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INTRODUCTION 
 

Bladder urothelial cancer (BUC) is one of the most 

common genitourinary carcinomas in China [1]. It is also 

a significant cause of mortality in Western countries  

[2, 3]. BUC is categorized as muscle-invasive bladder 

cancer (MIBC) and non–muscle-invasive bladder cancer 

(NMIBC). Despite advances in surgical techniques and 

the development of novel drugs, NMIBC (stage Ta-1) 

with high morbidity tends to recur, whereas MIBC  

(stage T2-4) tends to metastasize within 2 years [3, 4]. 

Thus, it is important to identify the molecular mechanisms 

underlying tumorigenesis and metastasis of BUC so that 

new therapeutic targets and modalities can be developed 

to prevent and treat BUC [5]. BUC is thought to arise as 

a result of  an  accumulation  of  genetic  alterations.  At  

 

present, most studies on the etiology of BUC have 

focused on genetic transformation. Many oncogenes, such 

as C-myc [6], Bcl-2 [7], FGFR3 [8], and c-erbB-2 [9], 

have been found to be associated with BUC prognosis and 

progression [10]. However, the development of BUC is a 

complicated pathological process that requires further 

study. 

 

Protein arginine methyltransferase 5 (PRMT5) is the 

predominant type II methyltransferase and is involved 

in numerous cellular and biological processes, such as 

Golgi homeostasis, nucleic acid metabolism, 

transcriptional regulation, cell cycle regulation, and 

ribosome biosynthesis [11, 12]. PRMT5 is a multi-

functional gene with important functions in cells. 

Recent reports indicate that PRMT5 is overexpressed in 
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BUC. The in vitro and in vivo phenotypic experiments found that downregulated expression of PRMT5 in BUC 
cells inhibits BUC cell proliferation and aggression. In addition, gene set enrichment analysis demonstrated that 
PRMT5 knockdown leads to cell cycle G1/S arrest, deactivation of Akt, and mTOR phosphorylation in BUC cells. 
These results suggest that PRMT5 could be used as a potential molecular marker for BUC in the future. 
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a variety of human malignant tumors, suggesting  

that PRMT5 overexpression is an important high-risk 

factor and determinant of tumor properties. PRMT5  

has been found to be upregulated in malignant tumors, 

such as gastric, lung, and prostate cancers [13–16].  

One study demonstrated that overexpression and 

increased intranuclear accumulation of PRMT5 through 

methylation of Zn-finger protein were associated with a 

higher risk of defects in alternative splicing, leading to 

immortalized breast epithelial cells in humans [17]. The 

PRMT5 gene is a key regulator of amplification, 

migration, and metastasis of malignant tumors and 

participates in regulation of the cell cycle and 

autophagy. However, evidence is lacking regarding the 

relationship between PRMT5 expression and BUC. 

 

Few diagnostic and prognostic genetic markers have 

been verified in BUC. Based on previous studies, this 

study was designed to detect PRMT5 gene expression in 

BUC and to assess its clinical significance. In addition, 

we studied the effect of PRMT5 on the proliferation and 

aggression of BUC. 

 

RESULTS 
 

PRMT5 is upregulated in BUC 
 

We performed bioinformatics analysis in three BUC 

data sets from the Oncomine database and found that 

PRMT5 was upregulated in superficial or infiltrating 

BUC tissue compared with nontumor bladder tissues 

(Figure 1A–1D). On further bioinformatics analysis 

using The Cancer Genome Atlas (TCGA) database, we 

confirmed that PRMT5 expression was higher in BUC 

tissue than in matched nonneoplastic bladder tissue 

(Figure 1E). In addition, in the TCGA database, high 

PRMT5 expression was associated with poor overall 

and progression-free survival in BUC patients (Figure 

1F, 1G). To verify the database results, we determined 

the expression of PRMT5 mRNA in a cohort of 132 

pairs of BUC and adjacent nontumor bladder tissues 

using quantitative and real-time polymerase chain 

reaction (qRT-PCR). We found that PRMT5 levels were 

significantly higher in BUC samples than in normal 

control samples (Figure 2A). In addition, PRMT5 

protein was found to be overexpressed in BUC samples 

on western blotting assay and immunohistochemistry 

(Figure 2B–2D). Thus, we next focused on exploring 

the potential role of PRMT5 in BUC. 
 

