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INTRODUCTION 
 

Excessive glucose intake is considered an independent 

risk factor for the development of obesity and diabetes. 

The primary complications of diabetes or obesity 

include diabetic cardiomyopathy, neuropathy, 

hyperglycemia-related kidney damage, retinopathy, and 

food damage. Among these, cardiovascular 

complications account for most of diabetes-related 

deaths [1]. Despite numerous efforts into advancing 

therapeutic approaches for diabetes, anti-diabetic 

medications do not seem to prevent the cardiovascular 

damage induced by diabetes. Recently, Exenatide, a 

glucagon-like protein-1 receptor agonist, was clinically 

used to treat patients with type-2 diabetes. While 

cardioprotective effects have been reported for 

Exenatide, the underlying molecular mechanisms 

remain unclear [2, 3]. 

 

Protein peroxidation promotes diabetes [4, 5]. 

Glycosylative, phosphorylative, and oxidative  

modifications of cytoplasmic proteins, induced by 

chronic hyperglycemia, change the normal patterns of 

protein folding and degradation in cells [6–8]. 

Additionally, abnormal post-transcriptional modifications 

correlate with disturbed glucose metabolism. In the 

cytoplasm, the endoplasmic reticulum (ER) is the main 

location for protein synthesis, modification, transport and 

release [9, 10]. Abnormal protein modifications seem to 

occur in the ER, followed by accumulation of unfolded 

proteins in the ER lumen. This process is termed “ER 

stress” and is regulated by PERK, ATF6 and IRE1 [11]. 

Although ER stress contributes to the development of 

diabetic cardiomyopathy [12, 13], there is no data 

explaining Exenatide’s effects on ER stress under 

hyperglycemia stress. 

 

ER stress contributes to cellular inflammation and death 

through distinct signaling pathways [14, 15]. NF-κB 

promotes inflammation by upregulating the 

transcription of pro-inflammatory factors [16]. In 

addition, NF-κB may promote ER stress by 
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ABSTRACT 
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upregulating the transcription and activity of proteins in 

the JNK pathway [17]. Furthermore, NF-κB is also a 

downstream effector of hyperglycemia and increased 

NF-κB activity has been noted in hyperglycemia-treated 

cardiomyocytes [18, 19]. Therefore, this suggests that 

NF-κB may promote ER stress induced by 

hyperglycemia. Accordingly, here we tested the 

hypothesis that Exenatide attenuates hyperglycemia-

related cardiomyocyte damage by inhibiting ER stress 

and the NF-κB signaling pathway. 

 

RESULTS 
 

Exenatide improves cardiomyocyte viability and 

reduces inflammation response induced by 

hyperglycemia 

 

In this study, hyperglycemia was induced in 

cardiomyocytes [20], which were then treated with 

Exenatide. The viability of cardiomyocytes was 

determined through CCK8 assay. As shown in Figure 

1A, cardiomyocyte viability was reduced in response to 

hyperglycemia whereas exenatide treatment improved it. 

In agreement with this effect, we also observed an 

increase in TUNEL-stained apoptotic cells after 

hyperglycemia treatment (Figure 1B, 1C). Exenatide 

treatment reduced the ratio of TUNEL-positive cells, 

reconfirming that such treatment increases 

cardiomyocyte viability and survival. In addition to cell 

death, we also assessed the inflammation response by 

measuring the levels of pro-inflammatory factors. As 

shown in Figure 1D, 1E, compared to the control group, 

MCP1 and TNFα transcription was elevated in 

hyperglycemic cells. On the other hand, Exenatide 

treatment inhibited the upregulation of such pro-

inflammatory factors, suggesting that Exenatide inhibits 

hyperglycemia-induced inflammation in cardiomyocytes. 

