAT3/NF-κB signaling in vitro. We found a 

negative correlation between CCR1 mRNA levels in the 

peripheral blood and FEV1%pred, and a positive 

correlation between CCR1 mRNA levels and 

chemokine secretions in this cohort of patients with 

COPD. 
 

Chemokines and their receptors (ChRs) regulate 

leukocyte adhesion, trafficking and homing. CCR1 

belongs to the family of inflammatory ChRs, which are 

upregulated during inflammation [17]. Notably, CCR1 

serves as a receptor for a number of inflammatory 

chemokines and is upregulated in response to 

inflammatory stimuli [18–20]. Studies showed that 

CCR1 was involved in the inflammatory response to 

cigarette smoking in murine models [21], and it may 

play a critical role in the pathogenesis of COPD. 

Similarly, Joubert et al. demonstrated that CCR1 was 

expressed on human airway smooth muscle cells in 

patients [22], which may involve in airway remodeling 

in asthma. 

 

In addition, infection is a significant cause of COPD 

and its acute exacerbation [23–26]. Acute exacerbations 

in patients with COPD are often associated with 

impaired respiratory function for a prolonged period of 

time and with increased mortality. These prolonged 

changes may be due to persistent inflammatory changes 

caused by the infecting pathogen [27, 28]. Patients with 

COPD are more susceptible to viral infections, and 

 

 
 

Figure 4. Cytokine levels in plasma. ELISA assay of the plasma reveals that COPD patients show a significantly high level of (A) IL-6, (B) IL-
8, (C) LIF, (D) MCP-1, (E) MIP-1 (F) α/β, (G) RANTES, (H) SCF, and (I) TNF-α compared with the control group. Data are expressed as mean ± 
SEM (*p < 0.05, **p <0.01, ****p <0.0001 vs the control group as indicated in the figure). 
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Figure 5. Relationships between CCR1 mRNA and cytokine expression levels and FEV1%pred. A negative correlation is observed 
between CCR1 mRNA levels in the peripheral blood and FEV1%pred in patients with COPD (A). There are significant positive correlations 
between (B) CCR1 mRNA levels and IL-8, (C) IL-6, (D) MIP-1 (E) α/β, (F) RANTES, (G) SCF, and (H) TNF-α concentrations. 
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exacerbations are associated with viral infections in up 

to one-half of COPD cases [29, 30]. Viral infections 

induce a rapid and potent inflammatory response in 

different cell types, such as macrophages, fibroblastoid 

cells, and monocytes that is mediated by an early 

release of inflammatory cytokines, such as TNF-α, IL-6, 

and IL-8, and secretion of RANTES. Accumulating 

evidence shows that ligand binding to CCR1 activates 

intracellular signaling, leading to cytokine secretion, 

activation of endocytosis, and clearance of bacteria, 

environmental particles, and DNA oligonucleotides  

[10, 31, 32]. 

 

Alveolar macrophages (AM)s are believed to play a 

crucial role in the pathogenesis of COPD and are 

significantly increased in patients with COPD [33, 34]. 

 

 
 

Figure 6. mRNA expression of CCR1 and downstream pathways in CSE-induced MH-S cells. (A, C–E) The RT-qPCR results show 
that once the CCR1 mRNA expression is inhibited, the CCR1/JAK/STAT3/NF-κB mRNA expression decreased significantly in CSE-induced MH-S 
cells, (B, F) but not the RANTES and TLR-4 mRNA expression.  
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AMs release inflammatory mediators, including TNF-α, 

IL-1β, and IL-6 after CSE stimulation. Alveolar 

destruction and prolonged lung inflammation occur via 

these mediators. Additionally, CCR1 is a macrophage 

scavenger receptor that recognizes and clears potential 

COPD exacerbating pathogens, such as modified lipids, 

apoptotic cells, inhaled particles, and microorganisms 

[35, 36]. 

In this study, the basal levels of TNF-α and IL-8 were 

elevated in the peripheral blood specimens of patients 

with COPD compared with controls. These results are 

consistent with previous studies that report an increase 

in systemic and airway cytokines in patients with COPD 

[37]. However, to the best of our knowledge, we 

showed that the basal levels of CCR1 were elevated in 

the bronchial mucosa of patients with COPD.  

