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ABSTRACT 
 

DNA methylation changes during aging, but it remains unclear whether the effect of DNA methylation on 
lung cancer survival varies with age. Such an effect could decrease prediction accuracy and treatment 
efficacy. We performed a methylation–age interaction analysis using 1,230 early-stage lung adenocarcinoma 
patients from five cohorts. A Cox proportional hazards model was used to investigate lung adenocarcinoma 
and squamous cell carcinoma patients for methylation–age interactions, which were further confirmed in a 
validation phase. We identified one adenocarcinoma-specific CpG probe, cg14326354PRODH, with effects 
significantly modified by age (HRinteraction = 0.989; 95% CI: 0.986–0.994; P = 9.18×10–7). The effect of low 
methylation was reversed for young and elderly patients categorized by the boundary of 95% CI standard 
(HRyoung = 2.44; 95% CI: 1.26–4.72; P = 8.34×10-3; HRelderly = 0.58; 95% CI: 0.42–0.82; P = 1.67×10-3). 
Moreover, there was an antagonistic interaction between low cg14326354PRODH methylation and elderly age 
(HRinteraction = 0.21; 95% CI: 0.11–0.40; P = 2.20×10−6). In summary, low methylation of cg14326354PRODH 
might benefit survival of elderly lung adenocarcinoma patients, providing new insight to age-specific 
prediction and potential drug targeting. 
 

INTRODUCTION 
 

Population aging has resulted in a rapid increase in lung 

cancer cases as well as corresponding surgeries among 

elderly patients [1]. Indeed, the median age at diagnosis 

of lung cancer is 70 years old [2]. Further, lung cancer 

leads as a cause of cancer deaths among men ≥40 years 

old and women ≥60 years old [3]. 

 

Progression of lung cancer is, in part, due to accumulation 

of genomic instability as well as age-related declines in 

system integrity and function [4]. Thus, even for 

individuals exposed to similar levels of risk factors, lung 

cancer severity can vary as a function of individual 

differences in aging. Therefore, compared to predictive 

guidance for the overall population, effective predictive 

guidance for age-specific populations, especially elderly 

patients, is needed to better guide postoperative treatment 

and improve survival. Developing such guidance 

necessitates identifying exclusive prognostic indicators of 

lung cancer for the elderly.  

 

Epigenetic mechanisms represent the molecular 

interface mediating gene–environment interactions 

throughout the lifecycle [5]. DNA methylation, a 

reversible epigenetic modification, correlates with 

tumor prognosis in almost all cancers including non-

small cell lung cancer (NSCLC) [6–9]. DNA 

methylation events may potentially be cancer bio-

markers as well as therapeutic targets to improve cancer 

treatment [10].  

 

Alterations to DNA methylation often occur during 

aging [11]. One of these alterations, known as 

“epigenetic drift”, may further contribute to 

tumorigenesis in the elderly [12]. Changes in DNA 

methylation also can contribute to senescence [13]. 

However, it remains largely unclear whether alterations 

of methylation patterns resulting from aging, 

accumulating environmental exposures throughout life 

[14], and other events also have varied effects on cancer 

survival during aging. Such phenomena may further 

explain the increased alteration of cancer mortality risk 

with age and may increase the effectiveness of cancer 

prediction and treatment. 

 

We hypothesized that the methylation effect on cancer 

survival changes during aging. Thus, identifying age-

specific signatures will be critical for prognosis 

prediction, underpinning potential preventative 

strategies, and improving survival for elderly patients. 

However, most epigenome-wide association studies are 

designed to identify main effects of DNA methylation 

and fail to provide knowledge about changes in 

epigenetic effects during aging. Thus, we performed an 

epigenome-wide methylation–age interaction analysis to 

identify age-specific, prognosis-associated epigenetic 

biomarkers using NSCLC patients from four cohorts, 

along with an independent population from The Cancer 

Genome Atlas (TCGA) to confirm our results.  

 

RESULTS 
 

After quality control (QC) procedures, 1,230 lung 

adenocarcinoma (LUAD) and lung squamous cell 

carcinoma (LUSC) patients with 311,891 CpG probes 

remained for subsequent association analysis. There 

were 613 (NLUAD = 492; NLUSC = 121) patients in the 

discovery phase, and 617 (NLUAD = 332; NLUSC = 285) 

patients in the validation phase. The average age was 

66.4 and 66.5 years for patients in the discovery and 

validation phases, respectively. Most NSCLC patients 

were in stage I (77.5% in discovery; 63.7% in 

validation) (Supplementary Table 1). 
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We only observed two significant methylation–age 

interactions for LUAD patients in the discovery phase 

(Figure 1, Supplementary Figure 1, Supplementary 

Table 2), and none for LUSC patients. Results of the 

epigenome-wide association study are shown in 

Supplementary Materials 1 and 2. In the validation 

phase, only one LUAD-specific CpG probe, located in 

proline dehydrogenase 1 (PRODH) (Supplementary 

Table 3), remained significant.  