 

Exenatide treatment enhances the function of 

hyperglycemia-treated cardiomyocytes 

 

We isolated single cardiomyocytes after hyperglycemia 

treatment and assessed their contractile properties [21, 

22]. As shown in Figure 2A–2D, the peak shortening  

 

 
 

Figure 1. Exenatide attenuates hyperglycemia-induced cell apoptosis and inflammation. (A) CCK8 assay for cell viability. (B, C) 
TUNEL staining for apoptotic cells. (D, E) qPCR assay for MCP1 and TNFα transcription. *P<0.05. 
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rate was downregulated in the hyperglycemia group. 

Similarly, the maximal velocity of shortening (+dL/dt) 

and maximal velocity of re-lengthening (−dL/dt) were 

also impaired by hyperglycemia in cardiomyocytes. The 

time-to-peak shortening (TPS) was elevated in 

hyperglycemic cardiomyocytes when compared to 

controls. Therefore, this indicates that cardiomyocytes 

contraction and relaxation functions are compromised 

by hyperglycemia, whereas Exenatide treatment 

restored the peak shortening rate, +dL/dt, −dL/dt and 

TPS (Figure 2A–2D). This suggests that cardiomyocyte 

function could be sustained by Exenatide under 

hyperglycemic stress. At the molecular level, 

cardiomyocyte contractility is controlled by cytoskeletal 

proteins such as Myosin. Interestingly, Myosin levels 

were reduced in hyperglycemic cardiomyocytes 

whereas Exenatide treatment increased them, thereby 

rescuing contractile functions. 

 

 
 

Figure 2. Exenatide treatment improves cardiomyocytes function under hyperglycemia stress. (A–D) Signal of cardiomyocyte 
contractile parameters measured in response to Exenatide treatment. (E, F) Myosin expression determined through immunofluorescence. 
*P<0.05. 
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Exenatide inhibits ER stress and the NF-κB 

signaling pathway 

 

As discussed above, hyperglycemia-induced 

cardiomyocyte damage is associated with ER stress and 

NF-κB signaling pathway activation [23, 24]. 

Accordingly, we observed alterations in ER stress and 

NF-κB activation in response to Exenatide treatment. 

As shown in Figure 3A–3C, the transcriptions of PERK, 

ATF6 and IRE1 were increased in response to 

hyperglycemia treatment, suggesting an activation of 

ER stress. In addition, we also found that the activity of 

NF-κB was also augmented in hyperglycemic cells 

(Figure 3D). Interestingly, Exenatide treatment reduced 

the levels of PERK, ATF6 and IRE1 (Figure 3A–3C), 

suggesting that Exenatide inhibits ER stress. In 

addition, NF-κB activity was also inhibited by 

Exenatide treatment (Figure 3D). We also observed an 

upregulation in NF-κB expression in hyperglycemic 

cells through immunofluorescence assays while 

Exenatide treatment reduced NF-κB expression to near-

normal levels (Figure 3E, 3F). Overall, our results 

indicate that Exenatide regulates inhibits ER stress and 

the NF-κB signaling pathway.  

 

 
 

Figure 3. Exenatide reduces ER stress and the activation of NF-κB signaling pathway. (A–C) qPCR assay for ATF6, IRE1 and PERK 
transcription. (D) ELISA assay for NF-κB activity. (E–F) Immunofluorescence staining for NF-κB. *P<0.05. 
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Re-activation of the NF-κB pathway abolishes 

Exenatide-mediated ER stress inhibition 

 

To verify whether NF-κB pathway is required for 

Exenatide-induced ER stress protection [25], we added 

an agonist, Betulinic acid (BA), to activate the NF-κB 

pathway. Then, ER stress was analyzed again. As 

shown in Figure 4A–4C, ER stress markers were 

elevated in the hyperglycemia group compared to 

controls. Exenatide treatment prevented the 

upregulation of ER stress-related markers whereas these 

effects were not evident in BA-treated cardiomyocytes. 

Thus, our results indicate that inhibition of the NF-κB 

pathway by Exenatide is required for ER stress 

inhibition. Additionally, we also measured the activity 

of caspase-12 and CHOP. As shown in Figure 4D–4F, 

we observed increased caspase-12 and CHOP activity in 

the hyperglycemia group. Although Exenatide treatment 

inhibited caspase-12 and CHOP activity, this action is 

not apparent in BA-treated cardiomyocytes. Altogether, 

our results confirm that Exenatide inhibits ER stress 

through the NF-κB pathway. 