 

 
 

Figure 7. Protein expression of CCR1 and downstream pathways in CSE-induced MH-S cells. (A, C–E) The western blot results 
show that once the CCR1 protein expression is inhibited, the CCR1/JAK/STAT3/NF-κB protein expression decreases significantly in CSE-
induced MH-S cells, (B, F) but not the RANTES and TLR-4.  
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Further, we previously found that expression of CCR1 

increased after CSE exposure in MH-S mouse AMs. 

Our data implied that chronic cigarette smoke exposure  

may be associated with high levels of CCR1 found in 

AMs of patients with COPD, and excessive CCR1 

activation in patients with COPD could provoke a 

dramatic increase in cytokine secretion via 

JAK/STAT/NF-κB signaling, which is not only 

effective in facilitating viral clearance but may also 

further contribute to the exaggerated inflammatory 

response. However, we found that patients with COPD 

presented with more severe infections and lung 

inflammation on exacerbation. We speculated that the 

reason for this could be due to enhanced CCR1 

expression under conditions in which the function of 

AMs may be deficient in patients with COPD. This 

scenario could result in an ineffective clearance of viral 

infections, under conditions in which the inflammatory 

response is sustained. Clearly, these mechanistic 

possibilities require further empirical research focused 

on the involved molecular mechanisms. 

 

Additionally, strong correlations between the CCR1 

mRNA levels, proinflammatory cytokine levels, and 

severity of dampened lung function were observed in 

patients with COPD. Furthermore, we observed 

significant negative correlations between the CCR1 

mRNA levels and FEV1%pred in patients with COPD, 

and a significant positive correlation between the CCR1 

mRNA expression levels and the IL-8 and TNF-α 

levels. Overall, these results seem to support the notion 

that CCR1 could be associated with reduced lung 

function and permanent stimulation of proinflammatory 

cytokines that are crucial in COPD progression.  

 

There were some limitations of the study. We utilized a 

murine macrophages in vitro study; therefore, whether 

the results can be extrapolated to humans remains 

unknown. However, our study illustrated the effect of 

CS-induced lesions on CCR1 expression and the 

JAK/STAT/NF-κB pathway. in an animal model is 

required to elucidate the role played by the expression 

of CCR1 in the progression of COPD. 

 

The results of our study indicate that CCR1 is 

upregulated in patients with COPD, and that enhanced 

CCR1 expression may be related to high expression 

levels of inflammatory cytokines. Importantly, 

 

 
 

Figure 8. Cytokine secretion in cellular supernatant. (A–C) The CCR1 positive expression may promote the secretion of TNF-α, IL-6, and 
MIP-1β in cellular supernatant, but these cytokine secretions were also increased in CSE-induced MH-S cells although CCR1 mRNA expression 
was inhibited. (D) However, the concentration of INF-β in cellular supernatant is not correlated with CCR1 positive expression or CSE 
stimulation. 
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expression of CCR1 expression negatively correlate 

with FEV1%pred, an indication that CCR1 may also 

play a critical role in the progression of COPD. In 

addition, this identifies a new target in which novel 

therapies could be developed to modulate the severity of 

viral-induced responses in clinical settings. Under-

standing the molecular mechanism may help develop 

novel methods for the treatment of COPD. 
 

MATERIALS AND METHODS 
 

Chemicals and reagents 
 

All chemicals (except for antibodies and antagonists) 

were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). CCR1 antagonist BX417 was purchased from 

Enzo (Life Sciences, USA). Mouse anti-Rabbit IgG 

monoclonal antibody (HRP- or FITC- conjugated) and 

goat anti-mouse IgG monoclonal antibody (HRP-

conjugated) were purchased from Abcam (Cambridge, 

MA, USA). Primary antibodies against CCR1, JAK2, 

RANTES, STAT3, NF-κ B p65, TLR4, and β-actin 

were purchased from Cell Signaling (Beverly, MA, 

USA). Lipofectamine 2000 was purchased from 

Invitrogen (Carlsbad CA, USA). CCR1 siRNA and 

siRNA negative control were purchased from Ambion 

(Life technology, Foster City, CA, USA). 
 