PRMT5 upregulation is correlated with poor 

prognosis in BUC patients 
 

Figure 2E shows that patients with high PRMT5 

expression had a worse prognosis compared with 

patients with low expression (5-year overall survival 

rates, 33.3% vs 58.2%, respectively; P = 0.0106). The 

Kaplan-Meier curves also demonstrate poorer overall 

survival of patients with high PRMT5 expression, 

compared with those with low expression, with MIBC 

(T2-4) (P = 0.0360), absence of lymph node metastasis 

(P = 0.0298), and high-grade tumors (P = 0.0426; Figure 

2F–2H). However, there was no significant association 

between PRMT5 expression and clinicopathologic 

parameters in BUC patients (Table 1). In addition, 

multivariate Cox proportional hazards regression 

analysis demonstrated PRMT5 upregulation to be an 

independent prognostic risk factor for worse survival of 

BUC patients (P = 0.012, Table 2). Thus, PRMT5 

upregulation is associated with poor prognosis in BUC. 

 

PRMT5 promotes proliferation, migration, and 

invasion of BUC cells 
 

We investigated the function of PRMT5 in BUC cells in 

vitro using western blotting and confirmed that the 

relative level of PRMT5 expression was downregulated 

in Biu87 and T24 cells by two specific siRNAs 

compared with that in the negative control group 

(Figure 3A). Cell proliferation was inhibited in cells 

with knockdown of PRMT5 as a result of siRNA. EdU 

assay was applied to explore the function of PRMT5 in 

promoting cell growth. There were significantly more 

EdU-positive T24 or Biu87 cells in the negative group 

than in the si-PRMT5 group after transfection of the 

indicated siRNA (Figure 3B). Next, the cell growth 

assay using cell counting kit-8 revealed that PRMT5 

knockdown significantly decreased the number of the 

two indicated BUC cell lines (P < 0.05, Figure 3C). In 

the colony formation assay, both T24-siRNA and 

Biu87-siRNA cells formed fewer and smaller colonies 

than the negative control cells (P < 0.05, Figure 3D). 

Similarly, gene silencing of PRMT5 also significantly 

reduced BUC cell invasion and migration abilities (P < 

0.05, Figure 3E, 3F). When we upregulated PRMT5 in 

the TCCsup cells (Figure 4A), the transfected TCCsup-

PRMT5 cells demonstrated a significantly higher 

proliferative capacity compared with the respective 

control cells (P < 0.05, Figure 4B, 4C). In addition, the 

transwell migration assay and the cell scratch assay, 

which were performed to evaluate the invasion and 

migration ability of the transfected TCCsup-PRMT5 

cells, indicated that PRMT5 significantly enhanced the 

migration capacity of BUC cells in vitro (P < 0.05, 

Figure 4D, 4E). These results suggest that PRMT5 

promotes cell proliferation, invasion, and migration in 

BUC in vitro. 

 

To confirm the effect of PRMT5 on tumor growth in 

vivo, a nude mouse subcutaneous xenograft tumor model 

was established. Western blotting identified the shRNA 

efficiency of PRMT5 downregulation at the protein level 
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Figure 1. PRMT5 expression in bladder cancer in the Oncomine and The Cancer Genome Atlas (TCGA) databases. (A–C) 
Comparison of the PRMT5 expression levels in the Dyrskjot Bladder 3 and Sanchez-Carbayo Bladder 2 data sets of the Oncomine database. 
The threshold: P value: 1E-4, fold change: 1.5, gene rank: 10%. (D) A median-ranked analysis of the Dyrskjot Bladder 3 (1, 2) and Sanchez-
Carbayo Bladder 2 (3) data sets from the Oncomine database. The colored squares revealed the median rank for PRMT5 across the three 
analyses (vs normal tissue). (E) Comparison of the PRMT5 expression level in bladder cancer and the normal tissue from the TCGA database. 
(F, G) Overall and progression-free survival times in bladder cancer patients with low versus high expression of PRMT5 assessed by Kaplan-
Meier analysis from the TCGA cohorts. SBC: superficial bladder cancer, IBUC: infiltrating bladder urothelial carcinoma. 
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(Figure 5A). As shown in Figure 5B, the subcutaneous 

xenografts in mice inoculated with T24-sh1 cells were 

smaller than those in the control group. This result was 

confirmed using hematoxylin and eosin staining. The 

weight and size of the tumors were significantly reduced 

in the T24-shRNA group compared with the negative 

control group (P < 0.05, Figure 5C–5E). 