 

 
 

Figure 4. Re-activation of NF-κB promotes cardiomyocyte damage. (A–C) qPCR assay for ATF6, IRE1 and PERK transcription in the 
presence of BA to activate NF-κB. (D) ELISA assay for caspase-12 activity. (E, F) Immunofluorescence staining for CHOP. *P<0.05. 
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Re-activation of the NF-κB pathway promotes 

cardiomyocyte inflammation and death 

 

Next, we sought to determine whether the NF-κB 

pathway is involved in Exenatide-regulated 

cardiomyocyte death and inflammation [26]. First, 

cardiomyocyte viability, as evaluated through CCK8 

assay, was reduced after exposure to hyperglycemia 

treatment whereas Exenatide treatment restored 

cardiomyocyte viability in a NF-κB-dependent manner. 

Indeed, re-activation of the NF-κB pathway abolished 

the pro-survival effects of Exenatide on cardiomyocytes 

(Figure 5A). In addition to CCK8 assay, we also 

measured the activity of caspase-3, a critical regulator 

of cell apoptosis. As shown in Figure 5B, caspase-3 

activity was increased in the hyperglycemia group. 

Exenatide caused a decrease in caspase-3 activity 

whereas re-activation of the NF-κB pathway through 

supplementation with BA induced an activation of 

caspase-3 in Exenatide-treated cardiomyocytes. Overall, 

our results verified that NF-κB pathway inhibition 

accounts for Exenatide-mediated cardiomyocyte 

survival. In addition to cardiomyocyte viability, we also 

evaluated the inflammation response. Pro-inflammatory 

factors were upregulated in response to hyperglycemia 

treatment whereas Exenatide treatment inhibited the 

transcription of inflammatory factors (Figure 5C, 5D). 

Re-activation of the NF-κB pathway abolished 

Exenatide-mediated inflammation inhibition. Therefore, 

our data suggest that Exenatide also promotes 

cardiomyocyte viability and inhibits inflammation 

through the NF-κB pathway. 

 

DISCUSSION 
 

Diabetic cardiomyopathy is caused by chronic 

hyperglycemia stress. Cardiomyocyte apoptosis and 

microvascular damage are the primary factors 

promoting the development of diabetic cardiomyopathy 

[27]. The clinical features of diabetic cardiomyopathy 

include decreased cardiac output and limited cardiac 

relaxation. Additionally, cardiovascular disorders are 

the most dangerous complication for diabetic patients 

[28, 29]. More than 40% of patients with type-2 

diabetes will suffer from cardiovascular complications 

and more than half of those will die from diabetic 

cardiomyopathy. Although insulin administration can 

treat type-2 diabetes, its chronic use increases the risk of 

cancer. Furthermore, most patients often present 

hypoglycemia after insulin treatment, with no beneficial 

effects on diabetes-related cardiovascular 

complications. 

 

Exenatide is a recently developed drug to treat diabetes 

[30, 31]. The molecular mechanisms underlying 

Exenatide’s functions involve GLP-1 receptor 

activation, which promotes glucose utilization. 

Exenatide elicits only a low hypoglycemic response and 

cardiovascular benefits increase with extended use of 

the drug [32]. In this study, we investigated the 

mechanisms underlying Exenatide-mediated cardio-

protection in vitro. 

 

ER stress entails a series of protein modification and 

folding/unfolding events in response to abnormal 

quantities and decreased quality of proteins in the ER 

lumen [13, 33]. Although proteins are primarily 

translated from mRNA by ribosomes, the functional 

configurations and post-transcriptional modifications of 

many proteins are attained in the ER [34, 35]. After 

chronic hyperglycemia, the levels of glucose in the 

cytoplasm are high, contributing to protein degradation 

and oxidation. Therefore, ER stress is followed by 

abnormal protein accumulation [36, 37]. Our data here 

indicated that hyperglycemia treatment triggered ER 

stress, followed by cardiomyocyte dysfunction and 

 

 
 

Figure 5. Re-activation of NF-κB induces cardiomyocyte 
death and inflammation. (A) CCK8 assay for cell viability. (B) 
ELISA assay for caspase-3 activity. (C, D) qPCR assay for MCP1 and 
TNFα transcription. *P<0.05. 
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death. Interestingly, Exenatide treatment attenuated ER 

stress, thereby sustaining cardiomyocyte contractile 

functions and favoring cardiomyocyte survival [38, 39]. 