 

Low methylation of cg14326354PRODH interacted with 

age to affect survival of patients (discovery phase: 

hazard ratio (HR)interaction = 0.982; 95% CI: 0.976–

0.989; P = 1.11×10–7; validation phase: HRinteraction = 

0.981; 95% CI: 0.966–0.997; P = 0.0202; combined 

data: HRinteraction = 0.989; 95% CI: 0.986–0.994; P = 

9.18×10–7). Further, the robustly significant interaction 

effect was confirmed in sensitivity analysis by 

removing outliers in methylation data (Supplementary 

Table 4). When using leave-one-out method for 

validation, the interaction remained significant 

(Supplementary Figure 2). Moreover, meta-analysis 

also exhibited significant (HRinteraction = 0.983; 95% CI: 

0.976–0.990; P = 3.95×10–6) and homogenous 

(PHeterogeneity = 0.97) interaction effects across five 

cohorts (Supplementary Figure 3). Based on stratified 

analysis by smoking status, sex, clinical stage, and 

study cohort, there was no significant heterogeneity of 

interaction effect between subgroups of any of these 

covariates (Supplementary Table 5).  

With increased age, there was an increased protective 

effect for low methylation of cg14326354PRODH on 

LUAD survival (Figure 2A, Supplementary Figure 4). 

Thus, age was a modifier of the association between 

cg14326354PRODH and survival. To better understand the 

interaction between DNA methylation and age, patients 

were categorized into young and elderly groups based on 

the boundary of 95% CI (BoCI) of HR (<57 vs >65 years 

in Figure 2A) or the United Nations (UN) standard (≤65 

vs >65 years). The BoCI standard provided stable results 

in both phases as well as combined data (Supplementary 

Table 6), with varied effects of cg14326354PRODH 

methylation across different age groups. Low methy-

lation of cg14326354PRODH showed a risk effect on 

survival for young patients (HRBoCI = 1.20; 95% CI: 

1.03–1.40; P = 1.97×10–2; HRUN = 1.10; 95% CI: 0.99–

1.22; P = 8.71×10–2) but benefited survival of elderly 

LUAD patients (HRBoCI = 0.81; 95% CI: 0.75–0.88; P = 

5.38×10–7; HRUN = 0.81; 95% CI: 0.75–0.88; P = 

5.38×10–7) (Figure 2B). Kaplan-Meier curves also 

confirmed reversed effect patterns across age groups 

based on BoCI standard (HRyoung = 2.44; 95% CI: 1.26–

4.72; P = 8.34×10-3; HRelderly = 0.58; 95% CI: 0.42–0.82; 

P = 1.67×10-3), with methylation groups defined by 

median values. There was significant heterogeneity of the 

low cg14326354PRODH methylation effect between young 

and elderly patients (I2 = 93.03%, Q = 14.35, P = 

1.52×10-4) (Figure 2C). These results indicated that 

elderly LUAD patients had better survival with lower 

methylation of cg14326354PRODH. 

 

 
 

Figure 1. Flow chart of study design and statistical analyses. 
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In addition, we evaluated the joint effect of 

cg14326354PRODH methylation level (low vs high) and 

age (elderly vs young) on LUAD survival (Table 1). 

The group with the best survival (young patients with 

high methylation) was used as the reference to evaluate 

effects of low methylation, elderly age, and their 

interaction. The main effect of low cg14326354PRODH 

methylation was HR = 2.84 (95% CI: 1.59–5.08, P = 

4.35×10−4), and the main effect of elderly age was HR = 

3.18 (95% CI: 1.85–5.46, P = 2.64×10−5). However, the 

joint effect was HR = 1.86 (95% CI: 1.08–3.19, P = 

2.42×10−2), which was less than the product of the two 

main effects (2.84×3.18 = 9.03). This result indicates an 

antagonistic interaction between low cg14326354PRODH 

methylation and elderly age (HRinteraction = 0.21; 95% 

CI: 0.11–0.40; P = 2.20×10−6). 

 

 
 

Figure 2. DNA methylation and age interaction on survival of lung adenocarcinoma (LUAD) patients. (A) Hazard ratio (HR) of 
cg14326354PRODH 5% per decrement of methylation level among different aged patients. The 95% confidence interval (95% CI) 
band of HR for patients aged <57 or >65 years is statistically significant. Top histogram shows distribution of age. (B) Forest 
plots of HR of cg14326354PRODH 5% per decrement of methylation level in young and elderly LUAD patients, categorized based 
on boundary of 95% CI (BoCI) and 1956 United Nations standard. (C) Kaplan-Meier survival curves of low and high methylation 
groups (categorized by median value) among young and elderly LUAD patients defined using BoCI standard. Pheterogeneity was 
used to evaluate heterogeneity of HRs across age groups. 
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Table 1. Joint effect and interaction of low methylation and elderly age on the prognosis of early-stage lung 
adenocarcinoma (LUAD). 

Effect type a Elderly b Low methylation Number Death Crude mortality HR (95% CI) a P a 

 No No 75 17 22.67% Ref. 
 