PRMT5 affects cell cycle G1/S arrest and mTOR 

signaling pathway activity 

 

To investigate the biological pathway of PRMT5 in 

relation to BUC pathogenesis, gene set enrichment 

analysis (GSEA) was conducted using GSE133624. 

GSEA enrichment plots show a significant positive 

 

 
 

Figure 2. PRMT5 was upregulated and demonstrated prognostic significance in bladder cancer. (A) PRMT5 mRNA expression was 
significantly upregulated in bladder cancer tissue compared with that in adjacent normal tissues via qRT-PCR. (B) The PRMT5 protein level 
was upregulated in 11 pairs of bladder cancer tissues. (C) PRMT5 expression was upregulated in bladder cancer cell lines compared with 
immortalized human bladder epithelial SV-HUC-1 cells. (D) Representative images of immunohistochemistry of PRMT5 in bladder cancer 
tissues. (E) The Kaplan-Meier curve was applied to the survival analysis of bladder cancer patients with different PRMT5 expression levels 
from SYSUCC cohorts. (F–H) Positive correlation between overall survival and different PRMT5 expression levels from SYSUCC bladder cancer 
patients with muscle-invasive bladder cancer (F), absence of lymph node metastasis (G), and high-grade tumors (H). SYSUCC: Sun Yat-Sen 
University Cancer Center. 
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Table 1. The relationship between PRMT5 expression and clinicopathological characteristics in bladder cancer. 

Variables No. 
Expression of PRMT5 Level in BUC 

χ2 P value 
Low High 

Age (years)    0.158 0.691 

<65 71 28 43   

≥65 61 22 39   

Gender    0.789 0.374 

Male 108 39 69   

Female 24 11 13   

Tumor size (cm)    0.002 0.961 

<3 69 26 43   

≥3 63 24 39   

T classification    2.580 0.630 

Ta 6 3 3   

T1 22 7 15   

T2 25 8 17   

T3 44 20 24   

T4 34 11 23   

N classification    0.005 0.946 

Negative 84 32 52   

Positive 48 18 30   

Grade    0.168 0.681 

Low 19 8 11   

High/intermediate 113 42 71   

Statistically significant (P < 0.05). BUC: bladder urothelial cancer, T and N classification: TNM stage. 
 

Table 2. Univariate and multivariate analyses of clinicopathological characteristics for survival in patients with 
bladder cancer. 

Variables 
Univariate analysis  

P value 

Multivariate analysis 
P value 

HR (95% CI) 

Expression of PRMT5 0.014 2.434 (1.215-4.876) 0.012 

Low    

High    

Age 0.081 1.542 (0.896-2.653) 0.118 

<65 years    

≥65 years    

Gender 0.130   

Male    

Female    

Tumor size 0.169   

<3 cm    

≥3 cm    

T classification <0.001 1.576 (1.155-2.151) 0.004 

Ta    

T1    

T2    

T3    

T4    
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N classification 0.001 1.482 (0.797-2.755) 0.213 

Negative    

Positive    

Grade 0.097 1.209 (0.536-2.727) 0.674 

Low    

High/intermediate    

HR: hazard ratio, CI: confidence interval. Bold values are statistically significant (P < 0.05). 
 

