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INTRODUCTION 
 
Osteoarthritis (OA) is a degenerative joint disease 
associated with chronic pain and disability; it is 
characterized by articular cartilage breakdown, synovial 
inflammation, and bone hypertrophy [1]. The constantly 
increasing numbers of OA patients worldwide incurs  
an expenditure of 1.0% to 2.5% Gross Domestic 
Product (GDP) in developed countries [2, 3]. OA  
is a progressive joint disease without any effective 
curative treatment [4–6]. Therefore, it is of paramount 
importance to identify the underlying pathways  

involved in OA pathology and discover new therapies 
that can improve the quality of life for patients with 
OA. 
 
The hallmark of OA is the imbalance between pro-
inflammatory and anti-inflammatory cytokines [7].  
The most critical pro-inflammatory cytokine involved in 
OA pathogenesis is interleukin-1β (IL-1β), which 
downregulates key extracellular matrix (ECM) proteins, 
type-II collagen and aggrecan, and upregulates matrix 
metalloproteinases (MMPs) and ADAMTS-5, which 
breakdown the cartilage tissue [8, 9]. Therefore, anti-
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ABSTRACT 
 
In this study, we investigated whether the anti-inflammatory effects of tomatidine alleviate osteoarthritis (OA)-
related pathology in primary articular chondrocytes and a rat OA model. STITCH database analysis identified 22 
tomatidine-target genes that were enriched in 78 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. 
Moreover,39 of the 105 OA-related KEGG pathways were related to tomatidine-target genes. The top two OA-
related KEGG pathways with tomatidine-target genes were the MAPK and neurotrophin signaling pathways. 
Pretreating primary chondrocytes with tomatidine suppressed interleukin-1β (IL-1β)-induced expression of 
iNOS, COX-2, MMP1, MMP3, MMP13, and ADAMTS-5. Tomatidine also suppressed IL-1β-induced degradation 
of collagen-II and aggrecan proteins by inhibiting NF-κB and MAPK signaling. In a rat OA model, histological and 
immunohistochemical analyses showed significantly less cartilage degeneration in the tibiofemoral joints of 
rats treated for 12 weeks with tomatidine after OA induction (experimental group) than in untreated OA group 
rats. However, micro-computed tomography (μ-CT) showed that tomatidine did not affect remodeling of the 
subchondral bone at the tibial plateau. These data shows that tomatidine suppresses IL-1β-induced 
inflammation in primary chondrocytes by inhibiting the NF-κB and MAPK signaling pathways, and protects 
against cartilage destruction in a rat OA model. 
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inflammatory drugs are potential therapeutic candidates 
against OA.  
 
Tomatidine, the major glycoalkaloid produced by the 
tomato plant, is associated with anti-apoptotic, anti-
inflammatory, anti-bacterial, and anti-cancer properties 
[10–14]. Tomatidine suppresses inflammation in LPS-
stimulated murine macrophages by inhibiting the NF-
κB and JNK signaling pathways [15]. However, the 
therapeutic effects of tomatidine in OA are unknown. 
Therefore, in this study, we investigated the effects of 
tomatidine on IL-1β-induced inflammation in primary 
articular chondrocytes and cartilage degeneration in the 
rat OA model. 
 
RESULTS 
 
Bioinformatics analysis of tomatidine-target genes 
and OA-related KEGG pathways  
 
The interaction network shows 22 tomatidine-target 
genes belonging to three shells based on the STITCH 
database analysis (Figure 1A). The first shell contained 
two genes, MAPK1 and MAPK3; the second shell 
contained 10 genes, RAF1, PTPRR, RPS6KA1, 
RPS6KA3, PTPN7, PTPN11, STAT5A, DUSP1, 
MAP2K1, and MBP; and the third shell contained 10 
genes, MAP2K2, DUSP4, JUN, FOS, 3TS1, BCL2, 
RPS6KA2, TP53, SMAD1, and DUSP6. The weight of 
MAPK1 was the highest according to the interaction 
network analysis of the tomatidine-target genes (Figure 
1B). DAVID database analysis identified 78 KEGG 
pathways (p< 0.05) with tomatidine-target genes, 
whereas, miRWalk2.0 database analysis showed 105 
human OA-related KEGG pathways [16]. As shown in 
the Venn diagram, 39 OA-related KEGG pathways 
contained tomatidine-target genes (Figure 1C). The top 
five OA-related KEGG pathways with tomatidine-target 
genes include MAPK signaling, neurotrophin signaling, 
colorectal cancer, renal cell carcinoma, and long-term 
potentiation pathways (Table 1). 
 