Main effect 1 No Yes 70 33 47.14% 2.8398 (1.5876,5.0798) 4.35×10-4 

Main effect 2 Yes No 217 98 45.16% 3.1804 (1.8542,5.4553) 2.64×10-5 

Joint effect Yes Yes 222 70 31.53% 1.8590 (1.0840,3.1890) 0.0242 

Interaction c 
  

   0.2058 (0.1070,0.3961) 2.20×10-6 

a Patients categorized into two groups (low vs high) by medium of cg14326354PRODH methylation level. Classification criteria of 
age were based on boundary of 95% confidence interval (CI) standard (young: <57 years; elderly >65 years). 
b Main effects of low methylation and elderly age and their joint effect and interaction were derived from Cox proportional 
hazards model adjusted for covariates. 
c Interaction = Joint effect ÷ (Main effect 1 × Main effect 2). 0.2058 ≈ 1.8590 ÷ (3.1804 × 2.8398). 
 

Further, cis-regulation and genome-wide trans-

regulation analyses were conducted in the TCGA 

cohort. We observed significant correlation between 

cg14326354PRODH and PRODH expression (r = –0.23; P 
= 3.38 × 10-5) in LUAD patients (Figure 3A), indicating 

that cg14326354PRODH cis-regulated gene expression. 

Moreover, genome-wide trans-regulation analysis 

revealed that expression of 821 genes was significantly 

correlated with methylation level of cg14326354PRODH 

(Supplementary Material 3, Figure 3B). KEGG 

enrichment analysis based on 821 trans-regulated genes 

showed several significant immune- or inflammation-

related pathways, such as chemokine signaling, T cell 

receptor and B cell receptor signaling, and cellular 

pathways such as cell differentiation and cell cycle 

(Figure 3C). Notably, these trans-regulated genes were 

also enriched in senescence-related pathways (e.g., 

cellular senescence) and cancer-related pathways (e.g., 

NF-κB signaling).  

 

Because tumor mutational burden (TMB) serves as a 

biomarker to select patients who might benefit from 

immune checkpoint inhibitors [15], we also evaluated 

association between TMB and cg14326354PRODH as 

well as PRODH expression. TMB of each sample is 

shown in Supplementary Material 4. cg14326354PRODH 

was positively correlated with TMB (r = 0.23; P = 

4.04×10-5), while PRODH expression was negatively 

correlated with TMB (r = –0.22; P = 6.62×10-5) 

(Supplementary Figure 5).  

 

DISCUSSION 
 

In this two-stage study using five independent cohorts, 

we systematically investigated methylation–age 

interactions on an epigenome-wide scale. Our results 

show an antagonistic interaction between elderly age 

and low methylation of cg14326354PRODH, indicating 

opportunities for epi-drug intervention due to the 

inherent reversibility of epigenetic events [16] and 

increasing treatment efficiency based on age-specific 

drug targeting. 

 

PRODH is located in chromosome 22q11.2, a region 

often deleted in various human tumors. This gene 

encodes a mitochondrial inner membrane-associated 

enzyme that acts as a tumor suppressor in vitro and in 

vivo [17]. However, PRODH plays a paradoxical role in 

tumors. Hypoxia and nutrient depletion are important 

characteristics of the tumor microenvironment, where 

PRODH may serve as a tumor survival factor [18]. 

Indeed, PRODH supports tumor metastasis formation, 

and inhibiting its activity impairs cancer cell growth, 

indicating PRODH is a potential drug target [19]. A 

metabolic enzyme, PRODH can catabolize proline to 

pyrroline-5-carboxylate (P5C). The process can donate 

electrons that enter the electron transport chain to 

produce reactive oxygen species (ROS), which then 

participate in protective autophagy rather than apoptotic 

cell death [18].  

 

Autophagy, a self-digestion process, plays an important 

role in maintaining intracellular homeostasis. 

Autophagy can clear intracellular abnormally folded 

protein and dysfunctional organelles, inhibit cell stress 

response, and prevent genetic damage in early phases of 

tumorigenesis. However, autophagy helps tumor cells 

survive nutritional deficiencies and hypoxic conditions 

when tumors develop and accumulate more mutations 

to promote malignant progression [20]. Further, tumor-

surrounding normal cells, which are active and essential 

parts of the microenvironment, support tumor 

proliferation by autophagy. Besides, autophagy in 

distant organs may also support growth of tumor tissue 

[21]. Additionally, autophagy can act as a mechanism of 

tumor resistance to chemotherapy agents and lead to 

antagonistic effects of gefitinib combined with cisplatin 

in NSCLC treatment, which may contribute to poor 

therapeutic effectiveness and patient prognosis [22, 23]. 

Further, our results suggest that low methylation of 
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cg14326354PRODH may potentially promote PRODH 

expression, further heighten autophagy to some extent 

[24], and then result in poor prognosis (Figure 4). 

 

Age is an independent risk factor for lung cancer 

survival [25]. Individual aging implies a higher 

abundance of senescent cells in aged tissues and 

reflects an increase in the generation of senescent cells 

[26]. At old age, senescent cells generate a pro-

tumorigenic microenvironment, though at young age 

these cells may protect against transformation into 

primary tumors [27]. A previous study also shows that 

p53 function declines during aging [28] and might 

promote tumor growth and decrease cancer survival 

[29]. Moreover, senescent cells can promote 

reprogramming of tumor stem cells, increase cancer 

stemness, and accelerate tumor growth [30]. Thus, 

combined with our results, increased generation of 

senescent may be relevant to poor NSCLC prognosis 

for elderly patients (Figure 4). 

