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ABSTRACT 
 

Background: Prostaglandin I2 synthase (PTGIS) is a crucial gene for the synthesis of prostaglandin I2, which has 
multiple roles in inflammation and immune modulation. However, studies on the prognostic value of PTGIS and 
its correlation with tumor-infiltrating immune cells in multiple cancers are still rare. 
Results: Multiple datasets of the Oncomine database showed that PTGIS was expressed at low levels in lung 
cancer and ovarian cancer compared to the levels in normal tissues. Kaplan-Meier plotter showed that high 
PTGIS was associated with poor overall survival and progression-free survival in lung, ovarian, and gastric 
cancers. Moreover, PTGIS expression was significantly positively correlated with infiltrating levels of 
macrophages and was strongly associated with a variety of immune markers, especially tumor-associated 
macrophages (TAMs) and T-regulatory cells (Tregs). 
Conclusions: High expression of PTGIS could promote the infiltration of TAMs and Tregs in the tumor 
microenvironment and deteriorate outcomes of patients with lung, ovarian, and gastric cancers. These 
findings suggest that PTGIS could be taken as a potential biomarker of prognosis and tumor-infiltrating 
immune cells. 
Methods: PTGIS expression was investigated in different datasets of the Oncomine database, and its expression 
levels in various tumors and corresponding normal tissues were analyzed by the Tumor Immune Estimation 
Resource (TIMER). Then, the clinical prognostic value of PTGIS was assessed with online public databases. In 
addition, we initially explored the correlation between PTGIS and tumor-infiltrating immune cells by TIMER and 
Gene Expression Profiling Interactive Analysis (GEPIA).  
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INTRODUCTION 
 

Solid tumors are the most extensive and common 

malignant tumors worldwide, including lung tumors, 

ovarian tumors, and gastric tumors. Insidious onset, 

invasive and fast growth, and high recurrence and 

metastasis rates are common characteristics leading to 

poor prognosis [1]. Recently, immunotherapy has been 

widely used in the treatment of solid tumors, including 

melanoma and lung, ovarian, breast, and stomach cancers, 

and its tolerable toxicity and long-term survival 

improvement have benefited many advanced cancer 

patients, leaving immunotherapy as the most promising 

direction for curing cancer [2]. Some immunotherapies, 

such as programmed death-1 (PD-1) and programmed 

death ligand-1 (PD-L1) inhibitors or cytotoxic T 

lymphocyte-associated antigen 4 (CTLA4) therapies, have 

shown an optimistic antitumor effect in melanoma [3, 4], 

lung cancer [5], gastrointestinal cancer [6] and ovarian 

cancer [7]. However, the current anti-CTLA-4 agent 

showed no effect in a clinical study of prostate cancer [8], 

and anti-PD1 therapy showed less effect in colorectal 

cancer [9] and even promoted tumor progression for some 

patients with murine double minute2 (MDM2) 

amplification or epidermal growth factor receptor (EGFR) 

aberration [10]. Moreover, increasing evidence has 

demonstrated that tumor-infiltrating immune cells interact 

with tumor cells and immunotherapy and have important 

implications for efficacy and patient outcomes [11–13]. 

Therefore, the elucidation of the mechanism of the 

interaction between tumor phenotype and infiltrating 

immune cells in the microenvironment and the 

exploration of new immune-related therapeutic targets are 

urgent for the treatment of solid tumors. 

 

Prostaglandin I2 synthase (PTGIS) is a protein-

encoding gene localized on chromosome 20q13.11-

q13.13 and was first reported in 1996 [14]. PTGIS 

encodes a member of the cytochrome P450 superfamily, 

a monooxygenase that catalyzes the metabolism of 

many drugs and the synthesis of lipids such as 

cholesterol and steroids. In addition, PTGIS could be 

involved in iron and heme metabolism, oxidative stress, 

xenobiotic and drug metabolism, glutathione and 

prostaglandin metabolism, and the conversion of 

prostaglandin H2 to prostaglandin I2 (PGI2) [14, 15]. A 

previous study observed that hypermethylation of the 

PTGIS promotor was associated with diminished gene 

expression in colorectal carcinogenesis [16]. 

Furthermore, other studies suggested that PTGIS 

variants may affect breast cancer susceptibility [17], and 

elevated PTGIS was associated with liver metastasis 

and poor survival outcomes for patients with colon 

cancer [18]. These findings suggest that PTGIS has 

distinctly essential impacts on tumorigenesis, 

progression, and metastasis. 

PGI2 is an important product of the arachidonic acid 

(AA) metabolism pathway, and PTGIS is one of the key 

enzymes. PGI2 is involved in inflammatory responses 

and activation of CD4+ T cells during physiological 

processes [19]. In addition, PGI2 is a crucial 

immunoregulatory lipid mediator that affects the 

differentiation of Th17 cells and T-regulatory cells 

(Tregs) [20]. The above results suggest that PTGIS has 

an indirect regulatory effect on microenvironment 

immune cells. Nevertheless, the potential functions and 

mechanisms of PTGIS in tumorigenesis and 

development and the immune microenvironment are 

undefined. 

 

In this study, our aim was to comprehensively analyze 

the relationship between the expression of PTGIS and 

prognosis in cancer patients and to explore the 

correlation between PTGIS and tumor-infiltrating 

immune cells. Our findings provide new ideas for 

elucidating the potential mechanism of PTGIS in tumor 

progression and the mechanism by which PTGIS is 

associated with tumor-infiltrating immune cells. 

 

RESULTS 
 

PTGIS expression level in various kinds of tumors 

 

To investigate the expression levels of PTGIS, the 

PTGIS mRNA levels in various tumors and normal 

samples were analyzed with the Oncomine database. 

Across various cancer types, significantly more datasets 

showed low expression of PTGIS in cancer samples 

versus normal samples than overexpression of PTGIS 

(Figure 1A). The expression of PTGIS was absolutely 

lower in bladder cancer, cervical cancer, colorectal 

cancer, head and neck cancer, leukemia, lung cancer, 

ovarian cancer, and prostate cancer than in normal 

samples. In addition, higher expression was found in 

pancreatic cancer and other cancer samples than in the 

corresponding normal samples, and the expression 

levels in some cancers were controversial. The specific 

data of PTGIS mRNA expression levels in various 

cancer datasets are displayed in Supplementary Table 1. 

Next, we further examined PTGIS expression in 

multiple human cancers with RNA-seq data from The 

Cancer Genome Atlas (TCGA). The expression levels 

of PTGIS between tumor and matched normal tissues in 

all TCGA datasets are shown in Figure 1B. Taken 

together, the data confirmed that the PTGIS gene was 

downregulated in multiple cancers compared to normal 

samples. 

 

Prognostic value of PTGIS in cancers 
 

To explore the correlation between PTGIS expression 

and prognosis in human cancers, we investigated the 
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effects of PTGIS expression on survival via 

PrognoScan. Eight out of thirteen cancers showed a 

potential correlation between PTGIS and prognosis 

(Supplementary Table 2). Interestingly, compared with 

low PTGIS expression, high expression of PTGIS 

indicated a better survival prognosis for overall survival 

(OS) (hazard ratio [HR]=0.63, 95% confidence interval 

[CI]=0.44 to 0.90, P=0.012) and disease specific 

survival (DSS) (HR=0.60, 95% CI=0.40 to 0.90, 

P=0.013) in breast cancer (Figure 2A and 2B). 

However, among the other three common solid tumors 

(colorectal cancer, ovarian cancer, and lung cancer), 

high PTGIS expression was associated with a worse 

prognosis than low PTGIS expression (Figure 2C–2H). 

In addition, PTGIS had no significant effect on OS in 

colorectal cancer. The survival plots generated from 

different datasets are shown in Supplementary Figure 2. 

 

Then, we further assessed the prognostic value of 

PTGIS in tumors with the Kaplan-Meier plotter, which 

is based on Affymetrix microarray data. Notably, 

PTGIS had less influence on OS in this analysis than it 

had been shown to have in the PrognoScan analysis for 

breast cancer (HR=0.89, 95% CI=0.72 to 1.1, P=0.28) 

(Figure 3A), and high PTGIS expression was correlated 

with poor prognosis in gastric cancer (OS HR=2.03, 

95% CI=1.69 to 2.44, P=7.8e-15; progression-free 

survival [PFS] HR=2.05, 95% CI=1.65 to 2.54, P=2.5e-

11) (Figure 3C and 3D). Consistent with previous 

results, patients with high expression of PTGIS had a 

poor prognosis in both lung cancer (OS HR=1.47, 95% 

CI=1.28 to 1.69, P=4.8e-08; PFS HR=2.13, 95% 

CI=1.74 to 2.6, P=3.5e-14) and ovarian cancer (OS 

HR=1.23, 95% CI=1.08 to 1.4, P=0.002; PFS HR=1.26, 

95% CI=1.11 to 1.43, P=3.1e-4) (Figure 3E–3H). Based 

on this large-sample validation analysis, these results 

suggest that high PTGIS expression implies reduced 

survival in ovarian, lung and gastric cancer. 

 

The above analyses of PTGIS were based on microarray 

data from Kaplan-Meier plotter and the PrognoScan 

database. The prognostic value of PTGIS was explored 

for various tumors with RNA-seq data from TCGA with 

the Gene Expression Profiling Interactive Analysis 

(GEPIA) website. A total of 33 cancer types were 

included in the analysis of the relationship between 

PTGIS expression and survival (Supplementary Figure 

3). Compared with downregulated PTGIS expression, 

elevated PTGIS expression was associated with worse 

OS or disease free survival (DFS) in ACC 

(adrenocortical carcinoma), BLCA (bladder urothelial 

carcinoma), COAD (colon adenocarcinoma), GBM 

(glioblastoma multiforme), KIRP (kidney renal 

papillary cell carcinoma), LUSC (lung squamous cell 

carcinoma), OV (ovarian serous cystadenocarcinoma) 

and STAD (stomach adenocarcinoma). In addition, 

 

 
 

Figure 1. Expression of PTGIS in various human tumors. (A) Increased or decreased expression of PTGIS in different tumors compared 
to normal tissues in the Oncomine database. (B) PTGIS expression of different tumor types from the TCGA database was investigated by 
TIMER (*P < 0.05, **P < 0.01, ***P < 0.001). 
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Figure 2. Survival curves of high or low expression of PTGIS in different tumors from the PrognoScan database. (A, B) High 
PTGIS expression was correlated with better OS and DSS than low PTGIS expression in the breast cancer cohort [GSE1456-GPL96 (n = 159)]. 
(C, D) High PTGIS expression was correlated with poorer DFS (n = 145) and DSS (n = 177) than low PTGIS expression in the colorectal cancer 
cohort (GSE17536). (E, F) High PTGIS expression was correlated with poorer OS and DFS than low PTGIS expression in two ovarian cancer 
cohorts [GSE8841 (n = 81) and GSE26712 (n = 185)]. (G, H) High PTGIS expression was correlated with poorer OS and DSS than low PTGIS 
expression in a lung cancer cohort (GSE14814, n = 90). OS, overall survival; DFS, disease-free survival; DSS, disease-specific survival. 
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Figure 3. Survival curves of high or low expression of PTGIS in different tumors from Kaplan-Meier plotter. (A, B) OS and DFS 
survival curves of breast cancer (n = 1,402 and n = 3,951, respectively). (C, D) OS and PFS survival curves of gastric cancer (n = 876 and n = 
641, respectively). (E, F) OS and PFS survival curves of lung cancer (n = 1,926 and n = 982, respectively). (G, H) OS and PFS survival curves of 
ovarian cancer (n = 1,656 and n = 1,435, respectively). OS, overall survival; PFS, progression-free survival; DFS, disease-free survival. 
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elevated PTGIS expression was associated with 

improved DFS for only SARC (sarcoma). These results 

demonstrate the important prognostic value of PTGIS as 

an oncogene in certain types of cancer, suggesting that 

it plays a crucial role in the progression of cancer. 