Identification of the hub genes and KEGG pathways 
related to tomatidine-target genes 
 
Figure 1D shows the enrichment information of the 22 
tomatidine-target genes involved in the top five OA-
related KEGG pathways. Among these, MAPK1, 
MAP2K1, MAPK3, and RAF1 are involved in all the top 
five KEGG pathways and are considered as hub genes. 
Figure 1E represents the circular diagrammatic 
representation highlighting the chromosomal positions 
and connectivity of the tomatidine-target genes. Among 
the 22 tomatidine-target genes, MAPK1 shows the 
greatest degree, betweenness, and closeness centrality. 
The top 2 shared KEGG pathways with highest p values 

are associated with inflammation, proliferation, 
differentiation, pro-survival, and retrograde signaling via 
MAPK and NF- κB signaling pathways (Figure 2A, 2B). 
 
Low-dose tomatidine does not affect viability of IL-
1β-treated primary chondrocytes 
 
CCK-8 assay showed that pretreatment of primary 
chondrocytes with 2.5, 5, or 10μM tomatidine followed 
by 10ng/ml IL-1β did not affect cell viability compared 
to the controls (P > 0.05; Figure 3A–3C). However, 
pretreatment with 20μM tomatidine significantly 
decreased the viability of primary chondrocytes (P < 
0.05; Figure 3B, 3C). We chose 2.5, 5, and 10μM 
tomatidine doses for subsequent experiments. 
 
Tomatidine inhibits IL-1β-induced iNOS and COX-2 
expression in primary chondrocytes 
 
We analyzed the effects of tomatidine pre-treatment on 
the IL-1β-induced expression of iNOS and COX-2 in 
primary chondrocytes. IL-1β-treated primary 
chondrocytes showed significantly higher levels of 
iNOS and COX-2 proteins compared to the blank 
control, but, pre-treatment with 2.5, 5.0 and 10µM 
tomatidine significantly reduced iNOS and COX-2 
expression in a concentration-dependent manner (Figure 
4A, 4B). These data demonstrate that tomatidine 
inhibits IL-1β-induced iNOS and COX-2 expression in 
primary chondrocytes. 
 
Tomatidine inhibits IL-1β induced MMPs and 
ADAMTS-5 in chondrocytes 
 
Next, we analyzed the effects of tomatidine on IL-1β-
induced expression of MMPs (MMP1, MMP3, and 
MMP13) and ADAMTS-5 in primary chondrocytes. IL-
1β-treated primary chondrocytes showed significantly 
higher expression of MMPs and ADAMTS-5 compared 
to the blank controls, but, tomatidine significantly 
reduced the expression of MMPs and ADAMTS-5 in a 
concentration-dependent manner (Figure 5A, 5B). 
These findings show that tomatidine protects against 
OA progression by suppressing the expression of 
MMPs and ADAMTS-5 in primary chondrocytes. 
 
Tomatidine suppresses IL-1β induced degradation of 
aggrecan and collagen-II in primary chondrocytes 
 
IL-1β-treated primary chondrocytes showed 
significantly higher degradation of ECM proteins, 
aggrecan and collagen-II, compared with the blank 
controls based on western blotting and immuno-
fluorescence staining assays (Figure 6A–6C). However, 
tomatidine significantly reduced the degradation of 
aggrecan and collagen-II in the IL-1β-treated primary 
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chondrocytes in a concentration dependent manner 
(Figure 6A–6C). 
 