 

 
 

Figure 3. Scatter plot of cis-regulation, circos plot of genome-wide trans-regulation analysis, and significant pathways of 
gene enrichment pathway analysis. (A) Correlation between DNA methylation of cg14326354PRODH and expression of PRODH. 
The r coefficient and P-value were derived from Pearson correlation analysis. Gene expression was log2-transformed before 
correlation analysis. (B) Circos plot of genome-wide trans-regulation analysis in the TCGA cohort. Blue points ordered by 
genomic position represent P-values of correlation between gene expression and methylation at cg14326354PRODH. Grey lines 
represent significant correlations with Bonferroni-adjusted P ≤ 0.05. (C) KEGG gene enrichment analysis of 821 trans-regulated 
genes correlated with cg14326354PRODH methylation. 
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Autophagy is reduced in aging, likely through several 

mechanisms [31]. Lipofuscin produced during aging 

can destroy the function of lysosomes, restricting 

binding between autophages and lysosomes [32]. In 

addition, expression of lysosome-associated membrane 

glycoprotein (LAMP2a), which assists autophagy, 

decreases during aging and thus can inhibit autophagy 

[33]. Further, by guaranteeing stability of the cellular 

proteome and proper organelle turnover, autophagy can 

prevent or slow down aging and extend lifespan [34]. 

The antagonistic effect exists between aging and the 

autophagy level resulting from low methylation of 

cg14326354PRODH, in spite of the harmful effect of both, 

which could provide a possible mechanism of the 

cg14326354PRODH–age interaction (Figure 4). 

 

The 821 significant trans-regulated genes we identified 

were enriched in KEGG pathways including inflammation 

and immune-related pathways. Notably, cellular 
senescence was involved in these pathways, again 

indicting potential indirect induction of cg14326354PRODH 

on senescence. Meanwhile, the NF-κB pathway, with the 

ability to upregulate genes responsible for inflammation, 

cell survival, proliferation, invasion, angiogenesis, and 

metastasis, often plays a critical role in initiation, 

promotion, progression, and therapy resistance of cancers 

[35, 36]. Further, NF-κB family members can activate or 

inhibit signaling pathways, leading to induction of 

autophagy or transcription of certain pro-autophagic-

regulating genes [35], and can induce senescence [37]. 

Because cell proliferation can be associated with both 

senescence and survival [38, 39], we also analyzed several 

proliferation-associated genes retrieved from the KEGG 

database. Expression of these genes were significantly 

correlated with cg14326354PRODH methylation and 

affected LUAD survival, including MKI67, BTG2, 

KIAA1524, and CDC123 (Supplementary Table 7). Our 

previous study of BTG2 expression and methylation 

already indicated it is a prognostic biomarker of NSCLC 

[7]. These results also indicate the potential role of 

cg14326354PRODH in indirect induction of autophagy, 

senescence, and survival. Further functional studies are 

warranted to elucidate the mechanism of 

cg14326354PRODH and age interaction on LUAD survival. 

 

Age represents a complex surrogate for a host of 

underlying phenomena, although its measurement is 

simple and accurate [40]. A previous study suggested 

that gene–age interactions may partially be surrogates 

for gene–gene and gene–environment interactions 

[41]. In a study investigating the efficacy of 

metronomic vinorelbine to treat patients with 

advanced unresectable NSCLC, age was an important 

factor that decreased treatment efficacy [42]. Our 

study might provide a novel explanation of age effects 

on treatment efficacy from the cg14326354PRODH–age 

interaction perspective. Further clinical studies will 

provide additional insight into cg14326354PRODH and 

its age-specific effects in tumors, which may lead to 

new age-specific biomarkers and therapeutic 

strategies that improve prediction accuracy and 

treatment efficacy. 

 

 
 

Figure 4. Pathway of DNA methylation–age interaction effect on survival of lung adenocarcinomas (LUAD) patients. 



 

www.aging-us.com 10649 AGING 

Our study has several strengths. First, this is the first 

epigenome-wide study to investigate the interaction 

between DNA methylation and age on NSCLC survival, 

which provides new evidence to account for the missing 

heritability of complex diseases [43] and may further 

reveal the role of age in heterogeneity of NSCLC 

prognosis and treatment efficacy. Second, to identify 

stable and reliable biomarkers, a two-stage study design 

along with Bonferroni correction and sensitivity 

analysis was used to exhaustively search for inter-

actions, which is quite conservative in controlling for 

false positives. Finally, with a large sample size to 

analyze DNA methylation–age interactions, our study 

has improved statistical power to identify complex 

associations with small–medium effect size. 