 

High expression of PTGIS deteriorates the outcomes 

of ovarian and gastric cancer patients with lymph 

node metastasis 

 

To explore the potential mechanism by which PTGIS 

expression affects prognosis, we studied the association 

between expression levels of PTGIS and clinical 

variables in ovarian (Supplementary Table 3) and 

gastric cancer patients (Supplementary Table 4). For 

serous ovarian cancer, high expression of PTGIS was 

related to reduced OS and PFS. Specifically, compared 

with low PTGIS mRNA expression, high PTGIS 

mRNA expression was correlated with worse OS and 

PFS only in stage 3 disease (OS HR = 1.2, P = 0.0398; 

PFS HR = 1.28, P = 0.0025), which includes 

involvement of retroperitoneal lymph nodes [21]. In 

addition, PTGIS high expression alone did not impair 

the OS of patients treated with optimal debulking 

surgery. For gastric cancer patients, compared with 

lower levels of PTGIS, elevated PTGIS was correlated 

with worse OS and PFS after stratification by HER2 

status, Lauren classification, or differentiation (P < 

0.05). Moreover, PTGIS expression had a significant 

prognostic correlation with the N stage. Stages N0-4 

indicate different degrees of regional lymph node 

metastasis [22]. The above results imply that the 

expression level of PTGIS can deteriorate the prognosis 

of patients with ovarian or gastric cancer with lymph 

node metastasis. 

 

The expression level of PTGIS is positively 

correlated with infiltrating immune cells in lung, 

ovarian and gastric cancers 
 

Tumor-infiltrating lymphocytes (TILs) are associated 

with sentinel lymph node metastasis and prognosis in 

tumors [23–25]. Thus, the correlation between PTGIS 

and tumor-infiltrating immune cells was assessed in 

different cancers with TIMER. We observed that PTGIS 

expression levels were significantly associated with 

tumor purity in 26 kinds of cancer, of which 23 kinds of 

cancer showed a negative correlation between PTGIS 

expression and tumor purity. In addition, PTGIS 

expression was significantly correlated with infiltrating 

immune cells, including B cells, CD4+/CD8+ T cells, 

macrophages, neutrophils, and dendritic cells, in various 

types of cancers (Figure 4 and Supplementary Figure 4). 

After the preliminary analysis of the correlation 

between PTGIS and infiltrating immune cells in various 

cancers, we then selected the specific cancers in which 

PTGIS was correlated with oncologic outcomes and 

infiltrating immune cells. It was reported that the tumor 

purity level had an impact on immune infiltration in an 

analysis of clinical sample data based on genetic testing 

[26, 27]. TIMER and GEPIA have most of the common 

transcriptomics data derived from the TCGA database 

[28, 29], so we selected the types of cancer in TIMER 

in which PTGIS had a significantly negative correlation 

with tumor purity and prognostic significance in 

GEPIA. Based on the prognostic results related to 

PTGIS from the PrognoScan, Kaplan-Meier-plotter and 

GEPIA analyses, we eventually selected LUSC, OV and 

STAD for further research on immune infiltration via 

TIMER. The PTGIS expression level had a significant 

negative correlation with tumor purity but significant 

positive correlations with the levels of 6 infiltrating 

immune cells in LUSC (Figure 4A). However, there 

were significantly negative correlations with tumor 

purity (r = -0.481, P = 2.01e-29) and the level of 

infiltrating B cells (r = -0.168, P = 2.15e-04) and a 

positive correlation with only macrophages (r = 0.134, P 

= 3.23e-03) in OV (Figure 4B). Interestingly, there was 

no significant correlation with tumor purity (r = -0.045, 

P = 3.77e-01) and the level of infiltrating B cells (r = -

0.09, P = 8.42e-02) but significant positive correlations 

with the levels of infiltrating CD8+ T cells (r = 0.25, P 

= 1.13e-06), CD4+ T cells (r = 0.477, P =3.63e-22), 

macrophages (r = 0.638, P = 1.12e-43), neutrophils (r = 

0.218, P = 2.30e-05), and DCs (r = 0.443, P = 2.68e-19) 

in STAD (Figure 4C). These findings strongly 

demonstrate that PTGIS could recruit immune cells in 

the tumor microenvironment (TME) in LUSC, OV and 

STAD, especially on macrophages. 

 

Correlation analysis between PTGIS and markers of 

infiltrating immune cells 
 

To explore the effects of PTGIS expression on tumor-

infiltrating immune cells, we analyzed the relationships 

between PTGIS expression and various markers of 

immune cells in LUSC, OV, and STAD via public 

databases. We selected some of the infiltrating immune 

cells, including innate immune cells (Supplementary 

Table 5) and adaptive immune cells (Supplementary 

Table 6), and analyzed the relationship between PTGIS 

and specific markers of these immune cells in LUSC, 

OV and STAD (Figure 5). In LUSC and STAD, the 

changes in correlation coefficients between the 

expression level of PTGIS and the expression of gene 

marker sets of different immune cells were not 

significant after adjustment for purity. However, the 

association between PTGIS and immune markers 

changed dramatically in OV. It is worth noting that the 

correlation between PTGIS and various immune cell 

markers was significantly increased without adjustment 

for purity. 
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Specifically, we found that PTGIS expression was more 

highly correlated with gene markers of 

monocytes/macrophages (monocytes, TAMs, and M2 

macrophages) than with gene markers of other 

infiltrating immune cells in LUSC, OV and STAD 

(Supplementary Table 5). In addition, we determined 

the correlation coefficients between PTGIS and specific 

markers of monocytes, TAMs, M1 macrophages, and 

M2 macrophages in LUSC, OV and STAD (Figure 5). 

We further investigated the relationship between PTGIS 

and the above gene markers of immune cells in normal 

tissues and tumors using the GEPIA database. Notably, 

there was no correlation between PTGIS and most 

immune markers of monocytes and TAMs in normal 

lung tissues. The results of the correlation were 

generally consistent with those of the TIMER analysis 

in tumors (Supplementary Table 7). These results imply 

that PTGIS likely plays a promoting role in the 

regulation of macrophage polarization in LUSC, OV, 

and STAD. 

 

Elevated PTGIS expression levels were associated with 

a high degree of Tregs infiltration in LUSC, OV and 

STAD, and Tregs markers such as FOXP3, STAT5B, 

TGFB1, and IL2RA also showed obvious correlations 

with PTGIS expression (Supplementary Table 6). These 

results suggest a strong positive correlation between 

PTGIS and Tregs infiltration. There is evidence that 

Tregs can negatively regulate CD8+ T cell and natural 

killer cell responses to tumor cells as well as promote 

angiogenesis and metastasis [30]. Whether PTGIS is a 

pivotal factor that activates Tregs and tumor 

progression still needs further study. 

 

Furthermore, we also observed a significant positive 

correlation between PTGIS and some of the markers of 

Tregs and T cell exhaustion, including FOXP3, 

STAT5B, TGFB1 (TGFβ), IL2RA (CD25), and 

HAVCR2 (TIM-3), in LUSC, OV, and STAD. FOXP3 

has a crucial role in the development and function of 

Tregs, and excessive Tregs could prevent the immune 

system from destroying cancer cells and promote cancer 

progression [31]. Interestingly, PTGIS expression also 

has a positive correlation with TIM-3, an important 

gene mediating T cell exhaustion and macrophage 

activation; the presence of the exhausted phenotype 

downregulates the immune response in tumor-bearing 

hosts [32, 33]. Therefore, these results further confirm

 

 
 

Figure 4. Correlation of PTGIS expression with immune infiltration level in LUSC (lung squamous cell carcinoma), OV (ovarian 
serous cystadenocarcinoma) and STAD (stomach adenocarcinoma). (A) PTGIS expression was significantly negatively related to 
tumor purity and had significant positive correlations with the levels of infiltrating B cells, CD8+ T cells, CD4+ T cells, macrophages, 
neutrophils, and dendritic cells in LUSC (n = 496). (B) PTGIS expression was significantly negatively related to tumor purity and the levels of 
infiltrating B cells but has no significant correlations with the levels of infiltrating CD8+ T cells, CD4+ T cells, neutrophils, and dendritic cells in 
OV. PTGIS expression showed a very weak positive correlation with macrophage infiltration in OV (n = 537). (C) PTGIS expression had no 
significant correlations with tumor purity and the levels of infiltrating B cells but had significant positive correlations with the levels of 
infiltrating CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in STAD (n= 407). 
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the correlation between PTGIS and infiltrating immune 

cells in the microenvironment of LUSC, OV, and STAD 

and indicate that PTGIS promotes significantly to the 

process of tumor immune escape. 

 

DISCUSSION 
 

PTGIS is a member of the P450 superfamily and a 

membrane protein that localizes to the endoplasmic 

reticulum. It is widely expressed in various tissues, 

especially in the lung, ovary, skeletal muscle and 

prostate. The main product of this enzyme is PGI2, 

which is the major metabolite of AA and a potent 

vasodilator and platelet aggregation inhibitor [14]. 

Although studies of PTGIS are still few, it is known that 

PTGIS may play an important role in tumorigenesis and 

cancer development in colon cancer, lung cancer, breast 

cancer, and head and neck cancer [17, 18, 34, 35]. In 

addition, PGI2, as a product of PTGIS, has a pro-

inflammatory effect that increases microvascular 

permeability and an anti-inflammatory effect that 

stimulates T cell IL-10 production [36]. Furthermore, it 

was reported that PGI2 signaling could increase 

immature dendritic cell migration and inhibit immune 

responses [37]. In our study, we observed that the 

PTGIS expression level was associated with the 

prognosis of various cancers. Compared with low 

PTGIS expression, elevated PTGIS was associated with 

a poorer outcome in LUSC, OV, and STAD. Notably, 

high expression of PTGIS could significantly impair the 

prognosis of patients with lymph node metastasis in 

ovarian or gastric cancer. In addition, our further 

analysis showed that immune cell infiltration levels and 

various immunological markers were associated with 

PTGIS expression levels in LUSC, OV, and STAD. 

Therefore, our study provides clues to shed light on the 

potential effects of PTGIS in the TME and its 

application as a prognostic biomarker. 