Tomatidine suppresses IL-1β induced activation of 
NF-κB in primary chondrocytes 
 
We analyzed the effects of tomatidine on IL-1β-induced 
activation of NF-κB in primary chondrocytes. IL-1β-
treated primary chondrocytes showed significantly higher 

levels of phospho-P65 compared to the blank controls, but, 
pre-treatment with tomatidine significantly reduced 
phospho-P65 levels in a concentration-dependent manner 
(Figure 7A, 7B; P < 0.05). Immunofluorescence assay 
showed that tomatidine inhibits nuclear translocation of 
P65 inIL-1β-treated primary chondrocytes in a con-
centration dependent manner (Figure 7C). These results 
demonstrate that tomatidine suppresses activation of the 
NF-κB in IL-1β-treated primary chondrocytes. 

 

 
 

Figure 1. Identification of tomatidine-target genes and the common KEGG pathways of OA-related and tomatidine-target 
genes. (A) Interaction network of 22 tomatidine-target genes based on STITCH database analysis. (B) MAPK1, MAPK3, JUN, DUSP1, FOS, and 
TP53 have the highest weights in the interaction network constructed using Gephi. (C) KEGG pathway analyses shows 105 OA-related and 76 
tomatidine-target gene-related KEGG pathways. Among these, 39 (27.5%) KEGG pathways are common to both OA and tomatidine-target 
genes. (D) Gene enrichment analyses show that MAPK1, MAP2K1, MAPK3, and RAF1 are involved in all the top five KEGG pathways. The top 
three genes with highest degree are MAPK1, MAPK3, and FOS. (E) The circular visualization shows chromosomal positions and connectivity of 
tomatidine-target genes. The names of the tomatidine-target genes are shown in the outer circle, which represents chromosomes. The lines 
from each gene represent specific chromosomal locations. colors show Different values of degree, betweenness and closeness are shown in 
different colors. The three hub genes are shown in red. 



www.aging-us.com 12802 AGING 

Table 1. Top five KEGG pathway and involved genes. 
Term KEGG Pathway Tomatidine-target Genes P-value 

hsa04010 MAPK signaling pathway   
PTPN7, MAP2K1, MAP2K2, TP53, PTPRR, RAF1, 

DUSP4, MAPK1, FOS, RPS6KA3, RPS6KA1, DUSP1, 
RPS6KA2, JUN, MAPK3, DUSP6 

2.6E-18 

hsa04722 Neurotrophin signaling pathway MAPK1, RPS6KA3, RPS6KA1, MAP2K1, RPS6KA2, 
MAP2K2, JUN, BCL2, MAPK3, TP53, RAF1, PTPN11 4.2E-15 

hsa05210 Colorectal cancer MAPK1, FOS, MAP2K1, JUN, BCL2, MAPK3, TP53, 
RAF1 2.4E-10 

hsa05211 Renal cell carcinoma MAPK1, MAP2K1, ETS1, MAP2K2, JUN, MAPK3, 
RAF1, PTPN11 3.8E-10 

hsa04720 Long-term potentiation MAPK1, RPS6KA3, RPS6KA1, MAP2K1, RPS6KA2, 
MAP2K2, MAPK3, RAF1 3.8E-10 

 

 
 

Figure 2. Tomatidine-target genes associated with the top two KEGG pathways. (A) The tomatidine-target genes that are part of 
the MAPK signaling pathway, including MAPK1 and MAPK3 are associated with proliferation, differentiation, cell survival or anti-apoptotic, 
and inflammation. (B) Tomatidine-target genes that are part of the Neurotrophin signaling pathway, including MAPK1 and MAPK3 are 
associated with cellular differentiation, cell survival, and retrograde transport.  

 

 
 

Figure 3. Effects of tomatidine on the viability of primary chondrocytes. (A) Chemical structure of tomatidine. (B, C) CCK-8 assay 
shows the viability of primary chondrocytes treated for 24 h with (B) 2.5, 5, 10 or 20 μM tomatidine alone or in combination with 10 ng/mlIL-
1β (C). DMSO was used as control. As shown, treatments with 2.5, 5, or 10μM tomatidine or 10ng/mlIL-1β do not affect cell viability. Viability 
of primary chondrocytes is significantly affected by treatment with 20μM tomatidine in presence or absence of 10ng/mlIL-1β. The values are 
shown as means ± SD. *p < 0.05compared with the control group. 
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Tomatidine suppresses IL-1β-induced activation of 
MAPK signaling pathway in primary chondrocytes 
 
Next, we analyzed the effects of tomatidine on the 
activation status of the MAPK signaling pathway in IL-
1β-treated primary chondrocytes. As shown in Figure 
8A, 8B, IL-1β-treated primary chondrocytes showed 
significantly higher levels of phospho-P38, phospho-
ERK, and phospho-JNK compared to the blank 
controls, but, tomatidine suppressed P38 activation in a 
concentration-dependent manner (Figure 8A, 8B; P < 
0.05). These data demonstrate that tomatidine reduces 
inflammation in primary chondrocytes by inhibiting the 
activation of p38 MAPK signaling pathway. 
 