 
 

Figure 3. Downregulated expression of PRMT5 inhibited the proliferation and aggressiveness of bladder cancer cells.  
(A) PRMT5 was efficiently knocked down in T24-siRNA and Biu87-siRNA cells. (B–D) Cell proliferation was determined by EdU assay, CCK-8 
assay, and colony formation assay of bladder cancer cells. (E, F) Cell invasion and migration capacities were determined using the transwell 
invasion assay and wound-healing assay for the indicated bladder cancer cells. Error bars show the standard error of the mean. siC: PRMT5-
siRNA/negative control; si-1: PRMT5-siRNA/#1; si-2: PRMT5-siRNA/#2. *P < 0.05, **P < 0.01. 
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correlation between cell cycle and mTOR signaling 

pathway and PRMT5 in BUC (Figure 6A, 6B). To 

confirm that PRMT5 promotes cell proliferation by 

regulating the cell cycle, flow cytometry was performed 

to determine the effect of PRMT5 on cell cycle G1/S 

arrest. The proportion of cells in the G0/G1 phase 

significantly decreased after treatment with PRMT5 

knockdown. This arrest corresponded with the observed 

result of proliferation and self-renewal, as shown in 

Figure 3. Furthermore, the G0/G1 phase increased  

in response to PRMT5 overexpression in BUC cells  

(P < 0.01, Figure 6C–6F). 

Hypophosphorylated retinoblastoma (Rb) protein is a 

crucial regulator of cell transit from the G1 to S phase 

[18–20]. We investigated the phosphorylation status of 

Rb in the depletion and overexpression of PRMT5. The 

decreased level of phosphorylated Rb in BUC was 

consistent with the observation of PRMT5 depletion, 

suggesting that PRMT5 affects the cell cycle in BUC by 

controlling Rb activation (Figure 6G). p27 inhibits 

cyclin E activity, which causes hyperphosphorylation of 

Rb proteins [21–23]. Therefore, we examined whether 

PRMT5 depletion increased the expression of p27 in 

BUC via western blot analysis (Figure 6G). 

 

 
 

Figure 4. Upregulated expression of PRMT5 promoted the proliferation and aggressiveness of bladder cancer cells.  
(A) Western blotting showed successful overexpression of PRMT5 in TCCsup cells. (B, C) Cell proliferation was promoted by the CCK-8 assay 
and the colony formation assay. (D, E) Cell invasion and migration of bladder cancer cells were detected using the transwell assay and the 
wound-healing assay. Error bars show the standard error of the mean. *P < 0.05, **P < 0.01. 
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Subsequently, we tested the impact of PRMT5 on the 

PI3K/Akt/mTOR pathway in BUC cells. Western blot 

analysis demonstrated that PRMT5 knockdown led  

to downregulation of PI3K, which deactivated Akt  

and mTOR phosphorylation. Conversely, PRMT5 

upregulation promoted PI3K, resulting in activation of 

Akt and mTOR phosphorylation (Figure 6H) 

 

DISCUSSION 
 

BUC is the seventh most common cancer in men 

worldwide. The TNM staging system is based on the 

extent of disease at presentation and clinicopathology 

and provides clinical prognostic indicators for BUC. 

However, patients with the same TNM stage and 

undergoing the same treatment display considerable 

variability in recurrence and survival [24]. Many BUC 

patients experience tumor recurrence and metastasis. 

Determination of a patient’s prognosis using molecular 

biomarkers before treatment may allow more effective 

use of adjuvant therapy, thus improving patients’ 

quality of life [25, 26]. Many novel oncogenes, such  

as chromosome 14 open reading frame 166 [27], 

trimethylation of lysine 27 on histone H3 [28], and 

maelstrom [5], promote malignant phenotypes in BUC. 

However, they are not precise enough to predict the 

patient’s prognosis.  

 

Many arginine and lysine methyltransferases have  

been reported in cancers. Arginine methylation is an 

important regulator of biological function, tumori-

genesis, and tumor progression [11, 14]. PRMT5 is the 

predominant type II methyltransferase and has a variety 

of functions. Together, these functions may contribute to 

increased tumorigenesis, leading to malignancies such as 

prostate, hepatocellular, and breast cancer and melanoma 

[12, 14]. PRMT5 and its substrate-binding partner 

WDR77 regulate alternative splicing through 

methylation of ZNF326 in breast cancer [17]. Up-

regulation of PRMT5 in glioblastoma cells increases 

their self-renewal capacity and proliferation through the 

PRMT5–PTEN molecular pathway [29]. These findings 

indicate that high PRMT5 expression promotes the 

proliferative and migratory processes of several types of 

solid cancer in humans. However, the role of PRMT5 in 

BUC oncogenesis had not been previously clarified. 