These results identified ER stress as a downstream 

target of Exenatide treatment. Indeed, protection of the 

ER against abnormal protein modifications promotes 

cardiomyocyte viability [40, 41]. 

 

In our study, we found that inflammation and ER stress 

were under the control of the NF-κB pathway. In 

contrast, hyperglycemia-activated NF-κB was inhibited 

by Exenatide. These results demonstrate that Exenatide 

exerts protective effects on cardiomyocytes through the 

NF-κB signaling pathway, in agreement with previous 

studies [42, 43]. Indeed, such studies have shown that 

inhibition of NF-κB prevents heart inflammation [44, 

45] while improving oxidative stress and countering the 

downregulation of anti-oxidative factors [46, 47]. In 

addition, myocardial damage induced by a high-fat diet 

was also normalized by NF-κB inhibition [48]. The pro-

inflammatory role of NF-κB in cardiomyocyte damage 

has also been observed in myocardial ischemia-

reperfusion injury [49, 50]. 

 

While our observations will need to be validated in 

clinical settings, our results here demonstrated that 

Exenatide treatment inhibited inflammation and 

oxidative stress and improved viability in 

cardiomyocytes during hyperglycemia stress. 

Specifically, Exenatide inhibited the NF-κB pathway 

and attenuated ER stress, supporting cardiomyocyte 

survival. These findings highlight NF-κB as a potential 

therapeutic target in the treatment of diabetes-induced 

cardiomyopathies. 

 

MATERIALS AND METHODS 
 

Cell culture 
 

We cultured H9C2 cells, as previously described [51]. 

Hyperglycemia stimulation was mimicked as previously 

reported [52]. In brief, H9C2 cells were cultivated in 

DMEM medium supplemented with EGF Single Quots 

(PELOBiotech GmbH, Martinsried, Germany) plus 10% 

FBS and used until passage five. Hyperglycemia stress 

was induced by incubating the cells in 25 mmol/L high 

glucose medium for 12 h. The cells were treated with 

exenatide (10 μM) and incubated for 12 h before high-

glucose treatment. Betulinic acid (BA) at 5 nM was added 

to activate the NF-κB signaling pathway [53]. 

 

Immunoblotting 

 

Proteins were extracted from cell lysates (McA or 

primary mouse hepatocytes) and tissue lysates (liver) in 

RIPA buffer (50 mM Tris pH 7.4, 150 mM NaCl, 

0.25% sodium deoxycholate, 1% Nonidet P-40) [54]. 

Total protein amounts were quantified using Bio-Rad 

DC assay kit (Bio-Rad, Hercules, CA). In general, 20-

80 µg of protein homogenate were separated by SDS-

PAGE and subsequently electroblotted onto PVDF 

membranes (Bio-Rad). Membranes were blocked with 

fat-free milk powder (5% w/v) dissolved in Tris-

buffered saline (15 mM NaCl and 10 mM Tris/HCl, pH 

7.5) containing 0.01% Tween 100 (TBS-T), washed, 

and incubated overnight at 4 °C with the appropriate 

primary antibody (see above) [55]. Infrared fluorescent-

labeled secondary antibodies were prepared at 1:15,000 

dilution in TBS-T with 5% fat-free milk powder and 

incubated for 1 h at room temperature. Protein band 

quantification was performed using ImageJ (NIH, 

Bethesda, MD) [56]. 

 

Immunofluorescence and confocal microscopy 

 

Cells were grown on fibronectin-coated glass coverslips. 