Tomatidine ameliorates OA progression in the rat 
OA model 
 
Next, we analyzed the effects of tomatidine on the 
progression of OA in the rat model. Histological 
analysis showed that damage to the articular cartilage 

was significantly reduced in the experimental group rats 
(OA model rats treated with tomatidine) compared to 
the OA group (Figure 9A). Furthermore, immuno-
histochemical staining showed that tomatidine 
significantly reduced INOS and MMP3levels in the 
articular cartilage of experimental group rats compared 
to the OA group (Figure 9B, 9C). This demonstrates 
that tomatidine ameliorates OA progression in the rat 
OA model. 
 
μ-CT evaluation of the effects of tomatidine 
treatment on remodeling of the subchondral bone in 
OA model rats 
 
We performed μ-CT to determine the effects of 
tomatidine on the subchondral bone remodeling in the OA 
model rats. The OA group rats showed decreased BV/TV 
and trabecular numbers and increased trabecular 
separation in the subchondral bones compared to the 
blank control group (Figure 10A, 10B; P < 0.05). 
However, the BV/TV, trabecular numbers and trabecular

 

 
 

Figure 4. Tomatidine inhibits IL-1β-induced iNOS and COX-2 expression in primary chondrocytes. (A) Representative western 
blot images and (B) Histogram plots show the levels of iNOS and COX-2 proteins relative to GAPDH (internal control) levels in primary 
chondrocytes treated for 24 h with 2.5, 5, or 10μM tomatidine alone or in combination with 10ng/mlIL-1β. DMSO was used as control. The 
values are shown as means ± SD of triplicate experiments. #p < 0.05 compared with the control group; *p < 0.05 and **p < 0.01 compared 
with the IL-1β group. 

 

 
 

Figure 5. Tomatidine inhibits IL-1β induced MMPs and ADAMTS-5 in chondrocytes. (A) Representative western blot images and  
(B) Histogram plots show the levels of MMP1, MMP3, MMP13 and ADAMTS-5proteins relative to GAPDH (internal control) levels in primary 
chondrocytes treated for 24 h with 2.5, 5, or 10μM tomatidine alone or in combination with 10ng/mlIL-1β. DMSO was used as control. The 
values are shown as means ± SD of triplicate experiments. #p < 0.05 compared with the control group. *p < 0.05 and **p < 0.01 compared 
with the IL-1β group. 
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Figure 6. Tomatidine suppresses IL-1β induced degradation of aggrecan and collagen-II in chondrocytes. (A) Representative 
western blot images and (B) Histogram plot shows the levels of aggrecan and collagen-II proteins relative to GAPDH (internal control) levels in 
the primary chondrocytes treated for 24 h with 2.5, 5, or 10μM tomatidine alone or in combination with 10ng/mlIL-1β. DMSO was used as 
control. (C) Immunofluorescence staining images show aggrecan and collagen-II expression in the primary chondrocytes treated for 24 h with 
2.5, 5, or 10μM tomatidine alone or in combination with 10ng/mlIL-1β. The nuclei are stained with DAPI. The white arrows indicate the 
expression of aggrecan and collagen-II. The values are shown as means ± SD of triplicate experiments. #p < 0.05 compared with the control 
group; *p < 0.05 and **p < 0.01 compared with the IL-1β group. 