Participant selection 
 

We obtained endobronchial biopsies (15 patients with 

COPD and 10 non-COPD control participants) from the 

Respiratory Ward at Jiading Central Hospital. In 

addition, peripheral blood was measured in 35 patients 

with COPD and 16 non-COPD control participants. All 

the samples were from clinically stable patients, and 

endobronchial biopsy and peripheral blood for the 

patients and controls were completely different. The 

characteristics of the participants are shown in Table 1. 

 

Immunohistochemical analysis 
 

Immunohistochemistry was conducted to analyze the 

expression and distribution of CCR1 in bronchial 

tissues of patients with COPD and controls. Briefly, 

fixed specimens of the lung tissues (endobronchial 

biopsies) were embedded in paraffin and sectioned into 

slices 5 µm in thickness, then dewaxed in xylene and 

rehydrated. Endogenous peroxidases were inhibited 

with 0.5% hydrogen peroxide in methanol for 10 min, 

followed by overnight incubation at 4°C with a rabbit 

polyclonal IgG antibody against CCR1. Immuno-

detection was performed with diaminobenzidine, bio-

tinylated goat anti-rabbit IgG reagent, and horseradish 

peroxidase (HRP) (1:5000, Sigma-Aldrich). After being 

washed 3 times for 10 min with phosphate buffered 

saline, these sections were incubated with streptavidin 

conjugated with HRP at 37°C for 30 min. The sections 

were incubated in 3, 3’-diaminobenzidine tetrahydro-

chloride (DAB) for 3 min, then viewed under a light 

microscope at 400× magnification. The slides were 

coded and analyzed by an observer without prior 

knowledge of the experimental procedures. For each 

lung tissue specimens, a section was randomly chosen 

and 5 fields were randomly selected from each section. 

The Image Pro Plus 6.0 system (Media Cybernetics, 

MD, USA) was used to detect the integral optical 

density (IOD) of positively stained sections (brown 

staining). The software measurement of the positively 

stained area containing CCR1 was used to calculate 

positive immunostaining (IOD /entire positively stained 

area). All data from each group were collected at the 

same time under the same conditions. 

 

Immunofluorescence analysis 

 

The sections were cut with 4 μm thickness from frozen 

endobronchial biopsies using a freezing microtome 

(CM1520; Leica Biosystems, Shanghai, China) and kept 

at room temperature for 30 min. The sections were then 

washed with PBS for 5 min three times, incubated for 5-

10 min in 3% H2O2 to eliminate endogenous peroxidase 

activity, followed by washing with PBS for 5 min twice, 

and incubated for 1 h with a blocking solution (10% 

goat serum). Next, the sections were incubated for 30 

min with rabbit polyclonal anti-CCR1 antibody, then 

incubated with FITC-conjugated goat anti-rabbit IgG 

antibody (1:500; Proteintech, Rosemont, IL, USA) for 

30 min at 37°C. Following nuclear staining with DAPI 

(1:1000; Thermo Fisher Scientific) the sections were 

observed and analyzed using a fluorescence microscope 

(Nikon Eclipse TI; Nikon, Tokyo, Japan).  

 

RNA extraction and real-time PCR 

 

Total RNA from peripheral blood and bronchial tissues 

were extracted using RNeasy kit (Qiagen, Valencia, 

CA, USA), and total RNA from MH-S cells was 

extracted using TRIzol reagent (Thermo Fisher 

Scientific), according to the manufacturer’s instructions. 

Single-strand cDNA was synthesized for each sample 

with oligo (dT) as the primer, using a RevertAid First 

Strand cDNA Synthesis Kit (Invitrogen) following the 

manufacturer’s protocol. Total RNA (500 ng) was used 

in a 7500 Fast Real-Time PCR System (Applied 

Biosystems, Foster City, CA, USA) with FastStart 

Universal SYBR Green (Roche, Indianapolis, IN, USA) 

after cDNA synthesis. The PCR conditions were as 

follows: initial denaturation at 50°C (2 min) and 95°C 

(10min), followed by 40 cycles of amplification at 95°C 

(30 s) and 60°C (30 s). Fold change of gene 
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Table 1. Participant profile.  