 

In our research, PTGIS mRNA expression profiles and 

prognosis were analyzed with datasets from multiple 

kinds of cancer from Oncomine and TCGA. In the 

comparison of various cancers with normal tissues, we 

observed differences in PTGIS expression. According to 

the analysis of the Oncomine data, PTGIS showed low 

expression in most tumors compared to that in normal 

tissues, and the TCGA data confirmed these results in 

BLCA, BRCA, COAD, ESCA, HNSC, KICH, KIRC, 

KIRP, LIHC, LUAD, LUSC, PRAD, READ, SKCM, 

STAD, THCA and UCEC (Figure 1A and 1B). It has 

been reported in the literature that hypermethylation of 

gene promoters leads to transcriptional silencing as a 

common event in cancer, and hypermethylation of the 

PTGIS promoter was also detected in colorectal cancer 

[16]. Because of the differences in data collection and 

processing mechanisms between different databases, the

 

 
 

Figure 5. PTGIS expression correlated with macrophage polarization in LUSC (lung squamous cell carcinoma), OV (ovarian 
serous cystadenocarcinoma) and STAD (stomach adenocarcinoma). Markers included CD14, CD86 and FCGR3A for monocytes; 
CD68, CCL2 and CCL5 for TAMs (tumor-associated macrophages); NOS2, CXCL10, and TNF for M1 macrophages; and MRC1, CD163, and IL10 
for M2 macrophages. (A–D) Scatterplots of correlation between PTGIS expression and the expression of gene markers of monocytes (A), 
TAMs (B), and M1 (C) and M2 macrophages (D) in LUSC (n = 496). (E–H) Scatterplots of correlation between PTGIS expression and the 
expression of gene markers of monocytes (E), TAMs (F), and M1 (G) and M2 macrophages (H) in OV (n = 537). (I–L) Scatterplots of 
correlation between PTGIS expression and the expression of gene markers of monocytes (A), TAMs (B), and M1 (C) and M2 macrophages 
(D) in STAD (n= 407). 
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expression of and prognosis related to PTGIS may be 

inconsistent in these data. For example, high expression 

of PTGIS was associated with a good prognosis for 

breast cancer patients in PrognoScan, while there was 

no significant effect on prognosis in Kaplan-Meier-

plotter and the GEPIA database. However, in these 

databases, we found consistent results regarding 

prognosis in lung, ovarian, and gastric cancers (Figure 3 

and Supplementary Figure 3). Moreover, compared with 

low expression of PTGIS, elevated expression of PTGIS 

was revealed to be associated with poorer survival 

outcomes for patients with stage 3 disease, patients with 

wild-type TP53, and patients treated with suboptimal 

debulking surgery in ovarian cancer, as well as for 

patients with advanced-stage disease or lymph node 

metastasis in gastric cancer. In summary, these results 

powerfully demonstrate that PTGIS is a prognostic 

marker for lung, ovarian, and gastric cancers. 

 

We found that PTGIS expression was associated with 

tumor immune cell infiltration in lung, ovarian, and 

gastric cancers. It was reported that the types of tumor-

infiltrating immune cells could be determined from 

statistical approaches using tumor RNA-seq data of a 

series of immune cell-specific genes [38]. However, 

tumor purity can confuse such genomic sequencing 

analyses, and thus, coexpression analysis should use 

partial correlation analysis to adjust for tumor purity 

[39]. After purity adjustment, we found that the 

correlation of genes obviously changed, especially the 

values in ovarian cancer, which were the most 

significant changes (Supplementary Tables 5 and 6). 

Interestingly, immune-specific genes of M1 

macrophages, such as NOS2, CXCL10, and TNF, 

displayed weak or no correlations with PTGIS, but M2 

macrophage genes, such as MRC1, CD163, and IL10, 

displayed relatively strong correlations (Supplementary 

Tables 5 and 7). These findings suggest a possible 

activating effect of PTGIS in the polarization of TAMs. 

Moreover, our other findings imply that PTGIS also 

influences Tregs activation and induces T cell 

exhaustion to some extent. Increased expression of 

PTGIS was positively correlated with the expression of 

Tregs and T cell exhaustion markers (Supplementary 

Table 6). These correlations may indicate a potential 

mechanism by which PTGIS suppresses T cell function 

in LUSC, OV, and STAD. Therefore, the above results 

show that PTGIS plays a vital role in infiltrating 

immune cell recruitment and functional suppression in 

the TME. 

 

Previous studies have provided possible explanations 

for why PTGIS expression in a tumor is associated with 

immune infiltration and poor prognosis. Platelets are the 

"first responders" to cancer and metastasis, and this 

initial role of platelets depends on the metabolism of 

prostacyclins; in addition, pharmacological, clinical, 

and epidemiological studies indicate that nonsteroidal 

anti-inflammatory drugs (NSAIDs), which target 

cyclooxygenases, could help prevent cancer [40]. PGI2 

is the primary metabolite of PTGIS, and the 5-year 

survival rate of lung cancer patients with high 

expression of PGI2 is significantly worse than that of 

lung cancer patients with low expression of PGI2 [41]. 

PGI2, as a precursor of protumorigenic metabolites, not 

only promotes cancer growth by activating peroxisome 

proliferator-activated receptor δ (PPARδ) and increases 

the expression levels of the proangiogenic factor 

vascular endothelial growth factor [42] but also seems 

to act primarily on TAMs, which promote all aspects of 

cancer growth and progression [43]. PTGIS may be a 

crucial factor leading to increased accumulation of 

PGI2 in tumors and may affect the release of 

inflammatory factors through the synergistic action of 

the AA pathway, leading to the recruitment of various 

immune cells in the TME. PGI2 could regulate the 

innate immune system, including dendritic cells, 

macrophages, and monocytes, by increasing anti-

inflammatory IL-10 and decreasing TNF-a, IL-1a, IL-6, 

and IL-12 [44]. Additionally, PGI2 displays an 

immunosuppressive capability via elevation of cAMP 

levels and downregulation of NF-kB [45]. The release 

cytokines and growth factors into the TME are crucial 

for tumor progression. Thus, the interaction between the 

AA pathway and the TME may be a likely reason 

explaining why elevated PTGIS leads to poorer 

outcomes in LUSC, OV, and STAD. 

 

There are some limitations in this study. Since our study 

is based on data from public databases, it may have 

biases resulting from confounding factors. Moreover, 

the mechanisms by which PTGIS polarizes M1 

macrophages into M2 macrophages are also unclear and 

need to be uncovered in future studies. 

 

Our results showed that, compared with low PTGIS, 

elevated PTGIS suggested worse survival outcomes and 

promoted immune cell infiltration in diverse tumors. In 

addition, in lung, ovarian, and gastric cancers, the 

PTGIS expression level was closely related to the 

activation of immune cells, especially TAMs and Tregs, 

as well as T cell exhaustion. Thus, PTGIS may play a 

role of immune suppression by affecting tumor-

infiltrating immune cells and be used as a prognostic 

marker for lung, ovarian and gastric cancer patients. 

 

MATERIALS AND METHODS 
 

Oncomine database analysis 
 

PTGIS expression levels in different tumors were 

analyzed via the Oncomine database (https://www. 

https://www.oncomine.org/
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oncomine.org) [46, 47]. The threshold settings were as 

follows: gene ranking of top 10%, fold change of 2.0, 

and P-value of 1E-4. 

 

PrognoScan database analysis 

 

PrognoScan (http://dna00.bio.kyutech.ac.jp/PrognoScan/) 

[48] is a powerful platform that contains a great number of 

publicly available cancer microarray datasets with 

corresponding clinical information and is also a tool for 

assessing the biological relationship between gene 

expression and clinical outcomes. The associations 

between PTGIS expression levels and different cancer 

patient prognoses were obtained from the PrognoScan 

database. The threshold was specified as a P-value < 0.05. 

 

Kaplan-Meier-plotter database analysis 
 

Kaplan-Meier plotter was used to analyze the 

association of PTGIS expression with prognosis in 

5,353 breast, 3,091 ovarian, 2,909 lung, and 1,517 

gastric cancer patients (http://kmplot.com/analysis/) 

[49]. The number of patients at risk at certain time 

points between subgroups based on gene expression 

status is provided in Kaplan-Meier survival plots. The 

hazard ratio (HRs), 95% confidence intervals (CIs) and 

log-rank P-values were calculated. A P-value <0.05 was 

considered statistically significant. 

 

TIMER database analysis 
 

Tumor Immune Estimation Resource (TIMER) is a 

powerful computational tool for the systematic analysis 

of immune cell infiltration according to RNA 

sequencing data from various tumors (https://cistrome. 

shinyapps.io/timer/) [28, 50]. The expression of PTGIS 

in various cancers and its correlation with the 

abundances of six tumor-infiltrating immune cells 

(TIICs) (B cells, CD4+ T cells, CD8+ T cells, 

macrophages, neutrophils, and dendritic cells) was 

analyzed by the corresponding functional modules. 

According to related references [51–53] and the 

CellMarker database (http://biocc.hrbmu.edu.cn/ 

CellMarker/) [54], a total of 66 related gene markers of 

TIICs were used for the analysis. The expression scatter 

plots between PTGIS and immune-related gene markers 

based on a specific cancer type were generated by 

correlation modules, and Spearman's correlation 

coefficient and the P-value are displayed. Gene 

expression levels are shown as log2 RSEM values. 

 

Gene correlation analysis in GEPIA 
 

There is a new interactive web server for analyzing and 

visualizing RNA sequencing expression data called 

Gene Expression Profiling Interactive Analysis 

(GEPIA) (http://gepia.cancer-pku.cn/index.html) [29]. 

GEPIA is based on data from 9,736 tumors and 8,587 

normal tissues from TCGA [55] and the Genotype-Tissue 

Expression (GTEx) Project [56], which was used to 

confirm the gene correlation analysis in TIMER. The 

survival plots of 33 different types of cancer were 

analyzed by GEPIA depending on the expression levels 

of a gene with the log-rank test. Gene expression 

correlation analysis was performed on tumor tissues and 

normal tissues using TCGA and GTEx datasets. The 

correlation coefficient was calculated by the Spearman 

method. PTGIS expression is displayed on the x-axis, 

and the expression of other genes is shown on the y-axis. 

 

Statistical methods 

 

PrognoScan and Kaplan-Meier plots were used to 

obtain curves related to survival outcomes, including 

overall survival (OS), disease-free survival (DFS), and 

disease-specific survival (DSS). Gene expression 

profiling results from Oncomine are shown with gene 

rankings, fold changes, and P-values. All the data were 

from Kaplan-Meier plotter, PrognoScan, and GEPIA, 

and the results are displayed with P-values based on a 

log-rank test and a hazard ratio (HR). Spearman's 

correlation coefficients and P-values were used to 

evaluate gene correlation. P-values less than 0.05 were 

considered statistically significant. The flow diagram is 

displayed in Supplementary Figure 1. 

 

AUTHOR CONTRIBUTIONS 
 

DD, BC, YF, and JL contributed to the conception and 

design of the study. WW, YJ, and HH contributed to 

data collection. DD, BC, YF, and HH analyzed and 

interpreted the data. DD, BC, and YF drafted the report, 

which was critically revised for important intellectual 

content by HH and JL. All authors approved the final 

version of the report. 

 

CONFLICTS OF INTEREST 
 

The authors declare no potential conflicts of interest. 

 

FUNDING 
 

This work was supported by the National Natural 

Science Foundation of China (grant number 81772782). 

and the High-level Hospital Construction Project (grant 

number DFJH201921). 