 

 
 

Figure 7. Tomatidine suppresses IL-1β-induced NF-κB activation in primary chondrocytes. (A) Representative western blot images 
and (B) Histogram plots show the levels of phospho-P65 and P65 proteins relative to GAPDH (internal control) levels in the primary 
chondrocytes treated for 30 mins with 2.5, 5, or 10μM tomatidine alone or in combination with 10 ng/mlIL-1β. DMSO was used as control. (C) 
Immunofluorescence staining images show P65 localization in primary chondrocytes treated for 30 mins with 2.5, 5, or 10μM tomatidine 
alone or in combination with 10ng/mlIL-1β. The white arrow indicates nuclear translocation of P65. The values are shown as means ± SD of 
triplicate experiments. #p < 0.05 compared with the control group; *p < 0.05 and **p < 0.01 compared with the IL-1β group. 
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Figure 8. Tomatidine inhibits IL-1β-induced MAPK activation in primary chondrocytes. (A) Representative western blot images 
and (B) Histogram plot shows the levels of phospho-P38, P38, phospho-ERK, ERK, phospho-JNK, and JNK proteins relative to GAPDH (internal 
control) levels in the primary chondrocytes treated for 30 mins with 2.5, 5, or 10μM tomatidine alone or in combination with 10ng/mlIL-1β. 
DMSO was used as control. The values are means ± SD of triplicate experiments. #p < 0.05 compared with the control group. *p < 0.05 and 
**p < 0.01 compared with the IL-1β group. 

 

 
 

Figure 9. Tomatidine ameliorates OA progression in the rat OA model. Sprague Dawley rats (n=5/group) were randomly divided 
into blank control, OA, and experimental groups. The experimental group rats were fed a diet that included 25mg/kg/day tomatidine. The 
rats were maintained in these groups for 12 weeks and then euthanized and their tibiofemoral joints were obtained and processed (A) 
Representative images show safranin O-fast green(S-O) and toluidine blue stained sections of tibiofemoral joints from blank control, OA and 
experimental group rats. The vertical fissures (black arrow), surface discontinuity (white arrow) and delamination (red arrow) are indicated in the 
relevant samples as shown. (B) Representative immunohistochemical stained images show the expression of iNOS and MMP3 proteins in 
tibiofemoral joint sections from blank control, OA and experimental group rats. (C) The OA grades of blank control, OA and experimental group rats 
at 12 weeks according to the Osteoarthritis Research Society International (OARSI) scores are shown. The scoring was performed in a blinded 
manner. The iNOS and MMP3 positive cells were counted in each tibiofemoral joint section from blank control, OA and experimental group rats 
and quantified using the Image-J software. #p < 0.05 compared with the control group. *p < 0.05 and **p < 0.01 compared with the OA group. 



www.aging-us.com 12806 AGING 

 
 

Figure 10. μ-CT evaluation of the subchondral bone at the tibial plateau in the OA model rats. (A) Representative images show 
the 3D μ-CT coronal views of the right knee and axial view of ROI from blank control, OA and experimental group rats. (B) Histogram plots 
show the analysis of trabecular structure analysis, including bone volume/tissue volume (BV/TV), trabecular number (Tb. N) and trabecular 
separation (Tb. Sp)in the blank control, OA and experimental group rats. *p < 0.05 compared with the control group; ns: not significant 
compared with the OA group. 

 

 
 

Figure 11. The anti-inflammatory mechanism of action of tomatidine in primary articular chondrocytes and the OA model 
rats. The schematic diagram shows that tomatidine suppresses IL-1β-induced expression of iNOS, COX-2, MMPs and ADAMTS-5, and 
degradation of aggrecan and collagen-II by inhibiting the NF-κB and MAPK pathways. 
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separation parameters were similar for both OA and 
tomatidine-treated experimental group rats (Figure 10A, 
10B; P > 0.05). These results show that tomatidine does 
not affect subchondral bone remodeling in OA model rats. 
 
DISCUSSION 
 
Our study demonstrates that tomatidine inhibits IL-1β-
induced expression of iNOS, COX-2, and MMPs, and 
degradation of aggrecan and collagen-II in primary 
chondrocytes by suppressing the activation of NF- κB 
and MAPK signaling pathways. These results show that 
tomatidine sustains the levels of ECM proteins by 
suppressing the expression of proteins involved in 
inflammation and degradation of ECM proteins. 
Moreover, tomatidine reduces cartilage degeneration in 
the rat OA model. These findings reveal that tomatidine 
is a promising drug for OA treatment. 
 