 

Nonetheless, several limitations also need to be 

acknowledged. First, we did not observe robustly 

significant methylation–age interactions on survival for 

LUSC, which may be due to limited sample size and 

thus insufficient power. However, there was no 

significant heterogeneous effect between LUAD and 

LUSC groups (Supplementary Table 8). Second, the 

association was no longer significant in young LUAD 

patients when the analysis used UN standards to define 

age groups. However, we still observed a significant 

association in patients <57 years old. This effect might 

be because >62% (240/385) of young patients defined 

using the UN standard (57–65 years) attenuated the 

effect of cg14326354PRODH methylation. Therefore, high 

methylation of cg14326354PRODH might benefit survival 

of young LUAD patients. Third, although widespread 

methylation–age interactions may exist, we only 

identified one interaction, which may be due to the most 

conservative correction method used in the discovery 

phase and limited statistical power in the validation 

phase due to low event rate of survival time in the 

TCGA population. We may need longer time to follow-

up early-stage patients in TCGA for their events to 

occur. Nevertheless, the interaction between 

cg14326354PRODH and age was successfully confirmed, 

indicating it was a conservative and robust association. 

Fourth, our analysis was based on the assumption of 

linear additive interaction, and new statistical models 

can be used to properly capture non-linear methylation–

age interactions. Last, the cis-regulation pattern of 

cg14326354PRODH requires more biological evidence, 

although methylation is believed to play a crucial role in 

regulating gene expression [44] and further influence 

disease gene function [45]. Therefore, our findings 

should be interpreted with caution, and functional 

experiments are warranted to confirm these 

associations. 

 

In conclusion, low methylation of cg14326354PRODH 

benefited survival of elderly LUAD patients. Our results 

have implications for not only age-specific prediction of 

cancer survival, but also possible methylation-specific 

drug targeting. 

 

MATERIALS AND METHODS 
 

Lung cancer study populations 
 

Only early-stage (stage I–II) LUAD and LUSC patients 

were included in our study. DNA methylation data was 

harmonized from five cohorts: Harvard, Spain, Norway, 

Sweden, and TCGA. 

 

Harvard 
Since 1992, patients have been recruited at 

Massachusetts General Hospital (MGH) and 

histologically confirmed as primary NSCLC [46]. We 

profiled 151 early-stage patients from this cohort. 

During curative surgery, tumor specimens were 

collected with complete resection and snap-frozen. A 

MGH pathologist evaluated each specimen for tumor 

cell amount (tumor cellularity > 70%) and quality. 

Specimens were classified histologically according to 

World Health Organization (WHO) criteria. The 

Institutional Review Boards at Harvard T.H. Chan 

School of Public Health and MGH approved the study. 

All patients provided written informed consent. 

 

Spain 

The Spain cohort included 226 early-stage NSCLC 

patients recruited from eight sub-centers in 1991–2009 

[47]. Tumor DNA was extracted from fresh-frozen 

tumor specimens and further checked for integrity and 

quantity. Patients provided written consent, and tumors 

were surgically collected. The study was approved by 

the Bellvitge Biomedical Research Institute Institutional 

Review Boards. 

 

Norway 

 The Norway study population consisted of 133 early-

stage NSCLC patients from Oslo University Hospital-

Riks Hospitalet, Norway, in 2006–2011 [48]. Tumor 

tissues were snap-frozen in liquid nitrogen and stored at 

–80°C until DNA isolation. The project was developed 

with approval of the Oslo University Institutional 

Review Board and Regional Ethics Committee (S-

05307). All patients provided informed consent.  

 

Sweden 
Tumor DNA was collected from 103 early-stage NSCLC 

patients, including 80 LUAD and 23 LUSC patients, at 

the Skane University Hospital in Lund, Sweden [49]. The 

study was developed under the approval of the Regional 

Ethical Review Board in Lund, Sweden (registration no. 

2004/762 and 2008/702). All patients provided written 

informed consent. 
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TCGA 

A total of 332 LUAD and 285 LUSC cases with full 

DNA methylation, survival time, and covariate data 

were included. Level-1 HumanMethylation450 DNA 

methylation data of early-stage NSCLC patient were 

downloaded on October 01, 2015. 

 
Quality control for DNA methylation data 

 

DNA methylation was assessed using Illumina Infinium 

HumanMethylation450 BeadChips (Illumina Inc.). Raw 

image data were imported into Genome Studio 

Methylation ModuleV1.8 (Illumina Inc.) to calculate 

methylation signals and to perform normalization, 

background subtraction, and QC. Unqualified probes 

were excluded if they fit any of the following criteria: 

(i) failed detection (P > 0.05) in ≥5% samples, (ii) 

coefficient of variance (CV) <5%, (iii) all samples 

methylated or all unmethylated, (iv) common single 

nucleotide polymorphisms located in probe sequence or 

in 10-bp flanking regions, (v) cross-reactive probes 

[50], or (vi) data did not pass QC in all cohorts. 

Samples with >5% undetectable probes were excluded. 

Methylation signals were further processed for quantile 

normalization (betaqn function in R package minfi 
[51]), type I and II probe correction (BMIQ function in 

R package lumi [52]), and adjusted for batch effects 

(ComBat function in R package sva) [53]. Details of QC 

process are described Supplementary Figure 6. 

 

Quality control for gene expression data 

 

The TCGA workgroup completed mRNA sequencing 

data processing and QC. Raw counts were normalized 

using RNA-sequencing by expectation maximization 

(RSEM). Level-3 gene quantification data were 

downloaded from the TCGA data portal and were 

further checked for quality. Expression of genes was 

extracted and log2-transformed before analysis. 

Normalization results were then evaluated through 

boxplots of the distribution of gene expression across all 

samples (Supplementary Figure 7). 

