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INTRODUCTION 
 

Endogenous testosterone and structurally related 

synthetic compounds notably impact the behavior of 

various organisms [1, 2]. Testosterone replacement 

effectively reverses the motor behavioral deficits of 

adult male rats with testosterone deficiency [3], and 

somewhat alleviates the motor and non-motor 

symptoms of men with Parkinson’s disease [4]. In the 

normal aging process, the functions of many tissues and 

organs progressively decline [5–7]. Testosterone levels  

 

gradually but eventually significantly decrease in aged 

men and aged male animals [8, 9]. 

 

The substantia nigra (SN), a brain region that controls 

motor behavior and is damaged by Parkinson’s disease, 

exhibits degeneration upon aging as the levels of 

dopamine, tyrosine hydroxylase and dopamine 

transporter in the nigrostriatal dopaminergic system 

decrease [10–12]. Testosterone supplementation can 

ameliorate the defects in the nigrostriatal dopaminergic 

system in aged male rats, possibly by enhancing 
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ABSTRACT 
 

Deficits in coordinated motor behavior and mitochondrial complex V activity have been observed in aged 
males. Testosterone supplementation can improve coordinated motor behavior in aged males. We 
investigated the effects of testosterone supplementation on mitochondrial complex V function in the 
substantia nigra (a brain region that regulates motor activity) in aged male rats. These rats exhibited 
diminished ATP levels, attenuated mitochondrial complex V activity, and reduced expression of 3 of the 17 
mitochondrial complex V subunits (ATP6, ATP8 and ATP5C1) in the substantia nigra. Testosterone 
supplementation increased ATP levels, mitochondrial complex V activity, and ATP6, ATP8 and ATP5C1 
expression in the substantia nigra of the rats. Conversely, orchiectomy reduced mitochondrial complex V 
activity, downregulated ATP6 and ATP8 expression, and upregulated ATP5C1, ATP5I and ATP5L expression in 
the substantia nigra. Testosterone replacement reversed those effects. Thus, testosterone enhanced 
mitochondrial complex V function in the substantia nigra of aged male rats by upregulating ATP6 and ATP8. 
As potential testosterone targets, these two subunits may to some degree maintain nigrostriatal 
dopaminergic function in aged males. 
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mitochondrial function [13, 14]. In support of this 

notion, orchiectomy was found to reduce mitochondrial 

respiratory chain activity in the SN in adult male  

rats [14]. 

 

The brain is a highly differentiated organ with high energy 

requirements. It is primarily powered by adenosine 

triphosphate (ATP) produced by mitochondrial oxidative 

phosphorylation [15]. Mitochondrial dysfunction, 

characterized by excessive reactive oxygen species levels, 

reduced ATP levels and diminished mitochondrial 

respiratory chain activity, is involved in aging and age-

related neurodegenerative diseases [16–19]. During the 

aging process, maintaining the normal function of the 

mitochondrial respiratory chain can enhance the survival 

of senescent neurons [20]. 

 

There are five complexes in the mitochondrial 

respiratory chain. Mitochondrial complexes I, II, III and 

IV transfer electrons to complex V to synthesize ATP 

[21]. In adult male rats, testosterone deficiency impairs 

mitochondrial function in the heart [22, 23] and 

downregulates the gene expression of mitochondrial 

complexes I, III and IV in the brain. Testosterone 

supplementation was found to restore the gene 

expression of complexes I, III and IV in the brains of 

castrated adult male rats [13, 14]. However, it is not 

known whether the subunits of mitochondrial complex 

V, the ATP generator, are also influenced by 

testosterone levels. 

 

Mitochondrial complex V, also known as F1FO ATP 

synthase, catalyzes the synthesis of ATP using energy 

from an electrochemical proton gradient derived from 

electron transport [24]. Mammalian mitochondrial 

complex V has 17 subunits, including two 

mitochondrial DNA (mtDNA)-encoded subunits (ATP6 

and ATP8) and 15 nuclear DNA (nDNA)-encoded 

subunits [25, 26]. Complex V activity and subunit levels 

in certain tissues are reduced in aged male animals [27, 

28]. In the present study, we investigated the effects of 

testosterone propionate (TP) supplementation on 

mitochondrial complex V activity and subunit levels in 

the SN of aged male rats and gonadectomized adult 

male rats, in order to detect potential testosterone 

targets that maintain nigrostriatal dopaminergic function 

in aged males. 

 

RESULTS 
 

TP supplementation ameliorated coordinated motor 

behavioral deficits in aged male rats 

 

We first performed cylinder tests and tapered beam 

walking tests to examine coordinated motor behavior in 

younger rats (6 months old, ‘6Mon’) and in aged rats 

(24 months old, ‘24Mon’) with and without TP 

supplementation. In the cylinder test, the number of 

times the rats contacted the wall with both forelimbs 

differed among the 6Mon, 24Mon and 24Mon-TP 

groups (Figure 1A, P<0.01). Post hoc analysis revealed 

that the number of times the rats touched the wall with 

both forelimbs was lower in the 24Mon group than in 

the 6Mon group (P<0.01), and greater in the 24Mon-TP 

group than in the 24Mon group (P<0.01). However, the 

number of times the rats touched the wall with both 

forelimbs in the 24Mon-TP group did not reach the 

level of the 6Mon group (P<0.05). 