 

REFERENCES 
 

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. 
CA Cancer J Clin. 2019; 69:7–34. 

 https://doi.org/10.3322/caac.21551 PMID:30620402 

https://www.oncomine.org/
http://dna00.bio.kyutech.ac.jp/PrognoScan/
http://kmplot.com/analysis/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
http://biocc.hrbmu.edu.cn/CellMarker/
http://biocc.hrbmu.edu.cn/CellMarker/
http://gepia.cancer-pku.cn/index.html
https://doi.org/10.3322/caac.21551
https://pubmed.ncbi.nlm.nih.gov/30620402


 

www.aging-us.com 9668 AGING 

2. Helmy KY, Patel SA, Nahas GR, Rameshwar P. Cancer 
immunotherapy: accomplishments to date and future 
promise. Ther Deliv. 2013; 4:1307–20. 

 https://doi.org/10.4155/tde.13.88 PMID:24116914 

3. Blank CU, Rozeman EA, Fanchi LF, Sikorska K, van de 
Wiel B, Kvistborg P, Krijgsman O, van den Braber M, 
Philips D, Broeks A, van Thienen JV, Mallo HA, 
Adriaansz S, et al. Neoadjuvant versus adjuvant 
ipilimumab plus nivolumab in macroscopic stage III 
melanoma. Nat Med. 2018; 24:1655–61. 

 https://doi.org/10.1038/s41591-018-0198-0 
 PMID:30297911 

4. Huang AC, Orlowski RJ, Xu X, Mick R, George SM, Yan 
PK, Manne S, Kraya AA, Wubbenhorst B, Dorfman L, 
D’Andrea K, Wenz BM, Liu S, et al. A single dose of 
neoadjuvant PD-1 blockade predicts clinical outcomes 
in resectable melanoma. Nat Med. 2019; 25:454–61. 

 https://doi.org/10.1038/s41591-019-0357-y 
 PMID:30804515 

5. Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell 
TR, Hellmann MD, Zahurak M, Yang SC, Jones DR, 
Broderick S, Battafarano RJ, Velez MJ, Rekhtman N, et 
al. Neoadjuvant PD-1 blockade in resectable lung 
cancer. N Engl J Med. 2018; 378:1976–86. 

 https://doi.org/10.1056/NEJMoa1716078 
 PMID:29658848 

6. Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, 
Gupta S, Eder JP, Golan T, Le DT, Burtness B, McRee AJ, 
Lin CC, Pathiraja K, et al. Pembrolizumab for patients 
with PD-L1-positive advanced gastric cancer (KEYNOTE-
012): a multicentre, open-label, phase 1b trial. Lancet 
Oncol. 2016; 17:717–26. 

 https://doi.org/10.1016/S1470-2045(16)00175-3 
 PMID:27157491 

7. Konstantinopoulos PA, Waggoner S, Vidal GA, Mita M, 
Moroney JW, Holloway R, Van Le L, Sachdev JC, 
Chapman-Davis E, Colon-Otero G, Penson RT, 
Matulonis UA, Kim YB, et al. Single-arm phases 1 and 2 
trial of niraparib in combination with pembrolizumab 
in patients with recurrent platinum-resistant ovarian 
carcinoma. JAMA Oncol. 2019. [Epub ahead of print]. 

 https://doi.org/10.1001/jamaoncol.2019.1048 
 PMID:31194228 

8. Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, 
Gravis G, Ganju V, Polikoff J, Saad F, Humanski P, 
Piulats JM, Gonzalez Mella P, Ng SS, et al. Randomized, 
double-blind, phase III trial of ipilimumab versus 
placebo in asymptomatic or minimally symptomatic 
patients with metastatic chemotherapy-naive 
castration-resistant prostate cancer. J Clin Oncol. 2017; 
35:40–47. 

 https://doi.org/10.1200/JCO.2016.69.1584 
 PMID:28034081 

9. Ciardiello D, Vitiello PP, Cardone C, Martini G, Troiani T, 
Martinelli E, Ciardiello F. Immunotherapy of colorectal 
cancer: challenges for therapeutic efficacy. Cancer 
Treat Rev. 2019; 76:22–32. 

 https://doi.org/10.1016/j.ctrv.2019.04.003 
 PMID:31079031 

10. Kato S, Goodman A, Walavalkar V, Barkauskas DA, 
Sharabi A, Kurzrock R. Hyperprogressors after 
immunotherapy: analysis of genomic alterations 
associated with accelerated growth rate. Clin Cancer 
Res. 2017; 23:4242–50. 

 https://doi.org/10.1158/1078-0432.CCR-16-3133 
 PMID:28351930 

11. Becht E, Giraldo NA, Dieu-Nosjean MC, Sautès-Fridman 
C, Fridman WH. Cancer immune contexture and 
immunotherapy. Curr Opin Immunol. 2016; 39:7–13. 

 https://doi.org/10.1016/j.coi.2015.11.009 
 PMID:26708937 

12. Beyrend G, van der Gracht E, Yilmaz A, van Duikeren S, 
Camps M, Höllt T, Vilanova A, van Unen V, Koning F, de 
Miranda NF, Arens R, Ossendorp F. PD-L1 blockade 
engages tumor-infiltrating lymphocytes to co-express 
targetable activating and inhibitory receptors. J 
Immunother Cancer. 2019; 7:217. 

 https://doi.org/10.1186/s40425-019-0700-3 
 PMID:31412943 

13. Hutchinson L. Immunotherapy: exploiting PD-1 on 
TAMs for tumour cell kill. Nat Rev Clin Oncol. 2017; 
14:392–93. 

 https://doi.org/10.1038/nrclinonc.2017.87 
 PMID:28607517 

14. Yokoyama C, Yabuki T, Inoue H, Tone Y, Hara S, Hatae 
T, Nagata M, Takahashi EI, Tanabe T. Human gene 
encoding prostacyclin synthase (PTGIS): genomic 
organization, chromosomal localization, and promoter 
activity. Genomics. 1996; 36:296–304. 

 https://doi.org/10.1006/geno.1996.0465 
 PMID:8812456 

15. Ershov PV, Mezentsev YV, Kopylov AT, Yablokov EO, 
Svirid AV, Lushchyk AY, Kaluzhskiy LA, Gilep AA, Usanov 
SA, Medvedev AE, Ivanov AS. Affinity isolation and 
mass spectrometry identification of prostacyclin 
synthase (PTGIS) subinteractome. Biology (Basel). 
2019; 8:49. 

 https://doi.org/10.3390/biology8020049 
 PMID:31226805 

16. Frigola J, Muñoz M, Clark SJ, Moreno V, Capellà G, 
Peinado MA. Hypermethylation of the prostacyclin 
synthase (PTGIS) promoter is a frequent event in 
colorectal cancer and associated with aneuploidy. 
Oncogene. 2005; 24:7320–26. 

 https://doi.org/10.1038/sj.onc.1208883 
 PMID:16007128 

https://doi.org/10.4155/tde.13.88
https://pubmed.ncbi.nlm.nih.gov/24116914
https://doi.org/10.1038/s41591-018-0198-0
https://pubmed.ncbi.nlm.nih.gov/30297911
https://doi.org/10.1038/s41591-019-0357-y
https://pubmed.ncbi.nlm.nih.gov/30804515
https://doi.org/10.1056/NEJMoa1716078
https://pubmed.ncbi.nlm.nih.gov/29658848
https://doi.org/10.1016/S1470-2045(16)00175-3
https://pubmed.ncbi.nlm.nih.gov/27157491
https://doi.org/10.1001/jamaoncol.2019.1048
https://pubmed.ncbi.nlm.nih.gov/31194228
https://doi.org/10.1200/JCO.2016.69.1584
https://pubmed.ncbi.nlm.nih.gov/28034081
https://doi.org/10.1016/j.ctrv.2019.04.003
https://pubmed.ncbi.nlm.nih.gov/31079031
https://doi.org/10.1158/1078-0432.CCR-16-3133
https://pubmed.ncbi.nlm.nih.gov/28351930
https://doi.org/10.1016/j.coi.2015.11.009
https://pubmed.ncbi.nlm.nih.gov/26708937
https://doi.org/10.1186/s40425-019-0700-3
https://pubmed.ncbi.nlm.nih.gov/31412943
https://doi.org/10.1038/nrclinonc.2017.87
https://pubmed.ncbi.nlm.nih.gov/28607517
https://doi.org/10.1006/geno.1996.0465
https://pubmed.ncbi.nlm.nih.gov/8812456
https://doi.org/10.3390/biology8020049
https://pubmed.ncbi.nlm.nih.gov/31226805
https://doi.org/10.1038/sj.onc.1208883
https://pubmed.ncbi.nlm.nih.gov/16007128


 

www.aging-us.com 9669 AGING 

17. Abraham JE, Harrington P, Driver KE, Tyrer J, Easton 
DF, Dunning AM, Pharoah PD. Common 
polymorphisms in the prostaglandin pathway genes 
and their association with breast cancer susceptibility 
and survival. Clin Cancer Res. 2009; 15:2181–91. 

 https://doi.org/10.1158/1078-0432.CCR-08-0716 
 PMID:19276290 

18. Lichao S, Liang P, Chunguang G, Fang L, Zhihua Y, 
Yuliang R. Overexpression of PTGIS could predict liver 
metastasis and is correlated with poor prognosis in 
colon cancer patients. Pathol Oncol Res. 2012; 
18:563–69. 

 https://doi.org/10.1007/s12253-011-9478-4 
 PMID:22109564 

19. Zhou W, Zhang J, Goleniewska K, Dulek DE, Toki S, 
Newcomb DC, Cephus JY, Collins RD, Wu P, Boothby 
MR, Peebles RS Jr. Prostaglandin I2 suppresses 
proinflammatory chemokine expression, CD4 T cell 
activation, and STAT6-independent allergic lung 
inflammation. J Immunol. 2016; 197:1577–86. 

 https://doi.org/10.4049/jimmunol.1501063 
 PMID:27456482 

20. Liu W, Li H, Zhang X, Wen D, Yu F, Yang S, Jia X, Cong B, 
Ma C. Prostaglandin I2-IP signalling regulates human 
Th17 and treg cell differentiation. Prostaglandins 
Leukot Essent Fatty Acids. 2013; 89:335–44. 

 https://doi.org/10.1016/j.plefa.2013.08.006 
 PMID:24035274 

21. Kandukuri SR, Rao J. FIGO 2013 staging system for 
ovarian cancer: what is new in comparison to the 1988 
staging system? Curr Opin Obstet Gynecol. 2015; 
27:48–52. 

 https://doi.org/10.1097/GCO.0000000000000135 
 PMID:25490382 

22. Japanese Gastric Cancer Association. Japanese gastric 
cancer treatment guidelines 2014 (Ver. 4). Gastric 
Cancer. 2017; 20:1–19. 

 https://doi.org/10.1007/s10120-016-0622-4 
 PMID:27342689 

23. Azimi F, Scolyer RA, Rumcheva P, Moncrieff M, Murali 
R, McCarthy SW, Saw RP, Thompson JF. Tumor-
infiltrating lymphocyte grade is an independent 
predictor of sentinel lymph node status and survival in 
patients with cutaneous melanoma. J Clin Oncol. 2012; 
30:2678–83. 

 https://doi.org/10.1200/JCO.2011.37.8539 
 PMID:22711850 

24. Taylor RC, Patel A, Panageas KS, Busam KJ, Brady MS. 
Tumor-infiltrating lymphocytes predict sentinel lymph 
node positivity in patients with cutaneous melanoma. J 
Clin Oncol. 2007; 25:869–75. 

 https://doi.org/10.1200/JCO.2006.08.9755 
 PMID:17327608 

25. Wolf GT, Chepeha DB, Bellile E, Nguyen A, Thomas D, 
McHugh J, and University of Michigan Head and Neck 
SPORE Program. Tumor infiltrating lymphocytes (TIL) 
and prognosis in oral cavity squamous carcinoma: a 
preliminary study. Oral Oncol. 2015; 51:90–95. 