 

Statistical analysis 

 

Statistical analysis flow is presented in Figure 1. 

Patients from Harvard, Spain, Norway, and Sweden 

study cohorts were assigned to the discovery phase, 

while patients in TCGA were assigned to the validation 

phase.  

 

In the discovery phase, histology-stratified analysis and 

Cox proportional hazards model adjusted for age, 

smoking status, sex, clinical stage, and study center 

were applied to test the methylation–age interaction 

effect on overall survival in LUAD and LUSC patients 

using the R package survival [54]. Hazard ratio (HR) 

and 95% confidence interval (CI) were described per 

5% level of methylation decrement. The P-value 

threshold for multiple testing was established using the 

Bonferroni method, which set the significance level to 

0.05 divided by number of tests. This way, overall type 

I error was controlled at the 0.05 level. In our study, 

significance level of interaction analysis was defined as 

1.60×10-07 = 0.05/311,891. Interactions with P ≤ 

1.60×10-07 were screened out and then further 

confirmed in the validation phase. Robustly significant 

probes were retained if they fit both of the following 

criteria: (i) interaction P ≤ 0.05, and (ii) direction of 

interaction effects was consistent across both phases. In 

sensitivity analysis, patients were excluded if their 

methylation values were out of range mean ± 

3×standard deviation (SD) on logit2-transformed scale. 

Genome-wide expression correlation analysis was 

performed to identify potential trans-regulation genes in 

TCGA. KEGG enrichment analysis of potential trans-

regulation genes (Bonferroni adjusted P < 0.05) was 

conducted using R package clusterProfiler [55].  

 

Continuous variables were summarized as mean ± SD; 

categorical variables were described as n (%). Kaplan-

Meier survival curves were used to illustrate survival 

difference between patients in low and high methylation 

groups (categorized by median value). We used two 

classification criteria to define young and elderly 

patients: (i) the UN standard (1956) of 65 years old as 

the cut-off value to distinguish elderly and young 

people [56], (ii) and a cut-off value calculated based on 

BoCI of HR of the CpG probe. All statistical analyses 

were performed in R version 3.5.1 (The R Foundation). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 

 

 
 

Supplementary Figure 1. Manhattan plot of methylation–age interaction P-values derived from Cox proportional hazards 
model adjusted for age, smoking status, sex, clinical stage, and study cohort in lung adenocarcinoma (LUAD) patients in the 
discovery phase. Red line represents Bonferroni adjusted P ≤ 0.05. Blue dot represents one CpG probe identified in this study, with 
Bonferroni adjusted P ≤ 0.05 in the discovery phase, P ≤ 0.05 in the validation phase, and consistent effect direction across both phases.  
 

 

 

 
 

Supplementary Figure 2. Association results of lung adenocarcinoma (LUAD)-specific cg14326354 PRODH–age interaction using 
leave-one-out method for validation. Size of each box represents the sample size of each cohort. Hazard ratio (HR) of cg14326354PRODH 

5% per decrement of methylation level and P-value of interaction term derived from the Cox proportional hazards model adjusted for age, 
smoking status, sex, clinical stage, and study cohort in LUAD patients when leaving one cohort out. 
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Supplementary Figure 3. Meta-analysis of interaction between DNA methylation of cg14326354PRODH and age for lung 
adenocarcinoma (LUAD) patients from five cohorts. Fixed effect and random effect models were both applied, and effect 
heterogeneity among five cohorts was tested. Size of each box represents the sample size of each cohort, and diamond represents the overall 
effect of cg14326354PRODH in five cohorts. Hazard ratio (HR) of cg14326354PRODH 5% per decrement of methylation level and P-value of 
interaction term derived from the Cox proportional hazards model adjusted for age, smoking status, sex, clinical stage, and study cohort in 
LUAD patients in each of the five cohorts. 

 

 

 

 

Supplementary Figure 4. Association results of the cg14326354PRODH effect on lung adenocarcinoma (LUAD) survival in 
different age subgroups. Size of each box represents the sample size of each cohort. Hazard ratio (HR) of cg14326354PRODH 5% per 
decrement of methylation level and P-value derived from the Cox proportional hazards model adjusted for age, smoking status, sex, clinical 
stage, and study cohort in LUAD patients in each age subgroup. 
  

http://www.baidu.com/link?url=MSz4wFcQWCoPm5RXYXpmAu7rvLuc_Q17Scl5Ycwxe5RlLL3aSz6k7G_irzTC5ycpeO6VCbIYI9F-bY3XTk1yKXnAqhRWU5guc5huvPdG737
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Supplementary Figure 5. Results of correlation analysis between tumor mutational burden (TMB) and PRODH methylation 
as well as expression. Correlation coefficient (r) and P-value were derived from Pearson correlation analysis. TMB as well as gene 
expression were log2-transformed before correlation analysis due to violation of normal distribution assumption before data transformation. 

 

 
 

Supplementary Figure 6. Quality control procedures for epigenome-wide DNA methylation data.  
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Supplementary Figure 7. Boxplot of gene expression distribution across all samples after normalization. Gene expression values 
were log2-transformed. 
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Supplementary Tables 
 

Supplementary Table 1. Demographic and clinical characteristics for early-stage non-small cell lung cancer (NSCLC) 
patients from five cohorts. 