 

The tapered beam walking test scores also differed 

significantly among the 6Mon, 24Mon and 24Mon-TP 

groups (Figure 1B, left hindlimb, right hindlimb: 

P<0.01). The test scores for both the left and right 

hindlimbs were greater in 24Mon rats than in 6Mon rats 

(P<0.01), and were lower in 24Mon-TP rats than in 

24Mon rats (P<0.01). However, the test scores for both 

the left and right hindlimbs in the 24Mon-TP group did 

not reach the level of the 6Mon group (P<0.01). 

 

TP supplementation increased ATP levels in the SN 

of aged male rats 

 

We next measured ATP levels in the SN, and detected 

marked differences among the 6Mon, 24Mon and 

24Mon-TP groups (Figure 2A, P<0.01). ATP levels in 

the SN were lower in 24Mon rats than in 6Mon rats 

(P<0.01). TP supplementation increased ATP levels in 

the SN of aged male rats (P<0.01) to the level of 6Mon 

rats. 

 

TP supplementation enhanced mitochondrial 

complex V activity in the SN of aged male rats 
 

Considering the altered ATP levels in TP-treated aged 

male rats, we next assessed the effects of TP 

supplementation on mitochondrial complex V activity 

in the SN. Mitochondrial complex V activity in the SN 

differed significantly among the 6Mon, 24Mon and 

24Mon-TP groups (Figure 2B, P<0.01). Mitochondrial 

complex V activity in the SN was lower in 24Mon rats 

than in 6Mon rats (P<0.01). TP supplementation of 

24Mon rats enhanced mitochondrial complex V activity 

in the SN (P<0.05); in fact, there was no significant 

difference in mitochondrial complex V activity in the 

SN between 24Mon-TP rats and 6Mon rats. 

 

Single-nucleotide polymorphism (SNP) screening of 

mtDNA-encoded subunits of mitochondrial complex 

V in the SN 
 

To determine whether mitochondrial complex V activity 

was altered due to DNA mutations, we screened the 
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mtDNA-encoded subunits of mitochondrial complex V 

for SNPs, since mtDNA is more vulnerable to oxidative 

damage than nDNA. The DNA sequences of ATP6 

(Supplementary Material 1) and ATP8 (Supplementary 

Material 2) in the SN displayed 100% identity among 

6Mon, 24Mon and 24Mon-TP rats. 

 

Effects of TP supplementation on mitochondrial 

complex V subunit expression in the SN of aged male 

rats 
 

Based on the altered activity of mitochondrial complex 

V and the results of the SNP assay, we next analyzed 

the expression of mitochondrial complex V subunits. 

ATP6, ATP8 and ATP5C1 mRNA and protein levels in 

the SN were lower in 24Mon rats than in 6Mon rats 

(Figure 3, P<0.01), and were greater in 24Mon-TP rats 

than in 24Mon rats (mRNA: Figure 3A, ATP6, P<0.05; 

Figure 3B, ATP8, P<0.01; Figure 3C, ATP5C1, P<0.05. 

Protein: Figure 3G–3I, P<0.01). However, ATP5C1 

mRNA levels (Figure 3C, P<0.05) and ATP6, ATP8 

and ATP5C1 protein levels (Figure 3G–3I, P<0.01) in 

the SN were still lower in 24Mon-TP rats than in 6Mon 

rats. There were no differences in the mRNA levels of 

the other subunits of mitochondrial complex V in the 

SN among 6Mon, 24Mon and 24Mon-TP rats (Table 1). 

 

 
 

Figure 1. TP supplementation ameliorated the coordinated motor behavioral deficits of aged male rats. (A) Effects of TP 
supplementation on the number of times the aged male rats contacted the wall with both forelimbs during rearing. (B) Effects of TP 
supplementation on the tapered beam walking test scores of the hindlimbs of aged male rats. Data are expressed as the mean ± S.D. (n=12 
rats/group). *P<0.05, **P<0.01. 

 

 
 

Figure 2. Effects of TP supplementation on ATP levels and mitochondrial complex V activity in the substantia nigra of aged 
male rats. (A) ATP levels. (B) Mitochondrial complex V activity. Data are expressed as the mean ± S.D. (n=6 rats/group). *P<0.05, **P<0.01. 
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Serum testosterone levels and body weights of TP-

supplemented aged male rats 

 

Serum testosterone levels differed significantly among 

the 6Mon, 24Mon and 24Mon-TP rats (Figure 4A, 

P<0.01). Serum testosterone levels were significantly 

lower in 24Mon rats than in 6Mon rats (P<0.01). 

Supplementation of aged male rats with TP increased 

their serum testosterone levels to those of 6Mon rats. 

No difference in body weight was found between 

24Mon-TP rats and 24Mon rats (Figure 4B). 