IL-1β is a major pro-inflammatory cytokine that is 
involved in OA pathology by inducing inflammatory 
responses and catabolic effects [9, 17–19]. IL-1β 
promotes the expression of MMPs, which are involved in 
the degradation of cartilage components [20]. IL-1β also 
induces ADAMTS-5, which promotes breakdown of 
aggrecan [21, 22]. IL-1β stimulates the expression of 
iNOS and COX-2, which promote the release of well-
known inflammatory mediators, NO and PGE2 [23, 24]. 
Several studies suggest that inhibition of these pro-
inflammatory mediators hinders OA progression [19, 20].  
 
In this study, we hypothesized that the anti-
inflammatory properties of tomatidine will delay or 
abrogate OA progression in the primary chondrocytes 
and cartilage tissue. Chiu et al. reported that tomatidine 
inhibits the inflammatory response in LPS-stimulated 
mouse macrophages by suppressing the NF-κB and 
JNK signaling pathways [15]. The activation of NF-κB 
signaling pathway is implicated in the onset and 
progression of OA [25]. NF-κB pathway also regulates 
the expression of iNOS, COX-2, and MMPs [26, 27]. 
Therefore, targeted inhibition of the NF- κB signaling 
pathway is a potential therapy for patients with OA. We 
demonstrate that tomatidine significantly inhibits IL-1β-
induced expression of inflammatory factors by 
suppressing NF-κB activation. MAPK signaling is 
another key pathway involved in OA pathogenesis [28]. 
The OA chondrocytes demonstrate significantly higher 
levels of phospho-p38, phospho-JNK, and phospho-
ERK compared to normal chondrocytes [29]. Our study 
demonstrates that tomatidine blocks IL-1β-stimulated 
MAPK pathway activation in primary articular 
chondrocytes. Overall, our study demonstrates that 
tomatidine exerts anti-inflammatory effects on IL-1β-
stimulated chondrocytes by suppressing the NF- κB and 
MAPK signaling pathways. 

Our study has several limitations. Firstly, it is not clear 
if tomatidine inhibits NF- κB and MAPK pathways 
directly or indirectly through mediators. Secondly, a 
higher concentration of tomatidine does not demonstrate 
anti-inflammatory and cell survival effects, probably 
because it exceeds the optimal dosage. 
 
CONCLUSIONS 
 
In summary, our study shows that tomatidine inhibits 
IL-1β-stimulated inflammation in primary chondrocytes 
by suppressing the NF-κB and MAPK signaling 
pathways (Figure 11). Moreover, tomatidine decreases 
the articular cartilage pathology in the rat OA model. 
These findings suggest that tomatidine is a potential 
treatment for OA, which needs to be ascertained by 
further investigations. 
 
MATERIALS AND METHODS 
 
Identification of tomatidine-target genes, their 
interaction network and the OA-related KEGG 
pathways containing tomatidine-target genes 
 
We identified and constructed an interaction network 
between tomatidine-target genes in first, second, and 
third shells using the Search Tool for Interacting 
Chemicals (STITCH) database [30]. Tomatidine was 
imported into the STITCH, and the predicted garget-
genes were obtained with default settings. Then, we 
calculated the degree, betweenness, and closeness of the 
tomatidine-related genes in the network using 
Cytoscape 3.7.2 [31]. Degree Centrality represents the 
number of links a node has with other nodes in the 
network. Closeness Centrality is a measure of the 
centrality of a node in a network, that is, more central 
the node is, the closer it is to other nodes in the network. 
Betweenness Centrality measures how important a node 
is based on all the number of shorter paths between a 
pair of nodes. We used the miRWalk2.0 database to 
retrieve KEGG pathways involved in human OA [16]. 
We used the Database for Annotation, Visualization, 
and Integrated Discovery (DAVID) to identify KEGG 
pathways enriched (p<0.05) with the tomatidine-target 
genes [32, 33]. The Venn Diagram (Venny 2.1, 
http://bioinfogp.cnb.csic.es/tools/venny/index.html) was 
used to show the KEGG pathways that are common to 
OA and tomatidine-target genes. 
 