Characteristics Control COPD  P-value 

Endobronchial biopsies  N=10 N=12  

  Age (year)  64.75±5.8 67.13±3.9 0.166 

  Sex (male:female)  8:2 11:1 0.571 

  FEV1%predicted 92.44±6.52 41.94±6.12 <0.01 

  FEV1/FVC 89.5±6.02 56.95±3.45 <0.01 

  Smoking status    

    Never 10 1  

    Former 0 2  

    Current 0 9  

    Pack-years 0 37.67±6.37  

Peripheral blood N=16 N=35  

  Age (year)  70.88±6.48 72.61±5.23 0.313 

  Sex (male:female)  13:3 33:2 0.146 

  FEV1%predicted 81.47±5.73 43.23±5.88 <0.01 

  FEV1/FVC 85.69±4.14 51.68±5.25 <0.01 

  Smoking status    

    Never 16 2  

    Former 0 5  

    Current 0 28  

    Pack-years 0 42.27±3.12  

Data are represented as (mean ± SD) Abbreviations: SD, standard deviation; FEV1, forced expiratory volume in 1 second; FVC, 
forced vital capacity. 
 

Table 2. Primer sequences for real-time PCR. 

Name Primer Sequence Size 

Forward 5‘- TCAAGAAGGTGGTGAAGCAGG -3’ 

Reverse 5‘- TCAAAGGTGGAGGAGTGGGT -3’ 

Forward 5‘- CAGCCTTCACTTTCCTCACG -3’ 

Reverse 5‘- AACGGACAGCTTTGGATTTCTT -3’ 

Forward 5‘- ATGGGTGTGAACCACGAGA -3’     

Reverse 5‘- CAGGGATGATGTTCTGGGCA -3’ 

Forward 5‘- AGTGAGAAGAAGGTCAAAGCCG -3’  

Reverse 5‘- GTTGGTCCACAGAGAGGAAGGG -3’ 

Forward 5‘- CACCGGATTGAAGAGAAGCG -3’     

Reverse 5‘- AAGTTGATGGTGCTGAGGGA-3’ 

Forward 5‘- AGTGGCGGCATGATTTTGTT -3’  

Reverse 5‘-GCTCGAACGCACTTTGGTAA -3’ 

Forward 5‘-GACCCGCCAACAAATTAAGA -3’     

Reverse 5‘- TCGTGGTAAACTGGACACCA -3’ 

Forward 5‘-TGCTGCTTTGCCTACCTCTC-3’  

Reverse 5‘-TTGAACCCACTTCTTCTCTG-3’ 
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expression was calculated by the 2−ΔΔCt method relative 

to the internal reference gene (GAPDH [glyceraldehyde 

3-phosphate dehydrogenase]). The sequences of all 

primers are shown in Table 2. Fold change of the gene 

expression was calculated by 2−ΔΔCt relative to the 

internal reference gene (GAPDH). The experiments 

were repeated at least 3 times. 

 

Cell line and CSE prepared 

 

The MH-S mouse AM cell line was obtained from the 

Cell Collection and Research Center of the Chinese 

Academy of Sciences. The MH-S cells were propagated 

in RPMI 1640 (Gibco) supplemented with 10% FBS, 

100 U/ml penicillin, and 100 μg/ml streptomycin in a 37 

°C 5% CO2 incubator. CSE was prepared in a manner 

similar to that in the previous study [38, 39]. Briefly, 

rubber tubing connected each cigarette to glass tubing 

submerged in the media (RPMI 1640) at the bottom of a 

vacuum filtration flask. Once the cigarette was lit, a 

vacuum drew cigarette smoke through the RPMI 1640, 

and deposited soluble components of the smoke into 

solution. The CSE (100%) was prepared by bubbling 

smoke from 10 cigarettes in 500 ml of RPMI 1640 at a 

rate of 0.2 cigarette/min. The pH of the CSE was 

adjusted to 7.4 and sterile-filtered through a 0.22-μm 

filter. The CSE was always prepared fresh on the day of 

the experiment. All the experimental conditions were 

optimally chosen based on the results of our preliminary 

experiments. 