Gonadectomy of adult male rats impaired 

mitochondrial complex V in the SN 

 

To rule out the influence of aging-related factors, we 

gonadectomized adult male rats and measured  

the ATP levels, mitochondrial complex V activity 

levels and mitochondrial complex V subunit mRNA 

and protein levels in the SN. Gonadectomy did not 

alter ATP levels in the SN of adult male rats (Figure 

5A). However, gonadectomy reduced mitochondrial 

complex V activity (Figure 5B, P<0.05), 

 

 
 

Figure 3. Effects of TP supplementation on complex V subunit expression in the substantia nigra of aged male rats. (A–C) The 
mRNA levels of ATP6, ATP8 and ATP5C1 were calculated using the 2-ΔΔCt method. GAPDH was used as an internal control. (D–F) 
Representative Western blots of ATP6, ATP8 and ATP5C1 protein levels. (G–I) ATP6, ATP8 and ATP5C1 protein levels were quantified by 
comparing the band density of each protein to that of β-actin (endogenous control). Data are expressed as the mean ± S.D. (n=6 rats/group). 
*P<0.05, **P<0.01. 
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Table 1. Effects of TP supplementation on complex V subunit mRNA levels in the substantia nigra of aged male rats. 

Subunits 6Mon 24Mon 24Mon-TP 

ATP6 1.02±0.01 0.39±0.21** 0.90±0.26# 

ATP8 1.02±0.01 0.31±0.21** 0.88±0.17## 

ATP5A1 1.01±0.16 0.92±0.12 0.89±0.17 

ATP5B 1.00±0.06 1.00±0.07 1.04±0.12 

ATP5C1 1.01±0.15 0.68±0.08** 0.80±0.05*# 

ATP5D 1.00±0.09 1.01±0.09 1.03±0.13 

ATP5E 1.00±0.10 0.96±0.04 1.03±0.12 

ATP5F1 1.01±0.17 1.03±0.18 1.04±0.12 

ATP5G1 1.00±0.11 0.93±0.14 1.00±0.15 

ATP5G2 1.01±0.11 1.05±0.08 1.04±0.08 

ATP5G3 1.00±0.07 1.02±0.08 1.07±0.09 

ATP5O 1.00±0.09 1.01±0.09 1.03±0.13 

ATP5H 1.01±0.11 0.96±0.12 1.02±0.06 

ATP5J 1.00±0.09 0.98±0.08 1.05±0.07 

ATP5I 1.00±0.08 0.94±0.11 1.08±0.03 

ATP5J2 1.00±0.11 1.03±0.09 1.05±0.10 

ATP5L 1.01±0.13 1.11±0.12 0.99±0.16 

Data were shown as mean ± S.D. (n=6 rats/group). *P<0.05 versus 6Mon; **P<0.01 versus 6Mon; #P<0.05 versus 24Mon; 

##P<0.01 versus 24Mon. 
 

downregulated ATP6 and ATP8 (mRNA: Figure 6A and 

6B, P<0.01. Protein: Figure 6K and 6L, ATP6, P<0.01; 

ATP8, P<0.05) and upregulated ATP5C1, ATP5I and 

ATP5L (mRNA: Figure 6C–6E, P<0.01. Protein: Figure 

6M–6O, P<0.01) in the SN of adult male rats. TP 

replacement reversed these effects. The mRNA levels of 

the other subunits of mitochondrial complex V in the SN 

did not differ among the sham-operated, gonadectomized 

and gonadectomized-TP rats (Table 2). 

DISCUSSION 
 

The present study demonstrated that testosterone 

supplementation of aged male rats ameliorated the 

deficits of mitochondrial complex V in the SN. In aged 

male rats, ATP levels were reduced, mitochondrial 

complex V activity was attenuated and the mRNA and 

protein levels of 3 of the 17 mitochondrial complex V 

subunits (ATP6, ATP8 and ATP5C1) were diminished 

 

 
 

Figure 4. Serum testosterone levels and body weights. (A) Serum testosterone levels were significantly lower in 24Mon rats than in 
6Mon rats. Supplementation of aged male rats with TP increased their serum testosterone concentrations to the level of 6Mon rats. (B) No 
differences in body weight were detected between 24Mon-TP and 24Mon rats. Data are expressed as the mean ± S.D. (n=12 rats/group). 
*P<0.01. 



 

www.aging-us.com 10403 AGING 

in the SN. Testosterone supplementation increased the 

ATP levels, mitochondrial complex V activity and 

ATP6, ATP8 and ATP5C1 levels in the SN of aged 

male rats. Furthermore, testosterone deficiency induced 

by orchiectomy reduced mitochondrial complex V 

activity, downregulated ATP6 and ATP8 expression 

and upregulated ATP5C1, ATP5I and ATP5L 

expression in the SN of adult male rats, while TP 

replacement reversed these effects. The above results 

indicated that testosterone enhanced mitochondrial 

complex V function in the SN of aged male rats by 

upregulating subunits ATP6 and ATP8.

 

 
 

Figure 5. Effects of gonadectomy and TP replacement on ATP levels and mitochondrial complex V activity in the substantia 
nigra of adult male rats. (A) ATP levels. (B) Mitochondrial complex V activity. Data are expressed as the mean ± S.D. (n=6 rats/group). 
*P<0.05. 