Thus, in this study, we explored the potential oncogenic 

role of PRMT5 in BUC. First, we observed that PRMT5 

was significantly upregulated in BUC tissue compared 

with adjacent nontumor tissue. Recent reports have 

 

 
 

Figure 5. PRMT5 had a strong oncogenic function in bladder cancer. (A) Western blotting showed that PRMT5 was efficiently 
knocked down by PRMT5-shRNA. (B) Representative images of the tumor xenografts inoculated with T24-shC and T24-sh1 cells and 

hematoxylin and eosin staining of tumor xenografts are shown. (C–E) Growth curve and histogram analysis of the size and weight of 
xenograft tumors. Error bars show the standard error of the mean. sh, short hairpin RNA; T24-shC: T24-shRNA/negative control; T24-sh1: 
T24-shRNA. *P < 0.05, **P < 0.01. 
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indicated that overexpression of the PRMT5 protein is 

positively correlated with advanced disease stage and 

adverse prognosis of certain human solid tumors [30, 31]. 

In patients with BUC, we also found that elevated 

PRMT5 was correlated with poor disease prognosis. As 

shown by Kaplan-Meier analysis and multivariate Cox 

analysis, PRMT5 was an independent adverse prognostic 

factor for overall and disease-free survival in patients 

with BUC. These findings indicate that PRMT5 may 

promote the growth and progression of BUC. 

 

 
 

Figure 6. High PRMT5 expression in bladder cancer promoted tumor progression through the cell cycle and the mTOR 
signaling pathway. (A, B) GSEA indicated that high or low PRMT5 expression in bladder cancer is correlated with the cell cycle and the 
mTOR signaling pathway. Values were row-scaled to show the relative expression. (C) Flow cytometric analysis of the cell cycle showed that 
PRMT5 knockdown caused G1 cell cycle arrest. (D) PRMT5 facilitated the G1 to S phase transition of the cell cycle in bladder cancer. 
Corresponding statistics of knockdown (E) and overexpression (F) are presented by a bar graph (*P < 0.05, **P < 0.01, ***P < 0.001).  
(G, H) Western blots were performed after knockdown or overexpression of PRMT5 to evaluate the relevant protein expression of the cell 
cycle and the mTOR signaling pathway. 
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PRMT5 is a ubiquitous and evolutionarily conserved 

protein, but it may be involved in proliferation, 

migration, and invasion of cancer. PRMT5 upregulation 

results in increased proliferation and anchorage-

independent colony growth, whereas cellular pro-

liferation and colony formation in cancer are 

significantly inhibited by PRMT5 knockdown [14,  

32–34]. Studies have considered direct inhibition 

resulting from increased translation [34, 35]. These 

reports indicated that there was one mechanism by 

which PRMT5 controls cell growth. Based on the 

upregulation of PRMT5 in BUC in our tests, we 

conducted phenotypic experiments and explored the 

potential biological role of PRMT5 in vivo and in vitro. 

In our experiments, PRMT5 knockdown resulted in 

significant inhibition of growth, migration, and invasion 

of BUC cells. Clearly, further study is needed to more 

accurately detect the signaling pathway involved in the 

oncogenic process of BUC induced by the upregulation 

of PRMT5. We conducted bioinformatics analysis, and 

the array showed that expression of PRMT5 in BUC 

was significantly associated with the cell cycle and the 

mTOR signaling pathway. 

 

Distorted activity of proteins that affect the cell cycle 

induces abnormal proliferation, resulting in malignant 

transformation. We demonstrated that PRMT5 facilitated 

the progression of cells through the G1 to S phase, in 

accordance with the bioinformatics analysis. PRMT5 

mediated the repression of p27 and the activation of Rb 

in BUC. Furthermore, our data showed that PRMT5 

boosted the activity of the mTOR signaling pathway in 

BUC through upregulation of PI3K and Akt. Specifically, 

PRMT5 inhibition markedly impaired the PI3K/Akt/ 

mTOR pathway. PRMT5 may affect BUC tumorigenesis 

through this pathway. However, the relationship between 

PRMT5 and the PI3K/Akt/mTOR signaling pathway 

needs further research. 