 https://doi.org/10.1016/j.oraloncology.2014.09.006 
 PMID:25283344 

26. Van Loo P, Nordgard SH, Lingjærde OC, Russnes HG, 
Rye IH, Sun W, Weigman VJ, Marynen P, Zetterberg A, 
Naume B, Perou CM, Børresen-Dale AL, Kristensen VN. 
Allele-specific copy number analysis of tumors. Proc 
Natl Acad Sci USA. 2010; 107:16910–15. 

 https://doi.org/10.1073/pnas.1009843107 
 PMID:20837533 

27. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, 
Zack T, Laird PW, Onofrio RC, Winckler W, Weir BA, 
Beroukhim R, Pellman D, Levine DA, et al. Absolute 
quantification of somatic DNA alterations in human 
cancer. Nat Biotechnol. 2012; 30:413–21. 

 https://doi.org/10.1038/nbt.2203 
 PMID:22544022 

28. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B, Liu 
XS. TIMER: a web server for comprehensive analysis of 
tumor-infiltrating immune cells. Cancer Res. 2017; 
77:e108–e110. 

 https://doi.org/10.1158/0008-5472.CAN-17-0307 
 PMID:29092952 

29. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web 
server for cancer and normal gene expression profiling 
and interactive analyses. Nucleic Acids Res. 2017; 
45:W98–W102. 

 https://doi.org/10.1093/nar/gkx247 
 PMID:28407145 

30. Marshall EA, Ng KW, Kung SH, Conway EM, Martinez 
VD, Halvorsen EC, Rowbotham DA, Vucic EA, Plumb 
AW, Becker-Santos DD, Enfield KS, Kennett JY, 
Bennewith KL, et al. Emerging roles of T helper 17 and 
regulatory T cells in lung cancer progression and 
metastasis. Mol Cancer. 2016; 15:67. 

 https://doi.org/10.1186/s12943-016-0551-1 
 PMID:27784305 

31. Wang X, Lang M, Zhao T, Feng X, Zheng C, Huang C, 
Hao J, Dong J, Luo L, Li X, Lan C, Yu W, Yu M, et al. 
cancer-FOXP3 directly activated CCL5 to recruit FOXP3+ 
treg cells in pancreatic ductal adenocarcinoma. 
Oncogene. 2017; 36:3048–58. 

 https://doi.org/10.1038/onc.2016.458 PMID:27991933 

32. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo 
VK, Anderson AC. Targeting tim-3 and PD-1 pathways 
to reverse T cell exhaustion and restore anti-tumor 
immunity. J Exp Med. 2010; 207:2187–94. 

 https://doi.org/10.1084/jem.20100643 
 PMID:20819927 

https://doi.org/10.1158/1078-0432.CCR-08-0716
https://pubmed.ncbi.nlm.nih.gov/19276290
https://doi.org/10.1007/s12253-011-9478-4
https://pubmed.ncbi.nlm.nih.gov/22109564
https://doi.org/10.4049/jimmunol.1501063
https://pubmed.ncbi.nlm.nih.gov/27456482
https://doi.org/10.1016/j.plefa.2013.08.006
https://pubmed.ncbi.nlm.nih.gov/24035274
https://doi.org/10.1097/GCO.0000000000000135
https://pubmed.ncbi.nlm.nih.gov/25490382
https://doi.org/10.1007/s10120-016-0622-4
https://pubmed.ncbi.nlm.nih.gov/27342689
https://doi.org/10.1200/JCO.2011.37.8539
https://pubmed.ncbi.nlm.nih.gov/22711850
https://doi.org/10.1200/JCO.2006.08.9755
https://pubmed.ncbi.nlm.nih.gov/17327608
https://doi.org/10.1016/j.oraloncology.2014.09.006
https://pubmed.ncbi.nlm.nih.gov/25283344
https://doi.org/10.1073/pnas.1009843107
https://pubmed.ncbi.nlm.nih.gov/20837533
https://doi.org/10.1038/nbt.2203
https://pubmed.ncbi.nlm.nih.gov/22544022
https://doi.org/10.1158/0008-5472.CAN-17-0307
https://pubmed.ncbi.nlm.nih.gov/29092952
https://doi.org/10.1093/nar/gkx247
https://pubmed.ncbi.nlm.nih.gov/28407145
https://doi.org/10.1186/s12943-016-0551-1
https://pubmed.ncbi.nlm.nih.gov/27784305
https://doi.org/10.1038/onc.2016.458
https://pubmed.ncbi.nlm.nih.gov/27991933
https://doi.org/10.1084/jem.20100643
https://pubmed.ncbi.nlm.nih.gov/20819927


 

www.aging-us.com 9670 AGING 

33. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, 
Chernova T, Manning S, Greenfield EA, Coyle AJ, Sobel 
RA, Freeman GJ, Kuchroo VK. Th1-specific cell surface 
protein tim-3 regulates macrophage activation and 
severity of an autoimmune disease. Nature. 2002; 
415:536–41. 

 https://doi.org/10.1038/415536a 
 PMID:11823861 

34. Cathcart MC, Al-Sarraf N, Boyle E, O'Byrne KJ, Pidgeon 
GP, Gray SG. 66 Prostacyclin synthase (PTGIS): 
expression and epigenetic regulation in lung cancer. 
Lung Cancer. 2007; 57:S18. 

 https://doi.org/10.1016/S0169-5002(07)70392-6 

35. Lee WT, Huang CC, Chen KC, Wong TY, Ou CY, Tsai ST, 
Yen CJ, Fang SY, Lo HI, Wu YH, Hsueh WT, Yang MW, 
Lin FC, et al. Genetic polymorphisms in the 
prostaglandin pathway genes and risk of head and 
neck cancer. Oral Dis. 2015; 21:207–15. 

 https://doi.org/10.1111/odi.12244 
 PMID:24724948 

36. Takahashi Y, Tokuoka S, Masuda T, Hirano Y, Nagao M, 
Tanaka H, Inagaki N, Narumiya S, Nagai H. 
Augmentation of allergic inflammation in prostanoid IP 
receptor deficient mice. Br J Pharmacol. 2002; 
137:315–22. 

 https://doi.org/10.1038/sj.bjp.0704872 
 PMID:12237250 

37. Toki S, Goleniewska K, Huckabee MM, Zhou W, 
Newcomb DC, Fitzgerald GA, Lawson WE, Peebles RS 
Jr. PGI₂ signaling inhibits antigen uptake and increases 
migration of immature dendritic cells. J Leukoc Biol. 
2013; 94:77–88. 

 https://doi.org/10.1189/jlb.1112559 
 PMID:23625201 

38. Finotello F, Trajanoski Z. Quantifying tumor-infiltrating 
immune cells from transcriptomics data. Cancer 
Immunol Immunother. 2018; 67:1031–40. 

 https://doi.org/10.1007/s00262-018-2150-z 
 PMID:29541787 

39. Aran D, Sirota M, Butte AJ. Systematic pan-cancer 
analysis of tumour purity. Nat Commun. 2015; 6:8971. 

 https://doi.org/10.1038/ncomms9971 
 PMID:26634437 

40. Kanikarla-Marie P, Kopetz S, Hawk ET, Millward SW, 
Sood AK, Gresele P, Overman M, Honn K, Menter DG. 
Bioactive lipid metabolism in platelet “first responder” 
and cancer biology. Cancer Metastasis Rev. 2018; 
37:439–54. 

 https://doi.org/10.1007/s10555-018-9755-8 
 PMID:30112590 

41. Xin C, Chu L, Zhang L, Geng D, Wang Y, Sun D, Sui P, 
Zhao X, Gong Z, Sui M, Zhang W. Expression of 

cytosolic phospholipase A2 (cPLA2)-arachidonic acid 
(AA)-cyclooxygenase-2 (COX-2) pathway factors in lung 
cancer patients and its implication in lung cancer early 
detection and prognosis. Med Sci Monit. 2019; 
25:5543–51. 

 https://doi.org/10.12659/MSM.915314 
 PMID:31347609 

42. Wang J, Ikeda R, Che XF, Ooyama A, Yamamoto M, 
Furukawa T, Hasui K, Zheng CL, Tajitsu Y, Oka T, Tabata 
S, Nishizawa Y, Eizuru Y, Akiyama S. VEGF expression is 
augmented by hypoxia-induced PGIS in human 
fibroblasts. Int J Oncol. 2013; 43:746–54. 

 https://doi.org/10.3892/ijo.2013.1994 
 PMID:23807031 

43. Reinartz S, Finkernagel F, Adhikary T, Rohnalter V, 
Schumann T, Schober Y, Nockher WA, Nist A, Stiewe T, 
Jansen JM, Wagner U, Müller-Brüsselbach S, Müller R. 
A transcriptome-based global map of signaling 
pathways in the ovarian cancer microenvironment 
associated with clinical outcome. Genome Biol. 2016; 
17:108. 

 https://doi.org/10.1186/s13059-016-0956-6 
 PMID:27215396 

44. Dorris SL, Peebles RS Jr. PGI2 as a regulator of 
inflammatory diseases. Mediators Inflamm. 2012; 
2012:926968. 

 https://doi.org/10.1155/2012/926968 
 PMID:22851816 

45. Zhou W, Blackwell TS, Goleniewska K, O’Neal JF, 
Fitzgerald GA, Lucitt M, Breyer RM, Peebles RS Jr. 
Prostaglandin I2 analogs inhibit Th1 and Th2 effector 
cytokine production by CD4 T cells. J Leukoc Biol. 2007; 
81:809–17. 

 https://doi.org/10.1189/jlb.0606375 
 PMID:17135575 

46. Rhodes DR, Yu J, Shanker K, Deshpande N, 
Varambally R, Ghosh D, Barrette T, Pandey A, 
Chinnaiyan AM. ONCOMINE: a cancer microarray 
database and integrated data-mining platform. 
Neoplasia. 2004; 6:1–6. 

 https://doi.org/10.1016/s1476-5586(04)80047-2 
 PMID:15068665 

47. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, 
Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, 
Kincead-Beal C, Kulkarni P, Varambally S, Ghosh D, 
Chinnaiyan AM. Oncomine 3.0: genes, pathways, and 
networks in a collection of 18,000 cancer gene 
expression profiles. Neoplasia. 2007; 9:166–80. 

 https://doi.org/10.1593/neo.07112 
 PMID:17356713 

48. Mizuno H, Kitada K, Nakai K, Sarai A. PrognoScan: a 
new database for meta-analysis of the prognostic value 
of genes. BMC Med Genomics. 2009; 2:18. 