 

 
 

Figure 6. Effects of gonadectomy and TP replacement on mitochondrial complex V subunit expression in the substantia nigra 
of adult male rats. (A–E) The mRNA levels of ATP6, ATP8, ATP5C1, ATP5I and ATP5L were calculated using the 2-ΔΔCt method. GAPDH was 
used as an internal control. (F–J) Representative Western blots of ATP6, ATP8, ATP5C1, ATP5I and ATP5L protein levels. (K–O) ATP6, ATP8, 
ATP5C1, ATP5I and ATP5L protein levels were quantified by comparing the band density of each protein to that of β-actin (endogenous 
control). Data are expressed as the mean ± S.D. (n=6 rats/group). *P<0.05, **P<0.01. 
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Table 2. Effects of gonadectomy and TP replacement on complex V subunit mRNA levels in the substantia nigra of 
adult male rats. 

Subunits Sham GDX GDX-TP 

ATP6 1.02±0.01 0.44±0.14* 1.18±0.37## 

ATP8 1.02±0.01 0.66±0.13* 1.11±0.31# 

ATP5A1 1.01±0.14 1.04±0.09 1.02±0.11 

ATP5B 1.01±0.14 0.89±0.07 0.96±0.10 

ATP5C1 1.01±0.15 2.86±0.19* 1.01±0.10## 

ATP5D 1.00±0.08 1.00±0.15 0.97±0.09 

ATP5E 1.01±0.13 1.09±0.12 1.12±0.14 

ATP5F1 1.00±0.11 0.98±0.08 0.99±0.11 

ATP5G1 1.00±0.07 0.95±0.15 1.00±0.13 

ATP5G2 1.01±0.13 1.03±0.12 1.00±0.10 

ATP5G3 1.01±0.14 1.06±0.10 0.97±0.10 

ATP5O 1.01±0.12 0.98±0.10 1.07±0.09 

ATP5H 1.01±0.12 1.01±0.14 0.95±0.07 

ATP5J 1.01±0.13 0.95±0.10 1.00±0.13 

ATP5I 1.01±0.11 1.41±0.18* 1.07±0.15## 

ATP5J2 1.01±0.11 1.01±0.09 1.02±0.15 

ATP5L 1.01±0.15 1.37±0.12* 0.98±0.18## 

Data were shown as mean ± S.D. (n=6 rats/group). *P<0.01 versus sham; #P<0.05 versus GDX; ##P<0.01 versus GDX. 
 

The cylinder test and tapered beam walking test are two 

methods of detecting coordinated motor behavioral 

deficits in experimental animals [29, 30]. Performance 

of these tests depends on the functional status of 

dopaminergic neurons in the SN [30]. We found that TP 

supplementation ameliorated the coordinated motor 

behavioral deficits of aged male rats, suggesting that 

testosterone enhanced the function of the SN (the brain 

region rich in dopaminergic neurons). Indeed, TP 

treatment has been reported to improve dopaminergic 

activity in aged male rats [31], and testosterone has 

been demonstrated to support dopaminergic function in 

adult male rats [32]. 

 

The SN is sensitive to energy deficiency, and its normal 

function depends on a sufficient ATP supply. As 

energy-generating organelles, mitochondria are crucial 

for neuronal survival [20, 33]. Mitochondrial function 

decreases upon aging, as evidenced by the reduced 

activity of the mitochondrial respiratory chain [34, 35]. 

Reduced mitochondrial function could be due to deficits 

in mitochondrial complex V, in addition to complexes I, 

III and IV [36]. Testosterone is known to induce 

mitochondrial complexes I, III and IV [13, 14]. 

However, since ATP synthesis is performed by 

mitochondrial complex V in the mitochondrial inner 

membrane [37], we explored whether this complex 

contributed to the testosterone-induced amelioration of 

motor behavioral deficits in aged rats. 

 

Mitochondrial complex V is a genetic mosaic consisting 

of two mtDNA-encoded subunits (ATP6 and ATP8) 

and 15 nDNA-encoded subunits [25, 26]. Previous 

studies have indicated that mtDNA is more sensitive to 

oxidative damage than nDNA [38]. Mutations in 

mtDNA promote neuronal aging and neurodegenerative 

disease [39], and the frequency of mtDNA point 

mutations increases significantly during the course of 

aging [40]. Thus, in the present study, we screened the 

mtDNA of ATP6 and ATP8 for SNPs. Mutations in 

these mtDNA-encoded subunit genes can result in a 

variety of pathologic phenotypes. Dozens of different 

point mutations in the ATP6 gene have been found to 

cause devastating neuromuscular disorders [41]. 

Mutations in the ATP8 gene were reported to induce 

mitochondrial reactive oxygen species generation and 

secretory dysfunction in conplastic mouse strains [42]. 

In the present study, 100% DNA sequence identity for 

both ATP6 and ATP8 in the SN was observed among 

6Mon, 24Mon and 24Mon-TP rats. Thus, the deficits in 

mitochondrial complex V in aged male rats may rather 

have been due to altered transcription or translation of 

its subunits. 

 

Mitochondrial energy deficiency and reduced 

mitochondrial complex enzyme activity are important 

contributors to aging and neurodegenerative disease 

pathogenesis [43]. Testosterone treatment was reported 

to enhance mitochondrial energy production in SH-

SY5Y cells [44, 45]. Similarly, we found that TP 

administration to aged rats increased ATP levels in the 

SN, which may have been associated with the enhanced 

activity of mitochondrial complex V and the elevated 

expression of subunits ATP6, ATP8 and ATP5C1 in 
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these rats. To determine which subunits were directly 

influenced by TP supplementation in aged male rats, we 

excluded aging-related factors by examining 

mitochondrial complex V activity and subunit 

expression in castrated adult male rats. Castration 

reduced mitochondrial complex V activity in the SN of 

adult male rats, while TP supplementation reversed this 

effect. Consistently, a previous study indicated that 

ATP synthase activity was reduced in castrated adult 

male rats, but increased four-fold following TP 

treatment [46]. Therefore, mitochondrial complex V 

activity may be androgen-dependent. 