 

In summary, we demonstrated that PRMT5 upregulation 

in BUC is correlated with a poor prognosis and BUC 

proliferation, migration, and invasion. In addition, 

PRMT5 affects BUC tumor progression by distorting 

the Rb and p27 proteins involved in the cell cycle and 

facilitating the PI3K/Akt/mTOR signaling pathway. 

PRMT5 inhibitors may be a potential therapeutic 

approach that offers promising perspectives of BUC in 

the future. 

 

MATERIALS AND METHODS 
 

Cell lines and cell culture 

 

J82, UMUC, RT4, Biu87, TCCsup, 5637, and T24 

bladder cancer cells from the American Type Culture 

Collection were cultured in RPMI 1640 medium or 

DMEM (Invitrogen, Carlsbad, CA, USA) with 10% 

fetal bovine serum (South Logan, UT, USA). All  

of cells were cultivated in an atmosphere at 37°C with 

5% CO2. 

 

qRT-PCR 

 

RNA isolated with Trizol (Invitrogen) from the samples 

was quantified using an ultramicrospectrophotometer 

(NanoDrop ND-1000, USA), and it was reverse 

transcribed into cDNA using PrimeScriptTM Master Mix 

(TaKaRa, Japan). Then qRT-PCR was run on a Light-

Cycler 480 instrument (Roche Diagnostics, Germany). 

The relative quantitative value was calculated using  

the 2-ΔΔCt method. The final result was recorded as  

fold change. Every sample was performed with three 

replicates. 

 

Western blot and immunohistochemistry 
 

All protein samples were extracted from the clinical 

bladder tissues and BUC cell lines using RIPA buffer 

(P00013C, Beyotime) and proteinase inhibitor cocktail 

(Roche, USA). The concentration of the protein was 

quantified using the BCA protein assay (Thermo Fisher 

Scientific, USA). Western blots were implemented  

in accordance with the standard methods [36]. 

Immunohistochemistry, which was used to determine 

the expression of PRMT5 in BUC tissues, has been 

described in previous studies [27]. An anti-PRMT5 

antibody (1:500; Proteintech Group) was used. 

 

RNA interference 
 

To knock down the expression of PRMT5, two PRMT5 

small-interfering RNAs (siRNAs) and the cognate 

control siRNA were synthesized by Gene Pharma 

(Shanghai, China). Then, 20 μm of siRNA was 

transfected into the indicated cells in six-well plates 

through the Lipofectamine 2000 Reagent (Invitrogen) 

according to the manufacturer’s instructions. The target 

sequences of PRMT5 for constructing the siRNAs are as 

follows: siRNA1, 5′-CCAGUUUGAGAUGCCUUAUT 

TAUAAGGCAUCUCAAACUGGGC-3′; siRNA2, 5′-

GUUUCAAGAGGGAGUUCAUTTAUGAACUCCCU

CUUGAAACGC-3′. Western blot was used to verify the 

effect of gene silencing 48 hours after transfection. 

 

Cell counting kit-8 (CCK-8) assay 
 

The indicated cells were sowed in each well at a density 

of 2,000 cells on 96-well plates. We examined the cell 

growth every 24 hours with CCK-8 (Beyotime 

Technology, China) after incubation for 30 minutes at 

37°C. According to the reference wavelength, the 

absorbance value was detected at 450 nm. 
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Colony formation assay 
 

The indicated cells were sowed in each well at a density 

of 500 cells on six-well plates. After cultivation for 7 

days, the colonies were stained with crystal violet and 

visualized with a microscope. 

 

5-Ethynyl-2'-deoxyuridine (EdU) assay 
 

5-Ethynyl-20-deoxyuridine (EdU), a more specific and 

sensitive method, was mainly used as the marker  

of cellular replication activity [37]. For an EdU 

incorporation assay, cells were placed on every confocal 

well (2,000 cells per well) and cultured for 24 hours. EdU 

fluorescent staining was performed using a commercial 

cell-light EdU Apollo 567 in vitro kit (RIB&BIO, 

Guangzhou, China) according to the manufacturer’s 

protocol. A fluorescence confocal microscope (Nikon, 

Japan) was used to directly detect staining for PRMT5 in 

the EdU-labeled cells. 