https://doi.org/10.1038/415536a
https://pubmed.ncbi.nlm.nih.gov/11823861
https://doi.org/10.1016/S0169-5002(07)70392-6
https://doi.org/10.1111/odi.12244
https://pubmed.ncbi.nlm.nih.gov/24724948
https://doi.org/10.1038/sj.bjp.0704872
https://pubmed.ncbi.nlm.nih.gov/12237250
https://doi.org/10.1189/jlb.1112559
https://pubmed.ncbi.nlm.nih.gov/23625201
https://doi.org/10.1007/s00262-018-2150-z
https://pubmed.ncbi.nlm.nih.gov/29541787
https://doi.org/10.1038/ncomms9971
https://pubmed.ncbi.nlm.nih.gov/26634437
https://doi.org/10.1007/s10555-018-9755-8
https://pubmed.ncbi.nlm.nih.gov/30112590
https://doi.org/10.12659/MSM.915314
https://pubmed.ncbi.nlm.nih.gov/31347609
https://doi.org/10.3892/ijo.2013.1994
https://pubmed.ncbi.nlm.nih.gov/23807031
https://doi.org/10.1186/s13059-016-0956-6
https://pubmed.ncbi.nlm.nih.gov/27215396
https://doi.org/10.1155/2012/926968
https://pubmed.ncbi.nlm.nih.gov/22851816
https://doi.org/10.1189/jlb.0606375
https://pubmed.ncbi.nlm.nih.gov/17135575
https://doi.org/10.1016/s1476-5586(04)80047-2
https://pubmed.ncbi.nlm.nih.gov/15068665
https://doi.org/10.1593/neo.07112
https://pubmed.ncbi.nlm.nih.gov/17356713


 

www.aging-us.com 9671 AGING 

 https://doi.org/10.1186/1755-8794-2-18 
 PMID:19393097 

49. Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, 
Li Q, Szallasi Z. An online survival analysis tool to 
rapidly assess the effect of 22,277 genes on breast 
cancer prognosis using microarray data of 1,809 
patients. Breast Cancer Res Treat. 2010; 123:725–31. 

 https://doi.org/10.1007/s10549-009-0674-9 
 PMID:20020197 

50. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, Jiang 
P, Shen H, Aster JC, Rodig S, Signoretti S, Liu JS, Liu XS. 
Comprehensive analyses of tumor immunity: 
implications for cancer immunotherapy. Genome Biol. 
2016; 17:174. 

 https://doi.org/10.1186/s13059-016-1028-7 
 PMID:27549193 

51. Danaher P, Warren S, Dennis L, D’Amico L, White A, 
Disis ML, Geller MA, Odunsi K, Beechem J, Fling SP. 
Gene expression markers of tumor infiltrating 
leukocytes. J Immunother Cancer. 2017; 5:18. 

 https://doi.org/10.1186/s40425-017-0215-8 
 PMID:28239471 

52. Denda-Nagai K, Irimura T. MGL/CD301 as a unique C-
type lectin expressed on dendritic cells and 
macrophages. In: Yamasaki S, ed. C-type lectin 
receptors in immunity. (Tokyo: Springer, 2016). 

 https://doi.org/10.1007/978-4-431-56015-9_11 

53. Zhang C, Yu X, Gao L, Zhao Y, Lai J, Lu D, Bao R, Jia B, 
Zhong L, Wang F, Liu Z. Noninvasive imaging of CD206-
positive M2 macrophages as an early biomarker for 
post-chemotherapy tumor relapse and lymph node 
metastasis. Theranostics. 2017; 7:4276–88. 

 https://doi.org/10.7150/thno.20999 
 PMID:29158825 

54. Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, Luo T, Xu 
L, Liao G, Yan M, Ping Y, Li F, Shi A, et al. CellMarker: a 
manually curated resource of cell markers in human 
and mouse. Nucleic Acids Res. 2019; 47:D721–D728. 

 https://doi.org/10.1093/nar/gky900 
 PMID:30289549 

55. Tomczak K, Czerwińska P, Wiznerowicz M. The cancer 
genome atlas (TCGA): an immeasurable source of 
knowledge. Contemp Oncol (Pozn). 2015; 19:A68–77. 

 https://doi.org/10.5114/wo.2014.47136 
 PMID:25691825 

56. GTEx Consortium. The Genotype-Tissue Expression 
(GTEx) project. Nat Genet. 2013; 45:580–5. 

 https://doi.org/10.1038/ng.2653 
 PMID:23715323 

  

https://doi.org/10.1186/1755-8794-2-18
https://pubmed.ncbi.nlm.nih.gov/19393097
https://doi.org/10.1007/s10549-009-0674-9
https://pubmed.ncbi.nlm.nih.gov/20020197
https://doi.org/10.1186/s13059-016-1028-7
https://pubmed.ncbi.nlm.nih.gov/27549193
https://doi.org/10.1186/s40425-017-0215-8
https://pubmed.ncbi.nlm.nih.gov/28239471
https://doi.org/10.1007/978-4-431-56015-9_11
https://doi.org/10.7150/thno.20999
https://pubmed.ncbi.nlm.nih.gov/29158825
https://doi.org/10.1093/nar/gky900
https://pubmed.ncbi.nlm.nih.gov/30289549
https://doi.org/10.5114/wo.2014.47136
https://pubmed.ncbi.nlm.nih.gov/25691825
https://doi.org/10.1038/ng.2653
https://www.ncbi.nlm.nih.gov/pubmed/23715323


 

www.aging-us.com 9672 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 

 
 

Supplementary Figure 1. Flow diagram. 
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Supplementary Figure 2. Survival curves of high or low expression of PTGIS in different tumors from the PrognoScan 
database. 
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Supplementary Figure 3. Correlation of PTGIS expression with prognosis in diverse types of cancer. 
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Supplementary Figure 4. Correlation of PTGIS expression with tumor-infiltrating immune cells in various types of cancers via 
the TIMER database. 
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Supplementary Tables 
 

Supplementary Table 1. PTGIS expression in cancers vs. normal tissue in Oncomine database. 

Cancer  Cancer type P-value 
Fold 

change 

Rank     

(%) 
Sample 

Reference 

(PMID) 

Bladder Superficial Bladder Cancer 8.01E-25 -31.339  1% 76 16432078 

 
Infiltrating Bladder Urothelial Carcinoma 7.30E-24 -8.600  1% 129 16432078 

 
Superficial Bladder Cancer 1.28E-15 -4.420  1% 194 20421545 

 
Infiltrating Bladder Urothelial Carcinoma 2.09E-07 -2.889  4% 130 20421545 

 
Superficial Bladder Cancer 7.13E-07 -3.141  4% 42 15173019 

Breast Invasive Breast Carcinoma Stroma 6.26E-14 6.187  7% 59 18438415 

 
Ductal Breast Carcinoma 1.39E-07 -2.352  1% 39 10963602 

 
Invasive Breast Carcinoma 1.88E-08 -3.227  4% 165 22522925 

 

Invasive Ductal and Invasive Lobular Breast 

Carcinoma 
6.68E-30 -2.667  4% 234 22522925 

 
Invasive Lobular Breast Carcinoma 2.97E-29 -2.341  5% 292 22522925 

 
Medullary Breast Carcinoma 9.26E-12 -2.592  6% 176 22522925 

 
Invasive Ductal Breast Carcinoma 1.20E-47 -2.943  6% 1700 22522925 

 
Tubular Breast Carcinoma  1.25E-18 -2.339  8% 211 22522925 

 
Mucinous Breast Carcinoma 7.35E-13 -3.019  9% 190 22522925 

 
Invasive Ductal Breast Carcinoma 2.96E-21 -5.071  9% 450 TCGA 

Cervical  Cervical Squamous Cell Carcinoma 1.55E-06 -2.400  4% 56 18506748 

 
Cervical Squamous Cell Carcinoma 1.23E-06 -3.521  3% 45 18191186 

Colorectal Cecum Adenocarcinoma 3.87E-10 -7.035  8% 44 TCGA 

 
Rectal Adenocarcinoma 9.26E-13 -7.478  10% 82 TCGA 

Head and Neck Tongue Squamous Cell Carcinoma 9.85E-07 -5.788  3% 57 19138406 

Kidney Papillary Renal Cell Carcinoma  5.43E-18 4.434  1% 34 16115910 

 
Renal Oncocytoma 2.65E-18 2.870  2% 35 16115910 

 
Chromophobe Renal Cell Carcinoma 3.86E-06 2.892  5% 29 16115910 

 
Clear Cell Sarcoma of the Kidney 1.45E-07 -13.915  1% 17 16299227 

Leukemia Chronic Lymphocytic Leukemia 6.88E-05 -2.242  6% 111 15459216 

Liver  Cirrhosis 8.49E-13 2.758  5% 77 19098997 

 
Hepatocellular Carcinoma 5.22E-20 -3.308  2% 171 12058060 

 
Hepatocellular Carcinoma 2.84E-46 -2.562  3% 445 21159642 

 
Hepatocellular Carcinoma 2.91E-06 -2.407  6% 43 21159642 

Lung Lung Adenocarcinoma 2.73E-08 -2.500  3% 39 16314486 

 
Lung Carcinoid Tumor 1.06E-07 -58.003  6% 37 11707567 

 
Lung Adenocarcinoma 2.60E-17 -2.314  4% 116 22613842 

 
Lung Adenocarcinoma 6.11E-06 -2.780  8% 57 17540040 

Melanoma Cutaneous Melanoma 9.44E-05 2.148  1% 18 18442402 

 
Benign Melanocytic Skin Nevus  2.05E-06 -5.545  2% 25 16243793 

 
Cutaneous Melanoma 7.38E-09 -11.640  3% 52 16243793 

Ovarian  Ovarian Serous Cystadenocarcinoma 3.00E-06 -6.836  3% 594 TCGA 

 
Ovarian Carcinoma 3.74E-07 -6.303  8% 195 18593951 

 
Ovarian Serous Adenocarcinoma 7.59E-07 -4.999  10% 45 19486012 

Pancreatic Pancreatic Ductal Adenocarcinoma 9.45E-05 2.826  1% 49 16053509 

 
Pancreatic Ductal Adenocarcinoma 3.20E-11 4.660  3% 78 19260470 

Prostate Prostate Carcinoma 6.69E-07 -2.467  5% 87 22722839 

Sarcoma Gastrointestinal Stromal Tumor 2.23E-13 9.876  1% 25 21447720 

 
Clear Cell Sarcoma of the Kidney 1.45E-07 -13.915  1% 17 16299227 

Other Pleural Malignant Mesothelioma 1.33E-06 3.368  2% 49 15920167 

 
Teratoma 1.05E-07 3.328  5% 20 16424014 
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Supplementary Table 2. Positive results associated with PTGIS expression in different cancers from Prognoscan 
database. 

Cancer type Dataset Endpoint N Hazard ratio (95%CI) Cox P-value 

Blood cancer GSE12417-GPL570 OS 79 2.82 [1.23 - 6.47] 0.015  

 
E-TABM-346 EFS 53 1.71 [1.12 - 2.59] 0.012  

 
E-TABM-346 OS 53 1.82 [1.13 - 2.94] 0.014  

Brain cancer GSE4412-GPL96 OS 74 1.79 [1.04 - 3.09] 0.036  

Breast cancer GSE3143 OS 158 0.73 [0.55 - 0.98] 0.035  

 
GSE9195 DMFS 77 0.01 [0.00 - 0.39] 0.012  

 
GSE1456-GPL96 DSS 159 0.60 [0.40 - 0.90] 0.013  

 
GSE1456-GPL96 OS 159 0.63 [0.44 - 0.90] 0.012  

 
GSE3494-GPL96 DSS 236 0.63 [0.42 - 0.96] 0.031  

Colorectal cancer GSE17536 DSS 177 1.34 [1.01 - 1.77] 0.042  

 
GSE17536 DFS 145 1.63 [1.15 - 2.30] 0.006  

 
GSE14333 DFS 226 1.26 [1.01 - 1.58] 0.041  

Head and neck cancer GSE2837 RFS 28 1.96 [1.01 - 3.83] 0.048  

Lung cancer GSE31210 RFS 204 2.42 [1.35 - 4.35] 0.003  

 
GSE14814 OS 90 7.50 [1.68 - 33.39] 0.008  

 
GSE14814 DFS 90 5.88 [1.05 - 33.10] 0.044  

Ovarian cancer GSE9891 OS 278 1.16 [1.02 - 1.32] 0.019  

 
GSE8841 OS 81 4.00 [1.29 - 12.42] 0.016  

 
GSE26712 DFS 185 1.90 [1.06 - 3.40] 0.031  

 
GSE26712 OS 185 1.98 [1.06 - 3.70] 0.033  

Soft tissue cancer GSE30929 DRFS 140 1.51 [1.00 - 2.28] 0.047  

Abbreviation: OS Overall survival; DFS Disease free survival; EFS Event free survival; DMFS Distant metastasis free survival;  
RFS Relapse free survival; DSS Disease specific survival; CI Confidence interval 
 

Supplementary Table 3. Correlation of PTGIS mRNA expression and clinicopathological factors in ovarian cancer by 
Kaplan-Meier plotter database. 