 

The present study revealed that 5 of the 17 

mitochondrial complex V subunits were influenced by 

altered testosterone levels in adult male rats. ATP6 and 

ATP8 mRNA and protein levels were reduced and 

ATP5C1, ATP5I and ATP5L mRNA and protein levels 

were increased in castrated adult male rats. Testosterone 

supplementation of castrated adult male rats restored 

these parameters to normal levels. In previous studies, 

altered testosterone levels have had similar effects on 

mtDNA-encoded subunits in the hippocampus and the 

SN [13, 14]. Castration-induced testosterone deficiency 

in adult rats significantly reduced the levels of mtDNA-

encoded cytochrome b (a component of mitochondrial 

complex III) and cytochrome c oxidase subunits 1 and 3 

(of mitochondrial complex IV) in the hippocampus [13], 

and suppressed the expression of NADPH 

dehydrogenase subunits 1 and 4 (of mitochondrial 

complex I) in the hippocampus and SN [13, 14]. 

 

In combination with the data from TP-treated aged male 

rats, our data on castrated adult male rats indicated that 

testosterone supplementation enhanced mitochondrial 

complex V function in the SN of aged male rats by 

upregulating subunits ATP6 and ATP8. Previous 

studies have demonstrated that intracellular androgen 

receptor-bearing neurons are present in the SN [47, 48], 

suggesting that specific subsets of neurons in the SN are 

direct targets of testosterone. A recent study indicated 

that androgen receptors may be present in mitochondria 

[49], and several putative androgen receptor binding 

sequences have been detected in mtDNA, which could 

be mitochondrial androgen response elements that 

function as enhancers of mtDNA-encoded genes [50]. 

Thus, testosterone may upregulate ATP6 and ATP8 in 

the SN via corresponding mitochondrial androgen 

response elements. Further studies should be performed 

in vitro to explore the potential mechanisms. 

 

Unlike the aged male rats, the castrated adult male rats 

did not exhibit reduced ATP levels in the SN. We 

detected ATP levels in tissue blocks, not in 

mitochondria isolated from tissue blocks. The adult 

male rat tissues may have had greater compensatory 

ATP production abilities than the aged male rat tissues 

due to factors such as 5'-adenosine monophosphate-

activated protein kinase (AMPK). AMPK activity is 

activated on various stress conditions [51] and may be 

important for maintaining energy balance in eukaryotic 

cells [52]. AMPK rapidly upregulates metabolic 

enzymes through direct phosphorylation, thus aligning 

gene expression with energy requirements at the 

transcriptional level [53, 54]. When energy is 

insufficient, AMPK enhances the expression of genes 

involved in glucose transport, glycolysis [55, 56] and 

mitochondrial respiration [57]. AMPK also regulates 

mitochondrial activity and glucose metabolism by 

phosphorylating peroxisome proliferator-activated 

receptor gamma coactivator 1-alpha [53, 58]. Reduced 

AMPK activity has been observed in aged animals [59]; 

thus, diminished AMPK activity may have contributed 

to the low ATP levels in the SN in the aged male rats. 

 

In the present study, a paradox was observed in the 

regulation of ATP5C1 expression in the SN: while TP 

treatment upregulated ATP5C1 in the SN in aged male 

rats, it downregulated ATP5C1 in the SN in castrated adult 

male rats. This discrepancy may have been due to the 

duration of TP supplementation and the ages of the 

animals used in this study. TP was administered to the 

aged male rats for 12 weeks, but was only given to the 

castrated adult male rats for 4 weeks. Moreover, the aged 

male rats experienced the natural aging process, while the 

orchiectomized adult rats received pathological insults. 

Gonadectomy of adult male rats is known to induce 

oxidative damage in neurons [14, 60]. The oxidative stress 

status of animals is a critical determinant of whether 

androgens will be neuroprotective or neurotoxic to cells 

[61, 62]. Thus, the response of the SN to TP under 

different levels of oxidative stress may explain the distinct 

regulation of ATP5C1 in aged male rats and castrated 

adult male rats. The TP dosage may also have contributed 

to the differences in ATP5C1 expression between aged 

male rats and orchiectomized adult rats. Based on a 

previous study, we only used a single dosage (1 mg/kg) of 

TP in the present study [14]; however, the dosage of TP is 

an important determinant of its neurological effects [14, 

63, 64]. Thus, the dose of testosterone should be 

considered in future analyses of its effects on ATP6, ATP8 

and ATP5C1 expression. 

 

A previous study indicated that gonadectomy markedly 

reduced skeletal muscle ATP levels in both male and 

female adult rats. Testosterone supplementation restored 

skeletal muscle ATP levels to normal levels in castrated 

adult male rats, and also significantly increased the 

skeletal muscle ATP contents of castrated female rats 

[65]. Thus, TP supplementation might have the same 

effects on aged female rats as it had on aged male rats in 

the present study. Considering that testosterone is an 



 

www.aging-us.com 10406 AGING 

essential hormone for women and that exogenous 

testosterone enhances cognitive performance and 

musculoskeletal health in postmenopausal women [66], 

the effects of TP supplementation on mitochondrial 

complex V function in female animals should be 

examined in a future study. 