Variable 

Discovery phase 
Validation 

phase 

Combined 

dataset 

Cohort 1: 

Harvard 

(N = 151) 

Cohort 2: 

Spaina 

(N = 226) 

Cohort 3: 

Norway 

(N = 133) 

Cohort 4: 

Sweden 

(N = 103) 

Discovery: 

All 

(N = 613) 

Cohort 5: 

TCGA 

(N = 617) 

Overall 

samples 

(N = 1230) 

Age (years) 67.67±9.92 65.67±10.58 65.52±9.34 67.54±9.99 
66.44±10.0

8 
66.51±9.47 66.48±9.78 

Sex, n (%) 
  

    
 

Female 67 (44.37) 105 (46.46) 71 (53.38) 54 (52.43) 297 (48.45) 255 (41.33) 552 (44.88) 

Male 84 (55.63) 121 (53.54) 62 (46.62) 49 (47.57) 316 (51.55) 362 (58.67) 678 (55.12) 

Smoking status,  

n (%)   
     

Never 18 (11.92) 30 (13.57) 17 (12.78) 18 (17.48) 83 (13.65) 55 (9.18) 138(11.22) 

Former 81 (53.64) 120 (54.30) 74 (55.64) 54 (52.43) 329 (54.11) 376 (62.77) 705 (58.41) 

Current 52 (34.44) 71 (32.13) 42 (31.58) 31 (30.10) 196 (32.24) 168 (28.05) 364 (30.16) 

Unknown 0 5 0 0 5 18 23 

Clinical stage, n (%) 
  

    
 

I 104 (68.87) 183 (80.97) 93 (69.92) 95 (92.23) 475 (77.49) 393 (63.70) 868 (70.57) 

II 47 (31.13) 43 (19.03) 40 (30.08) 8 (7.77) 138 (22.51) 224 (36.30) 362 (29.43) 

Histology, n (%) 
  

    
 

LUAD 96 (63.58) 183 (80.97) 133 (100.00) 80 (77.67) 492 (80.26) 332 (53.81) 824 (66.99) 

LUSC 55 (36.42) 43 (19.03) 0 (0.00) 23 (22.33) 121 (19.74) 285 (46.19) 406 (33.01) 

Chemotherapy, n (%) 
  

    
 

No 142 (94.04) 177 (90.77) 102 (76.69) 67 (90.54) 488 (88.25) 194 (76.98) 682 (84.72) 

Yes 9 (5.96) 18 (9.23) 31 (23.31) 7 (9.46) 65 (11.75) 58 (23.02) 123 (15.28) 

Unknown 0 31 0 29 60 365 425 

Radiotherapy, n (%) 
  

    
 

No 132 (87.42) 184 (94.36) 132 (99.25) 
74 

(100.00) 
522 (94.39) 239 (94.84) 761 (94.53) 

Yes 19 (12.58) 11 (5.64) 1 (0.75) 0 (0.00) 31 (5.61) 13 (5.16) 44 (5.47) 

Unknown 0 31 0 29 60 365 425 

Adjuvant therapyb, n 

(%)   
    

 

No 127 (84.11) 168 (86.15) 101 (75.94) 67 (90.54) 463 (83.73) 187 (74.21) 650 (80.75) 

Yes 24 (15.89) 27 (13.85) 32 (24.06) 7 (9.46) 90 (16.27) 65 (25.79) 155 (19.25) 

Unknown 0 31 0 29 60 365 425 

Survival year 
  

    
 

Median (95% CI) 
6.66  

(5.41-7.87) 

7.12  

(5.06-9.63) 

7.36  

(6.77-7.95)* 

7.39  

(4.98-9.12) 

7.39  

(6.50-8.23) 

4.54  

(3.68-5.41) 

6.60  

(5.84-7.35) 

Dead (%) 122 (80.79) 101 (44.69) 42 (31.58) 58 (31.58) 323 (52.69) 142 (23.01) 465 (37.80) 

aCohort 2: Spain is a collaborative cohort, recruiting samples from Spain, Italy, UK, France, and USA.  
bAdjuvant therapy includes chemotherapy or radiotherapy. 
*Restricted mean survival time is given since median is not available. 
LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma 
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Supplementary Table 2. Results for two lung adenocarcinoma (LUAD)-specific methylation–age interactions 
identified from a two-stage epigenome-wide association study. 

Variable 
Discovery phase Validation phase Combined data 

HR 95% CI P HR 95% CI P HR 95% CI P 

cg14326354 2.986 1.921 4.640 1.16×10-06 3.442 1.146 10.337 2.76×10-02 1.885 1.429 2.487 7.16×10-06 

Age 0.860 0.809 0.915 1.74×10-06 0.854 0.728 1.002 5.36×10-02 0.926 0.890 0.964 1.53×10-04 
Interaction 0.982 0.976 0.989 1.11×10-07 0.981 0.966 0.997 2.02×10-02 0.989 0.986 0.994 9.18×10-07 
cg08700284 62.927 15.807 250.507 4.20×10-09 3.336 0.024 455.52 6.31×10-01 8.960 3.779 21.243 7.16×10-06 
Age 0.349 0.237 0.513 9.31×10-08 0.718 0.175 2.947 6.46×10-01 0.591 0.466 0.751 1.62×10-05 
Interaction 0.944 0.925 0.964 6.55×10-08 0.981 0.910 1.057 6.17×10-01 0.971 0.959 0.984 9.18×10-07 

HR: hazard ratio; 95% CI: 95% confidence interval 
 

Supplementary Table 3. Annotation information for significant lung adenocarcinoma (LUAD)-specific CpG probe. 