 

Plasmids and siRNA transfection 
 

Plasmids and siRNA transfection in the MH-S cells was 

performed using LipofectamineTM 2000 (Invitrogen; 

Thermo Fisher Scientific, Inc.), according to the 

manufacturer's protocol. In brief, 10 ul siRNA (20 uM) 

or 4 ug plasmids were diluted in 100 ul opti-MEM 

(Gibco), and 5 ul LipofectamineTM 2000 was diluted in 

100 ul opti-MEM, then mixed to make a 200 ul 

transfection diluent. The transfection diluent was added 

to the MH-S cells following 24 h cell adaptation on 6-

well plates (5x105 cells/well), in a 37 °C 5% CO2 

incubator. The siRNA sequence was 5'-

GCAGCAUAGGAGGCUUCAATTUUGAAGCCUCC

UAUGCUGCTT-3'. 

 

Cytokine enzyme-linked immunosorbent assays 

 

Cytokine concentrations in cell culture supernatant and 

serum were determined using DuoSet ELISA kits (R&D 

Systems, Minneapolis, MN, USA), according to the 

manufacturer’s instructions. In brief, the standard was 

diluted; then the samples, standards and blank were 

added to the wells of the plate and incubated for 1 h at 

37 °C. The liquid was discarded; the plate was washed 5 

times and patted dry. Chromogenic reaction reagent was 

added and incubated in the dark for 15 min at 37 °C. 

Finally, stop solution was added, and the absorbance at 

450 nm was measured within 10 min. Each experiment 

was performed in triplicate. 

 

Western blot 
 

All samples were lysed in 50 μL of lysis buffer (10 mM 

HEPES, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 

0.5% NP-40, 1 mM DTT, and protease inhibitors). The 

lysates were incubated on ice for 30 min with vortexing 

every 5 min and then centrifuged at 12, 000 g for 15 

min at 4°C. The supernatant was collected as protein 

samples. Protein concentrations (20 µL) were measured 

using a bicinchoninic acid assay kit (Thermo Fisher) 

according to the manufacturer’s protocol. Equal 

amounts of protein (30 µg) were subjected to 10% 

sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis. Gels were run at 80 V for 30 min, 

followed by 120 V for 1 h, before being transferred to a 

polyvinylidene fluoride membrane (Millipore, 

Burlington, MA, USA). After blocking with PBS 

containing 5% nonfat milk for 2 h at room temperature 

(25°C), the product was incubated overnight at 4°C 

either with antibodies (diluted 1:1000) against CCR1, 

JAK2, RANTES, STAT3, NF-κ B p65, TLR4 or β-

actin. The membrane was washed 3 times for 5 min 

with 15 mL of Tris-buffered saline and Tween 20, and 

then incubated with horseradish peroxidase-conjugated 

goat anti-rabbit IgG antibody (1:2000; Sigma, Welwyn 

Garden City, UK) for 1 h at room temperature (25°C). 

After washing, 1 mL of a chemiluminescent substrate 

(Thermo Fisher) was added to the membrane. The 

signal was detected and quantified with an enhanced 

chemiluminescence system (Image Quant LAS-4000 

MINI; GE Healthcare Bio-Sciences, Pittsburgh, PA, 

USA). The signals specific for proteins in the same lane 

on the gel were analyzed, which were normalized to  

β-actin. 

 

Statistical analysis 
 

Results are presented as mean ± standard error of the 

mean (SEM), if not stated otherwise. A two-tailed t-test 

was performed for comparison of baseline 

characteristics and a one-way analysis of variance was 

used for multiple-comparison statistical analysis, 

followed by post hoc analysis of the Student–Newman–

Keuls q test between pairs of groups. A linear 

regression was adopted using Spearman’s rank 

correlation test. Statistical analysis was performed as 

described in each figure legend, using the GraphPad 

Prism 7.0 software (GraphPad Software, CA, USA), 

and a p-value of < 0.05 was considered statistically 

significant. 
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