 

In summary, testosterone supplementation overcame the 

deficits in mitochondrial complex V in the SN in aged 

male rats. During aging, testosterone supplementation 

increased ATP levels and enhanced mitochondrial 

complex V activity in the SN by upregulating ATP6 and 

ATP8. Thus, mitochondrial ATP6 and ATP8, as 

potential testosterone targets, may maintain nigrostriatal 

dopaminergic function in aged males to some extent. 

 

MATERIALS AND METHODS 
 

Animals 

 

Male Sprague-Dawley rats supplied by the Experimental 

Animal Center of Hebei Medical University were housed 

at a controlled temperature (22 ± 2°C) on a 12-h light-dark 

cycle (lights on at 6:00 AM). Food and water were 

available ad libitum. The experimental procedures were 

approved by the Committee of Ethics on Animal 

Experiments at Hebei Medical University. 

 

Experiment 1 

 

Forty-five rats were used to study the effects of 

testosterone supplementation on mitochondrial complex 

V function in aged male rats. The rats were randomly 

divided into the following three groups: the 6-month-

old group (6Mon, n=15), the 24-month-old group 

(24Mon, n=15) and the 24-month-old with TP 

supplementation group (24Mon-TP, n=15). For the 

24Mon-TP group, the rats were subcutaneously injected 

with TP (1 mg/kg per day) for 12 weeks beginning at 

the age of 21 months. The body weights of the rats in 

the 24Mon and 24Mon-TP groups were documented 

every three weeks. The rats in the 6Mon and 24Mon 

groups were injected with sesame oil rather than TP. In 

this experiment, coordinated motor behavior was 

analyzed, as well as ATP levels and mitochondrial 

complex V activity in the SN. Then, SNP screening, 

real-time quantitative polymerase chain reaction 

(qPCR) and Western blot analyses were performed. 

 

Experiment 2 
 

Thirty-six adult male rats were used to investigate the 

effects of testosterone deficiency and testosterone 

replacement on mitochondrial complex V function. The 

rats were randomly divided into the following three 

groups: the sham-operated group (n=12), the 

gonadectomized group (GDX, n=12) and the GDX with 

TP administration group (GDX-TP, n=12). The 

gonadectomy and the sham operation were performed 

as described previously [3]. For the GDX-TP group, the 

castrated rats were subcutaneously injected with TP for 

four weeks (1 mg/kg per day) [14]. The rats in the sham 

and GDX groups were injected with sesame oil rather 

than TP. In this experiment, ATP levels and 

mitochondrial complex V activity in the SN were 

analyzed. Then, qPCR and Western blot analyses were 

performed to detect alterations in the mitochondrial 

complex V subunits in GDX or GDX-TP rats. 

 

Cylinder test  
 

The apparatus for the cylinder test was a transparent 

plexiglass cylinder with a diameter of 20 cm and a 

height of 30 cm. The rats were handled for about 10 min 

per day for two weeks, and were naive to the apparatus. 

At the time of the test, the rats were individually placed 

in the cylinder and were recorded with a digital video 

camera for 5 min [29]. The number of times the rats 

contacted the wall with both forelimbs during rearing 

was documented [2]. 

 

Tapered beam walking test 
 

The tapered beam walking test procedure and score 

calculation method used in this study were described in 

detail by Strome et al. [30] and Wang et al. [2], 

respectively. In brief, 2 cm below a 165-cm-long beam, 

there was a 2.5-cm-wide ledge on each side, which 

provided a platform on which the rats could step. The 

beam was narrower at one end than at the other (6.5 cm 

wide at the wide end, 1.5 cm at the narrow end). The 

beam was divided into wide, medium and narrow 

segments for scoring. The day before the test, the rats 

were allowed to walk on the tapered beam for training. 

The following day, each rat was tested five times, and 

the tests were recorded with a digital video camera. 

Taking a step with one or two toes of the hindlimb on 

the main surface of the beam with the other four or 

three toes overhanging the ledge was scored as a half-

foot fault, while stepping with the entire foot on the 

ledge rather than on the main surface of the beam was 

scored as a full-foot fault. We used the mean value of 

the scores for the five tapered beam walking tests from 

the narrow section of the beam for statistical analysis. 

 

Sample preparation  
 

The rats were sacrificed by decapitation and their brains 

were removed quickly. The tissue block containing the 

SN (between 3.00 mm and 4.08 mm rostral to the 

interaural axis) [67] was dissected with an ophthalmic 

scalpel on an ice-cold plate under a stereomicroscope. It 
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was immediately processed for assays of ATP levels 

and mitochondrial complex V activity, or frozen in 

liquid nitrogen and stored at -80°C until further use. 

 

Biochemical analysis 

 

ATP levels were detected according to the protocol of 

the detection kit (Code A095-1-1, Jiancheng Institute of 

Biotechnology, China). The SN tissue block was 

homogenized and centrifuged at 1800 x g at 4°C for 10 

min. ATP levels in the supernatant were measured 

spectrophotometrically and normalized to the protein 

concentration (μM/g protein). 