Identification of the hub genes and KEGG pathways 
related to tomatidine-target genes 
 
The GO plots were used to present the enrichment 
information of the top five KEGG pathways [34]. The 
genes in the top five KEGG pathways were considered as 
the hub genes. The circlize R package was used to 

http://bioinfogp.cnb.csic.es/tools/venny/index.html
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determine the centrality of all the tomatidine-targeted 
genes in the network [35]. The top 5 KEGG pathways 
with the smallest p values were selected and their 
relationship with the tomatidine-target genes was 
established using the Pathway Builder Tool 20 
(https://www.proteinlounge.com).  
 
Chemicals and reagents 
 
Tomatidine (purity>98%) was purchased from 
MedChem Express (Princeton, NJ). Collagenase type II, 
recombinant rat IL-1β, and dimethylsulfoxide (DMSO) 
were obtained from Sigma Chemical Co. (St. Louis, 
MO, USA). Cell Counting Kit-8 (CCK-8) was obtained 
from Boster (Wuhan, China). The primary antibody 
against aggrecan was purchased from Abcam 
(Cambridge, UK). The antibodies against type-II 
collagen, iNOS, and MMP13 were purchased from Santa 
Cruz Biotechnology (Santa Cruz, CA, USA), whereas, 
antibodies against COX2, MMP3, P38, P-P38, ERK, P-
ERK, JNK, P-JNK, P65, P-P65 were obtained from the 
Cell Signaling Technology Incorporated (Beverly, MA, 
USA). The antibodies against GAPDH, ADAMTS-5 and 
MMP1 were obtained from Boster (Wuhan, China). Fetal 
bovine serum (FBS), bovine serum albumin (BSA), and 
Dulbeccoʼs modified Eagleʼs medium F12 (DMEM/F12) 
were purchased from Gibco (NY, USA).  
 
Primary chondrocyte isolation and culture 
 
The primary chondrocytes were isolated as described 
previously [36]. Briefly, the articular cartilage was 
obtained from the knees of male Sprague-Dawley rats, 
cut into 1 mm3pieces, and digested with trypsin for 30 
min at 37°C. Then, the primary chondrocytes were 
obtained by digestion with 0.2% collagenase II for 4-6 h 
at 37°C. The primary chondrocytes were cultured in 
DMEM/F12 medium supplemented with 10% FBS and 
1% penicillin/streptomycin at 37°C and 5% CO2. The 
medium was changed every two days. The primary 
chondrocytes from 2nd and 3rdpassages were used for 
further experiments.  
 
Cell viability assay  
 
Tomatidine cytotoxicity was analyzed using the CCK-8 
assay according to manufacturerʼs instructions. Briefly, 
the primary chondrocytes were seeded in a 96-well plate 
(5 × 103/well) for 24h, pre-treated with different 
concentrations of tomatidine (2.5, 5, 10 or 20μM) for 2 
h then treated with10ng/mlIL-1β for 24h. Primary 
chondrocytes treated with DMSO, tomatidine or IL-1β 
alone were used as controls. Subsequently, the cells 
were incubated with 10μl CCK-8 solution for 1h at 
37°C. The absorbance was measured at 450nm using a 
plate reader (Bio-Rad, Richmond, CA, USA).  

Western blotting  
 
The primary chondrocytes were seeded in a 6-well plate 
at 37°C and 5% CO2 in a humidified chamber. The 
cells were treated with DMSO (control), 10ng/ml IL-1β 
alone or 2.5, 5 or 10μM tomatidine pretreatment for 2 h 
followed by 10ng/ml IL-1β for 24h. Then, the total 
cellular proteins were extracted using the RIPA buffer 
containing 1% protease inhibitor and 1% phosphatase 
inhibitor (Boster, Wuhan, China). The concentration of 
total protein lysates was measured using the 
bicinchoninic acid (BCA) protein assay kit (Boster, 
Wuhan, China). Equal amounts of protein samples were 
separated on a 12% polyacrylamide gel, transferred onto 
0.45μm polyvinylidene difluoride (PVDF) membranes 
(Millipore, Billerica, MA), and blocked with 5% BSA 
in Tris-buffered Saline-Tween solution (TBST) for 1h 
at room temperature. Then, the membranes were 
incubated overnight at 4°C with the primary antibodies 
against iNOS, MMP13, and GAPDH at 1:500 dilution, 
and antibodies against COX-2, MMP1, MMP3, 
ADAMTS-5, phospho-P38, P38, phospho-ERK, ERK, 
phospho-JNK, JNK, phospho-P65 and P65 at 1:1000 
dilution. Then, after washing with TBST, the 
membranes were incubated with the HRP-conjugated 
secondary antibody for 1h at room temperature. The 
blots were developed with the Enhanced 
Chemiluminescence (ECL) reagent (ECL; Boster, 
Wuhan, China), and the protein bands were quantified 
using the Bio-Rad Image Lab 5.0 system (Bio-Rad, 
USA). 
 