Variables of ovarian cancer 
Overall survival (n=1657) 

 
Progression-free survival (n=1436) 

N  Hazard ratio P-value 
 

N  Hazard ratio P-value 

Histology 
       

Endometroid 37 2.84(0.47-17.01) 0.2319  
 

51 2.15(0.71-6.55) 0.1677  

Serous 1207 1.26(1.07-1.48) 0.0055  
 

1104 1.33(1.14-1.54) 0.0002  

Stage 
       

1 74 3.39(0.74-15.51) 0.0940  
 

96 2.48(0.69-8.91) 0.1498  

2 61 2.39(0.51-11.23) 0.2574  
 

67 2.34(0.9-6.09) 0.0721  

3 1044 1.2(1.01-1.42) 0.0398  
 

919 1.28(1.09-1.50) 0.0025  

4 176 1.39(0.92-2.11) 0.1159  
 

162 0.82(0.54-1.24) 0.3466  

Grade 
       

1 56 2.44(0.9-6.59) 0.0698  
 

37 4.93(1.61-15.08) 0.0020  

2 324 1.41(1.03-1.92) 0.0305  
 

256 1.96(1.41-2.72) 4.60E-05 

3 1015 1.16(0.97-1.38) 0.0940  
 

837 1.24(1.05-1.48) 0.0123  

TP53 mutation 
       

Mutated 506 1.27(0.98-1.65) 0.0651  
 

483 1.27(0.98-1.63) 0.0663  

Wild type 94 2.2(1.27-3.8) 0.0040  
 

84 1.57(0.87-2.83) 0.1291  

Debulk 
       

Optimal 801 1.21(0.99-1.49) 0.0656  
 

696 1.26(1.04-1.53) 0.0181  

Suboptimal 536 1.26(1.03-1.54) 0.0266  
 

459 0.80(0.65-0.99) 0.0375  

Chemotherapy 
       

contains platin 1409 1.29(1.12-1.49) 0.0003  
 

1259 1.23(1.08-1.40) 0.0017  

contains Taxol 793 1.24(1.01-1.52) 0.0369  
 

715 1.28(1.08-1.52) 0.0041  

contains Taxol+platin 776 1.24(1.01-1.53) 0.0404  
 

698 1.28(1.08-1.53) 0.0049  

contains Avastin 50 2.08(0.72-6.02) 0.1693  
 

50 1.75(0.83-3.70) 0.1390  
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contains Docetaxel 108 1.46(0.8-2.64) 0.2129  
 

106 1.96(1.13-3.39) 0.0141  

contains Gemcitabine 135 1.64(1.07-2.52) 0.0230  
 

131 1.49(0.95-2.34) 0.0787  

contains Paclitaxel 220 1.53(0.97-2.42) 0.0658  
 

229 1.32(0.92-1.90) 0.1346  

contains Topotecan 119 1.66(1.11-2.49) 0.0133  
 

118 1.41(0.90-2.20) 0.1307  

Bold values indicate P < 0.05.  
 

Supplementary Table 4. Correlation of PTGIS mRNA expression and clinicopathological factors in gastric cancer by 
Kaplan-Meier plotter database. 

Variables of gastric cancer 
Overall survival                     (n=882) 

 
Progression-free survival             (n=646) 

N  Hazard ratio P-value 
 

N  Hazard ratio P-value 

Gender 
       

Female 236 1.13(0.98-1.31) 0.1003 
 

201 2.07(1.40-3.04) 0.0002 

Male 545 2.18(1.75-2.70) 5.80E-13 
 

438 2.20(1.73-2.80) 4.70E-11 

Stage 
       

2 140 2.17(1.17-4.02) 0.0118 
 

131 1.58(0.84-2.95) 0.1499 

3 305 2.39(1.63-3.50) 4.00E-06 
 

186 1.84(1.25-2.69) 0.0015 

4 148 1.48(1.00-2.20) 0.0485 
 

141 1.38(0.93-2.04) 0.1114 

Stage T 
       

2 241 1.60(1.03-2.50) 0.0358 
 

239 1.51(1.00-2.29) 0.0495 

3 204 2.48(1.63-3.77) 1.30E-05 
 

204 1.81(1.23-2.67) 0.0024 

4 38 1.82(0.72-4.62) 0.1992 
 

39 2.13(0.95-4.76) 0.0605 

Stage N 
       

0 74 2.43(0.99-5.93) 0.0453 
 

72 2.10(0.88-5.01) 0.0868 

1 225 2.19(1.44-3.32) 0.0002 
 

222 2.00(1.35-2.97) 0.0005 

2 121 3.12(1.95-4.98) 5.60E-07 
 

125 2.33(1.50-3.61) 1.00E-04 

3 76 1.70(0.99-2.94) 0.0538 
 

76 1.75(1.01-3.02) 0.0428 

1+2+3 422 2.08(1.57-2.74) 1.50E-07 
 

423 1.76(1.37-2.28) 1.10E-05 

Stage M 
       

0 444 2.03(1.51-2.72) 1.80E-06 
 

443 1.64(1.26-2.14) 0.0002 

1 56 1.87(1.03-3.41) 0.0372 
 

56 0.70(0.36-1.34) 0.2771 

HER2 status 
       

negative  532 2.06(1.62-2.62) 1.50E-09 
 

408 1.88(1.44-2.45) 2.00E-06 

positive 344 1.98(1.50-2.61) 7.30E-07 
 

233 2.43(1.76-3.37) 3.20E-08 

Lauren classification 
       

Intestinal 320 2.33(1.70-3.21) 8.10E-08 
 

263 1.81(1.27-2.57) 0.0009 

Diffuse 241 1.75(1.22-2.52) 0.0022 
 

231 1.54(1.09-2.17) 0.0134 

Differentiation 
       

poorly 165 0.76(0.48-1.20) 0.2404 
 

121 0.66(0.38-1.12) 0.1192 

moderately 67 3.56(1.22-10.43) 0.0145 
 

67 3.10(1.18-8.15) 0.0167 

Bold values indicate P < 0.05.  
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Supplementary Table 5. Correlation analysis between PTGIS and relate genes and markers of innate immunity cells 
in TIMER. 