 

For the detection of mitochondrial complex V activity, 

mitochondria were isolated with a Tissue Mitochondria 

Isolation Kit (Code C3606, Beyotime Institute of 

Biotechnology, China). In brief, SN tissue was 

homogenized in ice-cold buffer (10 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid, pH 7.5, 

including 200 mM mannitol, 70 mM sucrose, 1.0 mM 

ethylene glycol tetraacetic acid and 2.0 mg/mL serum 

albumin) and centrifuged at 1000 x g at 4°C for 10 min. 

The supernatant was centrifuged again at 3500 x g at 

4°C for 10 min to collect the mitochondrial pellet. 

Mitochondrial complex V activity was measured 

spectrophotometrically based on the specifications of 

the detection kit (Code A089-5-1, Jiancheng Institute of 

Biotechnology), and was normalized to the protein 

concentration (μM/min/g protein). 

 

SNP screening  
 

DNA was extracted from the SN tissue block according 

to the instructions of the TIANamp Genomic DNA Kit 

(DP304, TIANGEN Biotech, Beijing, China). Targeted 

DNA fragments were obtained by PCR amplification. 

The 25-μL PCR reaction included 1 μg of genomic 

DNA, 10 μM of each primer, 10× PCR buffer, 

deoxynucleotide triphosphates and TaKaRa Taq DNA 

polymerase. The primers for ATP6 or ATP8 were 

designed as follows: ATP6 (5′-AATCATCTCCTCAA 

TAGCCACACT-3′ and 5′-TTGTCAGGAGGCCT 

AATGATAGGA-3′); ATP8 (5′-TCACAGCTTCATA 

CCCATTGTACT-3′ and 5′-AGGGATACAATTA 

TTAGGGCTCAG-3′). The PCR cycling conditions 

included 1 cycle of 95°C for 5 min; 35 cycles of 95°C 

for 30 s, 55°C for 30 s, and 72°C for 40 s; and 1 cycle 

of 72°C for 7 min. The PCR-amplified fragments were 

further processed according to the instructions of the 

BigDye™ Terminator v3.1 Cycle Sequencing Kit. 

Target DNAs were sequenced on a 3730XL DNA 

analyzer (Applied Biosystems, USA). DNAMAN 

software (Lynnon Biosoft, USA) was used to compare 

the target DNA sequences among the 6Mon, 24Mon 

and 24Mon-TP groups. 

qPCR analysis 
 

Total RNA (1 µg) from the SN tissue block was 

reverse-transcribed using random primers to obtain the 

first-strand cDNA template. Then, qPCR was performed 

with 1 μL of cDNA (diluted 1:10), 2 μL of each specific 

primer and 2×All-in-OneTM qPCR Mix (GeneCopoeia 

Inc., USA) in a final volume of 20 μL. PCR was 

performed as follows: an initial cycle at 95°C for 15 

min, followed by 40 cycles at 95°C for 10 s, 60°C for 

20 s, and 72°C for 20 s. Then, the melting curves of the 

PCR products were analyzed to confirm the specificity 

of amplification. Gene expression was analyzed using 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