Immunofluorescence staining  
 
The primary chondrocytes were seeded in a 24-well 
plate and treated with 10ng/ml IL-1β alone or in 
combination with 10μM tomatidine. The cells were then 
fixed with 4% paraformaldehyde for 10min, permeated 
with 0.1% Triton X-100 for 10min, and blocked with 
1% BSA for 30min. Subsequently, the cells were 
incubated overnight at 4 °C with antibodies against 
collagen-II, aggrecan, and P65 at 1:200 dilutions. Then, 
after washing thrice with PBS, the cells were incubated 
with Cy3-conjugated goat anti-rabbit or Cy3- 
conjugated goat anti-rat secondary antibodies at a 1:75 
dilution for 1h. The cells were incubated with 4–6-
Diamidino-2-phenylindole (DAPI) for 10 min to stain 
the nuclei, and examined using a automated EVOS 
fluorescence microscope (Life Technologies, USA). 
Animal experiments and histological analysis  
 
The animal protocol was approved by the Ethics and 
Animal Research Committee of Huazhong University of 
Science and Technology. We purchased male Sprague-
Dawley rats weighing 250-300g from the Experimental 
Animal Center of Tongji Medical College (Wuhan, 

http://www.proteinlounge.com/
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China) and induced OA as described previously [37]. 
The animals (n=5/group) were randomly divided into 
blank control, OA, and experimental groups. OA 
pathogenesis was induced by surgery involving anterior 
cruciate ligament transaction and partial medial 
meniscectomy [37]. The experimental group rats were 
fed with 25 mg/ Kg/ day tomatidine as previously 
described [38]. After 12 weeks, the animals were 
sacrificed, the tibiofemoral joints were collected, fixed 
with 4% paraformaldehyde for 24h, and decalcified by 
incubation in 10% EDTA for 20 days. Then, the 
specimens were embedded in wax blocks, cut into 3-
5μm thick sections, and stained with safranin O-fast 
green(S-O) and toluidine blue. The stained specimens 
from all 3 rat groups were scored according to the 
Osteoarthritis Research Society International (OARSI) 
recommendations and graded in a blinded manner. 
Another set of tibiofemoral joint sections from the 3 
groups were incubated with antibodies against INOS 
and MMP3. The numbers of INOS and MMP3 positive 
cells were determined using the Image-J software. 
 
Micro-computed tomography (μ-CT) 
 
We scanned the right knee joints of the rats using the μ-
Computed Tomography system (Scanco Medical, 
Bassersdorf, Switzerland). We obtained 21.0μm 
resolution μ-CT images at 70kV and 113μA and 
generated 3D images using the CT system software. 
The same region of interest (ROI) was drawn on 100 
consecutive slices of 2.1mm total thickness representing 
the subchondral bone at the tibial plateau and the values 
for bone parameters such as bone volume/tissue volume 
(BV/TV), trabecular numbers (Tb.N) and trabecular 
separation (Tb.Sp) were determined. 
 
Statistical analysis  
 
All experiments were performed in triplicate and the 
data presented as means ± standard deviation (SD). All 
data were analyzed using the Shapiro-Wilk test for 
normal distribution and Levene’s test for homogeneity 
of variances. The statistical differences between 
normally distributed groups were analyzed by one-way 
analysis of variance (ANOVA) and Studentʼs t-test. The 
nonparametric data (OARSI scores) were compared 
using the Kruskal-Wallis H test. P-value < 0.05 was 
considered statistically significant. 
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