After administering the corresponding treatments, the 

media were removed and cell monolayers were washed 

with ice-cold PBS. The cells were then fixed with 7.5% of 

neutral-buffered formalin solution containing 0.025% of 

glutaraldehyde for 10 min at room temperature [57]. The 

specimens were then washed and permeabilized with PBS 

containing 0.1% Triton (PBS-T) or 0.1% digitonin, and 

blocked for 1 h with PBS supplemented with 5% bovine 

serum albumin and 2% goat serum (Sigma) [58]. 

Afterwards, specimens were incubated overnight in 

blocking buffer containing the corresponding primary 

antibodies at a 1:200 concentration. Specimens were 

washed and incubated for 1 h at room temperature with 

the corresponding secondary antibodies (see above) at a 

1:400 dilution in blocking buffer. Secondary antibodies 

conjugated to Alexa fluorophores were purchased from 

Molecular Probes (Life Technologies). DAPI was used to 

stain nuclei [59]. For some co-localization experiments, 

when two primary antibodies were raised in rabbits, one 

of the primary antibodies was detected using the regular 

procedure, while the second primary antibody was 

conjugated with Alexa fluorophore 488 using a 

commercially available kit (Life Technologies) [60]. 

Confocal images were acquired with a Leica TCS SP5 II 

confocal microscope by using a 405 diode laser 

(excitation 405 nm), a multiline argon laser (excitation 

488 nm), and two HeNe lasers (excitation 543 and 633 

nm) with a 40× Apochromat, numerical aperture 1.25 – 

Oil objective and with a 63× Apochromat, numerical 

aperture 1.40- Oil objective [1]. 

 

RNA isolation and Quantitative Real Time (QRT)-

PCR analysis 
 

RNA was isolated from cultured cells using TRIzol 

Reagent following the manufacturer’s instructions (Life 
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Technologies) [61, 62]. Two μg of total RNA were 

reverse-transcribed to cDNA using the Verso cDNA 

Synthesis kit (ThermoFisher Scientific). QRT-PCR was 

carried out with TaqMan chemistry and probes (Applied 

Biosystems). Gene expression analyses were performed 

with the ABI Step One Plus QRT-PCR machine 

(Applied Biosystems) [63]. 

 

Mitochondrial membrane potential assay 

 

Mitochondrial membrane potential in cells was 

measured by JC-1 fluorescence intensity. In brief, cells 

were plated at 50,000 cells/well in a 96-well black 

bottom dish. After hyperglycemia stimulation, cells 

were incubated with 10 μM JC-1 and DAPI for 30 min 

in the dark [64]. Then, JC-1 and Hoechst (360/450) 

fluorescence intensity was measured using a 

SpectraMax3 plate reader (Molecular devices, 

Sunnyvale, California). The JC-1/DAPI fluorescence 

ratio is used to determine the mitochondrial membrane 

potential [65]. 

 

Oxidative stress and superoxide production 
 

Mitochondrial ROS production was measured with a 

fluorometric assay, as described [66]. Activity of 

aconitase was measured in isolated mitochondria using a 

spectrophotometric assay, and tissue ROS levels were 

measured by the conversion of nonfluorescent 2’,7’-

dichlorofluorescein-diacetate (DCFDA) to the highly 

fluorescent 2’,7’-dichlorofluorescein (DCF), as described 

before. In cells, ROS levels were measured by CellRox 

reagent in accordance with the manufacturer’s instructions 

(Thermo Fisher Scientific, Waltham, MA) [67]. 

 

Statistical analysis 
 

All experiments were conducted in at least triplicate. Data 

are expressed as the mean ± SEM. Statistical differences 

were analyzed using GraphPad Prism software (GraphPad 

Software Inc., San Diego, CA). We tested for normality in 

the distribution of the sample groups using the 

D’Agostino-Pearson omnibus and the Shapiro-Wilk 

normality tests [68]. Statistical significance was then 

determined by unpaired two-tailed Student’s t-test with a 

threshold of significance set at p<0.05. 
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