as an internal control. For all samples, qPCR was 

performed in triplicate. The relative quantification was 

performed using the 2-ΔΔCt method. The sets of primers 

were as follows: ATP6 (5′-TACCACTCAGCTAT 

CTATAAACCTAAGCA-3′ and 5′-AGTTTGTGTC 

GGAAGCCTAGAATT-3′), ATP8 (5′-CCAAACCTT 

TCCTGCACCTC-3′ and 5′-TGGGGGTAATGAAAGA 

GGCAAA-3′), ATP5A1 (5′-AGTGCATGGACTGAG 

GAACG-3′ and 5′-CCCACTCGTCTGCGAATCTT-3′), 

ATP5B (5′-ACCACCAAGAAGGGCTCGAT-3′ and 5′-

CCCACTCGTCTGCGAATCTT-3′), ATP5C1 (5′-CCA 

GGAGACTGAAGTCCATCA-3′ and 5′-GGAGCCTG 

TCCCATACACTCG-3′), ATP5D (5′-CACTGTGAAT 

GCGGACTCCT-3′ and 5′-GGATTTGGATCTCAGC 

CCGT-3′), ATP5E (5′-TACTGGCGACAGGCTG 

GACT-3′ and 5′-TTTATGCTGGTGCCCGAAGT-3′), 

ATP5F1 (5′-CTCGCGAGATATGTGAGCGG-3′ and 

5′-GTACCGATGTCCCTGTGACC-3′), ATP5G1 (5′-

GACCACGAAGGCACTGCT-3′ and 5′-CGTCTGG 

CCACCTGGAGA-3′), ATP5G2 (5′-CTCTACCCG 

CTCCCTGAT-3′ and 5′-GCCGGACTGCCAAG 

CAGC-3′), ATP5G3 (5′-CTGCTCTGATCCGAGCTG-

3′ and 5′-ACCGTAGAGCCCTCTCCA-3′), ATP5O (5′-

AGGTGTCCCTTGCTGTTCTGA-3′ and 5′-TGCCT 

AGGCGACCATTTTCA-3′), ATP5H (5′-CCATCGA 

TTGGGTATCTTTTGTG-3′ and 5′-TCATTCCAG 

GACTTCAGAGCGTTTC-3′), ATP5J (5′-GTCGAACG 

ACTGAAGCGGT-3′ and 5′-GTACTTGCACTGAG 

TCCCGA-3′), ATP5I (5′-TCAAGTTCGGCCG 

GTACTC-3′ and 5′-CCGCTGCTATTCTTCTCTCCT-

3′), ATP5J2 (5′-GGAACTCAAACACGAACGGC-3′ 

and 5′-AGGTTAAGCAGATCGGAGCG-3′), ATP5L 

(5′-TACTCGAAGCCTCGATTGGC-3′ and 5′-

ACCAGTTTGGGCACTGTGAA-3′) and GAPDH (5′-

GACTCTTACCCACGGCAAGTT-3′ and 5′-

GGTGATGGGTTTCCCGTTGA-3′). 

 

Western blot analysis 
 

The SN tissue blocks were homogenized in 

radioimmunoprecipitation assay buffer containing 1% 

Triton X-100, 0.1% sodium dodecyl sulfate (SDS), 



 

www.aging-us.com 10408 AGING 

0.5% sodium deoxycholate and protease inhibitors (100 

μg/mL phenylmethanesulfonyl fluoride, 30 μg/mL 

aprotinin and 1 mM sodium orthovanadate), and then 

sonicated four times for 10 s each. The samples were 

centrifuged at 12,000 x g for 20 min at 4°C, and the 

supernatants were collected and centrifuged again as 

before. About 50 μg of protein from the final 

supernatant was diluted with 4× sample buffer (50 mM 

Tris, pH 6.8, 2% SDS, 10% glycerol, 0.1% 

bromophenol blue and 5% β-mercaptoethanol) and 

heated for 10 min at 95°C. The proteins were separated 

via SDS polyacrylamide gel electrophoresis on a 12% 

gel, and were subsequently transferred to a 

polyvinylidene difluoride membrane (Millipore). The 

membrane was incubated for 1 h with 5% dry skim milk 

in Tris-buffered saline containing 0.05% Tween 20 

(TBST, pH 7.6) at room temperature. The membrane 

was rinsed three times with TBST and then incubated 

overnight with a rabbit anti-ATP6 polyclonal antibody 

(1:500, A8193, ABclonal), rabbit anti-ATP8 polyclonal 

antibody (1:200, GTX55993, GeneTex), rabbit anti-

ATP5C1 polyclonal antibody (1:500, ARG58368, Arigo 

Biolaboratories), rabbit anti-ATP5I polyclonal antibody 

(1:200, HPA035010, Atlas) or rabbit anti-ATP5L 

polyclonal antibody (1:500, ARG57383, Arigo 

Biolaboratories) at 4°C. After being washed three times, 

the membrane was incubated for 1 h with an IRDye 

800-conjugated goat anti-rabbit secondary antibody 

(1:10000, Rockland) at room temperature. The relative 

band density was analyzed on an Odyssey infrared 

scanner (LI-COR Biosciences, USA). The densitometry 

values of ATP6, ATP8, ATP5C1, ATP5I and ATP5L 

were normalized to those of β-actin, the endogenous 

control. For all samples, Western blots were performed 

in triplicate. 

 

Serum testosterone assay 
 

Trunk blood was collected from the rats in Experiment 

1 following decapitation. The harvested trunk blood was 

allowed to coagulate in open microfuge tubes at room 

temperature for 30 min. Then, the serum was collected 

by centrifugation. Serum testosterone levels were 

measured using a testosterone radioimmunoassay kit 

based on the manufacturer’s protocol (Tianjin Nine 

Tripods Medical and Bioengineering Co., Ltd., China). 

 

Statistical analysis 

 

Data are shown as the mean ± standard deviation (S.D.). 

Grubb's test was applied to remove possible outliers. 

The Kolmogorov-Smirnov test was used to determine 

whether the variables were normally distributed, and 

Levene’s test was applied to test the homogeneity of 

variance. One-way analysis of variance (ANOVA) was 

applied to compare the means of normally distributed 

variables. If the variance was homogeneous (P>0.05, 

Levene’s test) and the results of one-way ANOVA were 

significant (P<0.05, F-statistic), Tukey’s honestly 

significant difference post hoc test was used for 

multiple comparisons. If the variance was unequal 

(P<0.05, Levene’s test), Welch’s F test in one-way 

ANOVA was used (F′-statistic), and when P was <0.05, 

post hoc analyses were done using the Games-Howell 

procedure [68]. Statistical analyses were performed 

using the Statistical Package for the Social Sciences 21 

software (SPSS Inc., Chicago, IL, USA) and Prism 6 

(GraphPad Software Inc., La Jolla, CA, USA). P<0.05 

was considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

 

 

 

 
 

Supplementary Material 1. Comparison of ATP6 DNA sequences in the substantia nigra among 6Mon, 24Mon and 24Mon-TP 
rats. Identity=100%. (n=3 rats/group). 
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Supplementary Material 2. Comparison of ATP8 DNA sequences in the substantia nigra among 6Mon, 24Mon and 24Mon-TP 
rats. Identity=100%. (n=3 rats/group). 