 

Transwell invasion assay 

 

Biu87 and T24 cells (5×104 cells/well) were plated on 

the upper chamber of 24-well plates in RPMI 1640 

without serum. Then 20% formaldehyde was used to fix 

the invading cells, and crystal violet was used for 

staining at 24 hours after seeding. 

 

Cell wound-healing assay 
 

The cell monolayer in six-well plates was scraped by a 

sterile 100-mL pipette tip and then washed with PBS. 

The scratched wells were cultivated in a serum-free 

medium. At the time points of 0 and 24 hours, the 

scratched cell images were captured to analyze 

migration by an inverted microscope. 

 

Transfection of the recombinant lentiviral vector 
 

Stocks of virus were produced in 293-t cells, as 

described in previous studies [38]. The retroviruses 

carrying PRMT5 short hairpin RNA (PRMT5-shRNA) 

were transfected into T24 cells, whereas the lentiviral 

vectors with PRMT5 were transfected into TCCsup 

cells. Homologous and empty lentiviral vectors were 

transfected into cancer cells as controls. Puromycin 

(Santa Cruz Biotechnology, USA) was used to select 

stable cells. 

 

Tumor growth in xenografts 
 

Twelve male BALB/c nude mice were divided into two 

groups. They were fed with sterilized feed and pure 

water in a specified pathogen-free environment with air 

laminar flow chamber. Feed, bedding, and cages for 

indoor use were autoclaved and transported through a 

sterile inlet chamber to exclude any microorganisms. 

Then mice were divided into two groups and inoculated 

subcutaneously with 1×107 of T24-shRNA or T24-

negative control cells. The xenografts were observed and 

sized using Vernier calipers every week after injection. 

Five weeks later, all of the mice were euthanized by 

cervical dislocation, and the subcutaneous tumor 

xenografts in the mice were collected. The weight and 

maximum diameter of the tumor xenografts were 

measured using an electronic scale and Vernier calipers, 

respectively. Finally, the tumor xenografts were fixed in 

10% formalin and embedded in paraffin for hematoxylin 

and eosin staining and the histopathological analysis. 

 

Cell cycle analysis 
 

Double thymidine was used for synchronization. 

Posttreatment cells were treated with the cell cycle 

analysis kit (4Abio, Beijing, China) according to the 

standard protocol. Stained cells were tested using a flow 

cytometer (cytoFLEX, Beckman, USA). 

 

Patient and specimen characteristics 
 

PRMT5 expression data and detailed clinical information 

of BUC patients were first ascertained from the data sets 

of the Oncomine database (https://www.oncomine.org) 

and The Cancer Genome Atlas (https://www.cancer.gov/ 

about-nci/organization/ccg/research/structural-genomics/ 

tcga). One hundred thirty-two clinical BUC samples from 

Chinese patients from 2002 to 2016 were collected at the 

Sun Yat-Sen University Cancer Center. The clinical and 

pathological information collected included age, gender, 

surgery, tumor size, TNM stage, differentiation grade, 

vital status, and follow-up time, and tumors were 

classified according to the guidelines of the European 

Association of Urology [39]. All samples were from 

patients who had not yet received chemotherapy, 

radiotherapy, or immunotherapy and were obtained 

after surgery. All samples were acquired after receiving 

informed consent and approval from the Ethical 

Committee of Sun Yat-Sen University Cancer Center 

(Guangzhou, China). 

 

Statistical analysis 
 

Using SPSS 20.0 (SPSS, Inc., Chicago, IL, USA) and 

GraphPad Prism 6.0 (GraphPad Software, La Jolla, CA, 

USA), the mRNA levels of PRMT5 in BUC tumor 

tissues were compared with those in adjacent nontumor 

tissues using a paired student’s t test. Relationships 

between PRMT5 expression and clinical factors were 

analyzed. Descriptive statistics and the χ2 test were used 

to assess the differences between groups. Overall survival 

was analyzed by the Kaplan-Meier method using the log-

https://www.oncomine.org/
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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rank test. Univariate and multivariate Cox regression 

analyses were performed to assess the correlation among 

age, gender, tumor size, tumor stage, and differentiation 

grade. P values < 0.05 were considered statistically 

significant. 
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