Description Gene markers 

LUSC 
 

OV 
 

STAD 

Purity 
 

None 
 

Purity 
 

None 
 

Purity 
 

None 

Cor P 
 

Cor P 
 

Cor P 
 

Cor P 
 

Cor P 
 

Cor P 

Monocyte CD14 0.387  *** 
 

0.468  *** 
 

-0.032  0.618  
 

0.357  *** 
 

0.369  *** 
 

0.368  *** 

 
CD86 0.372  *** 

 
0.452  *** 

 
-0.077  0.226  

 
0.289  *** 

 
0.303  *** 

 
0.300  *** 

 
CD16(FCGR3A) 0.433  *** 

 
0.496  *** 

 
0.023  0.720  

 
0.354  *** 

 
0.274  *** 

 
0.269  *** 

TAM CD68 0.302  *** 
 

0.392 *** 
 

-0.029 0.653 
 

0.329 *** 
 

0.123 0.016 
 

0.136 * 

 
CCL2 0.456  *** 

 
0.503  *** 

 
0.034  0.590  

 
0.325  *** 

 
0.482  *** 

 
0.486  *** 

 
CCL5 0.188  *** 

 
0.279  *** 

 
-0.061  0.337  

 
0.242  *** 

 
0.217  *** 

 
0.219  *** 

M1 Macrophage INOS (NOS2) 0.178 *** 
 

0.168 ** 
 

0.093 0.145 
 

0.172 * 
 

-0.137  * 
 

-0.123 0.012 

 
CXCL10 0.111  0.015  

 
0.184  *** 

 
-0.235  ** 

 
-0.034  0.556  

 
-0.022  0.671  

 
-0.001  0.982  

 
TNF-α (TNF) 0.048  0.291  

 
0.152  ** 

 
-0.015  0.613  

 
0.080  0.167  

 
-0.067  0.194  

 
-0.060  0.222  

M2 Macrophage CD206(MRC1) 0.442  *** 
 

0.504  *** 
 

0.157  0.013  
 

0.421  *** 
 

0.368  *** 
 

0.367  *** 

 
CD163 0.471  *** 

 
0.534  *** 

 
-0.092  0.147  

 
0.398  *** 

 
0.367  *** 

 
0.366  *** 

 
IL10 0.342  *** 

 
0.410  *** 

 
0.211  ** 

 
0.414  *** 

 
0.359  *** 

 
0.346  *** 

Neutrophils CD66b (CEACAM8) 0.134  * 
 

0.158  ** 
 

0.122  0.055  
 

0.074  0.198  
 

-0.028  0.587  
 

-0.019  0.702  

 
CD11b (ITGAM) 0.436  *** 

 
0.502  *** 

 
-0.001  0.992  

 
0.341  *** 

 
0.416  *** 

 
0.410  *** 

 
CCR7 0.343  *** 

 
0.429  *** 

 
0.058  0.359  

 
0.301  *** 

 
0.427  *** 

 
0.413  *** 

 
CD15(FUT4) 0.219  *** 

 
0.247  *** 

 
0.109  0.086  

 
0.197  ** 

 
-0.245  *** 

 
-0.239  *** 

Natural killer cell KIR2DL1 0.092  0.046 
 

0.139  * 
 

0.041  0.519  
 

0.132  0.021  
 

0.087  0.090  
 

0.105  0.032  

 
KIR2DL3 0.177  ** 

 
0.210  *** 

 
-0.026  0.687  

 
0.064  0.266  

 
0.025  0.630  

 
0.067  0.171  

 
KIR2DL4 0.055  0.235 

 
0.114  0.011 

 
-0.236  ** 

 
0.007  0.906  

 
-0.157  * 

 
-0.141  * 

 
KIR3DL1 0.213  *** 

 
0.267  *** 

 
0.036  0.574  

 
0.180  * 

 
0.064  0.216  

 
0.086  0.082  

 
KIR3DL2 0.130  * 

 
0.186  *** 

 
0.002  0.975  

 
0.141  0.014  

 
0.114  0.027  

 
0.138  * 

 
KIR3DL3 0.071  0.123 

 
0.095  0.039 

 
0.034  0.593  

 
0.059  0.310  

 
-0.135  * 

 
-0.116  0.018  

 
KIR2DS4 0.173  ** 

 
0.207  *** 

 
0.061  0.336  

 
0.149  ** 

 
0.003  0.958  

 
0.013  0.799  

Dendritic cell HLA-DPB1 0.399  *** 
 

0.476  *** 
 

-0.142  0.025  
 

0.169  ** 
 

0.247  *** 
 

0.249  *** 

 
HLA-DQB1 0.253  *** 

 
0.340  *** 

 
-0.052  0.413  

 
0.161  ** 

 
0.109  0.034  

 
0.120  0.015  

 
HLA-DRA 0.365  *** 

 
0.442  *** 

 
-0.166  * 

 
0.104  0.071  

 
0.127  0.013  

 
0.134  * 

 
HLA-DPA1 0.407  *** 

 
0.479  *** 

 
-0.148  0.019  

 
0.136  0.018  

 
0.174  ** 

 
0.181  ** 

 
BDCA-1(CD1C) 0.263  *** 

 
0.372  *** 

 
0.014  0.820  

 
0.245  *** 

 
0.528  *** 

 
0.502  *** 

 
BDCA-4(NRP1) 0.350  *** 

 
0.427  *** 

 
0.164  * 

 
0.412  *** 

 
0.551  *** 

 
0.551  *** 

 
CD11c (ITGAX) 0.399  *** 

 
0.479  *** 

 
-0.003  0.956  

 
0.306  *** 

 
0.324  *** 

 
0.335  *** 

 
NKp46(NCR1) 0.211  *** 

 
0.263  *** 

 
-0.003  0.962  

 
0.166  ** 

 
0.171  ** 

 
0.188  ** 

LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; STAD, stomach adenocarcinoma;  TAM, tumor-
associated macrophage; Cor, R value of Spearman’s correlation; None, correlation without adjustment. Purity, correlation 
adjusted by purity. *P < 0.01; **P < 0.001; ***P < 0.0001. 
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Supplementary Table 6. Correlation analysis between PTGIS and relate genes and markers of adaptive immunity 
cells in TIMER. 

Description Gene markers 

LUSC 
 

OV 
 

STAD 

Purity 
 

None 
 

Purity 
 

None 
 

Purity 
 

None 

Cor P 
 

Cor P 
 

Cor P 
 

Cor P 
 

Cor P 
 

Cor P 

CD8+ T cell CD8A 0.275  *** 
 

0.346  *** 
 

0.007  0.918  
 

0.284  *** 
 

0.280  *** 
 

0.286  *** 

 
CD8B 0.297  *** 

 
0.335  *** 

 
0.002  0.970  

 
0.222  ** 

 
0.220  *** 

 
0.215  *** 

T cell (general) CD3D 0.239  *** 
 

0.339  *** 
 

-0.031  0.631  
 

0.278  *** 
 

0.188  ** 
 

0.189  ** 

 
CD3E 0.318  *** 

 
0.409  *** 

 
0.000  0.999  

 
0.309  *** 

 
0.242  *** 

 
0.227  *** 

 
CD2 0.307  *** 

 
0.359  *** 

 
-0.014  0.831  

 
0.293  *** 

 
0.254  *** 

 
0.247  *** 

B cell CD19 0.344  *** 
 

0.438  *** 
 

-0.025  0.699  
 

-0.033  0.573  
 

0.365  *** 
 

0.348  *** 

 
CD20(MS4A1) 0.334  *** 

 
0.428  *** 

 
0.164  * 

 
0.326  *** 

 
0.408  *** 

 
0.401  *** 

 
CD138(SDC1) -0.171  ** 

 
-0.152  ** 

 
0.191  * 

 
0.320  *** 

 
-0.290  *** 

 
-0.297  *** 

 
CD23(FCER2) 0.343  *** 

 
0.429  *** 

 
0.213  ** 

 
0.313  *** 

 
0.405  *** 

 
0.392  *** 

Th1 T-bet (TBX21) 0.276  *** 
 

0.361  *** 
 

-0.046  0.467  
 

0.269  *** 
 

0.255  *** 
 

0.252  *** 

 
STAT4 0.311  *** 

 
0.396  *** 

 
0.048  0.446  

 
0.289  *** 

 
0.328  *** 

 
0.319  *** 

 
STAT1 0.046  0.318  

 
0.119  * 

 
-0.230  ** 

 
-0.118  0.041  

 
-0.070  0.172  

 
-0.064  0.196  

 
IFN-γ (IFNG) 0.076  0.098 

 
0.134  * 

 
-0.125  0.049  

 
0.125  0.029  

 
-0.092  0.074  

 
-0.093  0.057  

 
TNF-α (TNF) 0.048  0.291  

 
0.152  ** 

 
-0.015  0.613  

 
0.080  0.167  

 
-0.067  0.194  

 
-0.060  0.222  

Th2 GATA3 0.215  *** 
 

0.288  *** 
 

0.004  0.946  
 

0.253  *** 
 

0.384  *** 
 

0.375  *** 

 
STAT6 -0.063  0.170  

 
-0.033  0.462 

 
-0.100  0.115  

 
-0.110  0.055  

 
0.122  0.018  

 
0.129  * 

 
STAT5A 0.334  *** 

 
0.414  *** 

 
0.027  0.677  

 
0.136  0.018  

 
0.360  *** 

 
0.350  *** 

 
IL13 0.177  *** 

 
0.223  *** 

 
0.053  0.401  

 
0.072  0.211  

 
0.131  0.010  

 
0.130  * 

Tfh BCL6 0.019  0.685  
 

0.000  0.998 
 

0.000  0.997  
 

-0.027  0.642  
 

0.530  *** 
 

0.517  *** 

 
IL21 0.156  ** 

 
0.213  *** 

 
-0.114  0.073  

 
-0.082  0.154  

 
0.052  0.312  

 
0.049  0.318  

 
CD278(ICOS) 0.280  *** 

 
0.374  *** 

 
-0.033  0.606  

 
0.235  *** 

 
0.130  0.012  

 
0.132  * 

 
CXCL13 0.197  *** 

 
0.293  *** 

 
-0.026  0.680  

 
0.199  ** 

 
0.243  *** 

 
0.236  *** 

Th17 STAT3 0.184  *** 
 

0.232  *** 
 

0.038  0.549  
 

0.222  ** 
 

0.363  *** 
 

0.365  *** 

 
IL17A 0.038  0.405  

 
0.074  0.097 

 
-0.105  0.097  

 
0.042  0.470  

 
-0.261  *** 

 
-0.272  *** 

Treg FOXP3 0.350  *** 
 

0.429  *** 
 

-0.024  0.711  
 

0.240  *** 
 

0.241  *** 
 

0.244  *** 

 
CCR8 0.381  *** 

 
0.453  *** 

 
-0.033  0.604  

 
0.130  0.024  

 
0.344  *** 

 
0.345  *** 

 
STAT5B 0.262  *** 

 
0.264  *** 

 
0.269  *** 

 
0.275  *** 

 
0.603  *** 

 
0.608  *** 

 
TGFβ (TGFB1) 0.084  0.067  

 
0.181  *** 

 
0.169  * 

 
0.472  *** 

 
0.527  *** 

 
0.528  *** 

 
CD25(IL2RA) 0.346  *** 

 
0.429  *** 

 
0.200  * 

 
0.450  *** 

 
0.187  ** 

 
0.197  *** 

T cell exhaustion PD-1 (PDCD1) 0.271  *** 
 

0.356  *** 
 

-0.106  0.096  
 

0.200  ** 
 

0.147  * 
 

0.158  * 

 
CTLA4 0.253  *** 

 
0.349  *** 

 
-0.044  0.490  

 
0.240  *** 

 
0.088  0.087  

 
0.092  0.062  

 
LAG3 0.128  * 

 
0.206  *** 

 
-0.169  * 

 
0.051  0.373  

 
0.075  0.145  

 
0.080  0.103  

 
TIM-3 (HAVCR2) 0.390  *** 

 
0.464  *** 

 
-0.036  0.572  

 
0.336  *** 

 
0.291  *** 

 
0.294  *** 

 
GZMB 0.144  * 

 
0.236  *** 

 
-0.068  0.282  

 
0.203  ** 

 
-0.089  0.085  

 
-0.064  0.194  

LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; STAD, stomach adenocarcinoma; Th, T helper 
cell; Tfh, Follicular helper T cell; Treg, regulatory T cell; Cor, R value of Spearman’s correlation; None, correlation without 
adjustment. Purity, correlation adjusted by purity. *P < 0.01; **P < 0.001; ***P < 0.0001. 

  



 

www.aging-us.com 9685 AGING 

Supplementary Table 7. Correlation analysis between PTGIS and immune relate genes of monocyte and 
macrophages in GEPIA. 

Description Gene markers 

LUSC 
 

OV 
 

STAD 

Normal 
 

Tumor 
 

Normal 
 

Tumor 
 

Normal 
 

Tumor 

R P 
 

R P 
 

R P 
 

R P 
 

R P 
 

R P 

Monocyte CD14 0.011  0.86  
 

0.49  *** 
 

0.46  *** 
 

0.41  *** 
 

0.67  *** 
 

0.40  *** 

 
CD86 -0.011  0.86  

 
0.46  *** 

 
0.41  *** 

 
0.36  *** 

 
0.49  *** 

 
0.33  *** 

 
CD16(FCGR3A) 6E-04 0.99  

 
0.52  *** 

 
0.42  *** 

 
0.43  *** 

 
0.51  *** 

 
0.30  *** 

TAM CD68 -0.11  0.052  
 

0.42  *** 
 

0.39  ** 
 

0.4  *** 
 

0.44  *** 
 

0.19  *** 

 
CCL2 0.085  0.150  

 
0.51  *** 

 
0.43  *** 

 
0.31  *** 

 
0.66  *** 

 
0.51  *** 

 
CCL5 0.22  ** 

 
0.27  *** 

 
0.21  0.044  

 
0.2  *** 

 
-0.27  ** 

 
0.23  *** 

M1 Macrophage INOS (NOS2) 0.19  * 
 

0.18  *** 
 

-0.084  0.440  
 

0.36  *** 
 

0.63  *** 
 

-0.086  0.081  

 
CXCL10 0.22  ** 

 
0.17  ** 

 
-0.18  0.095  

 
0.018  0.710  

 
0.03  0.690  

 
0.023  0.640  

 
TNF-α (TNF) 0.039  0.51  

 
0.15  ** 

 
0.13  0.240  

 
0.16  0.001  

 
0.27  ** 

 
-0.007  0.890  

M2 Macrophage CD206(MRC1) -0.06  0.33  
 

0.53  *** 
 

0.37  ** 
 

0.51  *** 
 

0.67  *** 
 

0.40  *** 

 
CD163 -0.13  0.033  

 
0.53  *** 

 
0.32  * 

 
0.36  *** 

 
0.60  *** 

 
0.37  *** 

 
IL10 0.029  0.620  

 
0.42  *** 

 
0.44  *** 

 
0.49  *** 

 
0.62  *** 

 
0.38  *** 

LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; STAD, stomach adenocarcinoma. TAM, Tumor-
associated macrophages. Tumor, correlation analysis in tumor tissue of TCGA. Normal, correlation analysis in normal tissue of 
GTEx. *P < 0.01; **P < 0.001; ***P < 0.0001. 