CpG probe CHR BP Region 
Relation to CpG 

islands 
Gene descriptiona 

cg14326354 22 18900453 3'UTR S_Shelf 
proline dehydrogenase 1 

(PRODH) 

aHyperlinks provide literature-based evidence for each gene from DAVID (https://david.ncifcrf.gov). 

CHR: chromosome; BP: basepair 
 

Supplementary Table 4. Results of interaction for sensitivity analysis of one significant lung adenocarcinoma (LUAD)-
specific CpG probe. 

Variable 
Discovery phase Validation phase Combined data 

HR 95% CI P HR 95% CI P HR 95% CI P 

cg14326354 3.056 1.950 4.792 1.11×10-06 3.522 1.156 10.73 2.67×10-02 3.048 2.043 4.547 4.77×10-08 

Age 0.858 0.806 0.914 1.61×10-06 0.853 0.726 1.003 5.36×10-02 0.861 0.814 0.911 1.80×10-07 
Interaction 0.982 0.976 0.989 1.03×10-07 0.981 0.966 0.997 2.09×10-02 0.982 0.976 0.988 3.18×10-09 

In sensitivity analysis, patients were excluded if their methylation values were out of range mean± 3×standard deviation on 
logit2 transformed scale.  
HR: hazard ratio; 95% CI: 95% confidence interval 
 

Supplementary Table 5. Results of heterogeneity test of the interaction effect between subgroups categorized by 
covariates. 

Covariate Subgroup HRinteraction 95% CI Pinteraction Qheterogeneity Pheterogeneity 

Never or former smoker 0.982 0.974 0.989 8.42×10-7 
Current smoker 0.982 0.971 0.992 7.85×10-4 

Male 0.983 0.974 0.990 1.57×10-5 
Female 0.978 0.968 0.988 2.10×10-5 

I 0.985 0.978 0.992 9.56×10-5 
II 0.977 0.965 0.988 1.65×10-4 

Harvard 0.979 0.964 0.995 7.92×10-3 
Norway 0.987 0.968 1.006 1.72×10-1 
Spain 0.985 0.973 0.997 1.75×10-2 

Sweden 0.983 0.959 1.008 1.77×10-1 
TCGA 0.981 0.966 0.997 2.02×10-2 

HR: hazard ratio; 95% CI: 95% confidence interval 

  

https://david.ncifcrf.gov/
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Supplementary Table 6. Results of low cg14326354PRODH methylation effect on lung adenocarcinoma (LUAD) survival 
in young and elderly populations defined using boundary of 95% confidence interval (BoCl) standard. 

Population 
Discovery phase Validation phase Combined data 

HR 95% CI P HR 95% CI P HR 95% CI P 

Young (age <57 years) 1.182 1.005 1.389 4.29×10-2 1.294 1.023 1.636 3.18×10-2 1.200 1.030 1.401 1.97×10-2 

Elderly (age >65 years) 0.810 0.742 0.885 3.12×10-6 0.858 0.754 0.976 1.99×10-2 0.814 0.751 0.882 5.38×10-7 

Patients from Harvard, Spain, Norway, and Sweden cohorts were assigned to discovery phase; patients in TCGA were 
assigned to validation phase. 
HR: hazard ratio; 95% CI: 95% confidence interval 
 

Supplementary Table 7. Correlation analysis of association between cg14326354PRODH methylation and proliferation-
associated gene expression in lung adenocarcinoma (LUAD) patients using The Cancer Genome Atlas data, as well as 
survival analysis of proliferation-associated genes (from KEGG database). 

Correlation coefficient (r), 95% CI, and P-values were derived from Pearson correlation analysis; survival analysis HR, 95% CI, 
and P-values were derived from Cox proportional hazards model. 
HR: hazard ratio; 95% CI: 95% confidence interval. 
 

Supplementary Table 8. Results of heterogeneity test of the interaction effect between lung adenocarcinoma (LUAD) 
and lung squamous cell carcinoma (LUSC) populations. 

CpG probe 
LUAD LUSC Heterogeneity 

HR 95% CI HR 95% CI Q P 
cg08470135 0.944  0.925  0.964  0.975 0.946 1.004 2.97 0.0847 
cg14326354 0.982  0.976  0.989  0.982 0.969 0.995 0.00 0.9764 

HR: hazard ratio; 95% CI: 95% confidence interval. 
  

Gene 
Correlation analysis Survival analysis 

r 95% CI P HR 95% CI P 

BTG2 -0.313 -0.408 -0.212 6.80×10-09 0.704 0.564 0.878 1.83×10-03 

NPDC1 -0.266 -0.364 -0.163 9.88×10-07 0.937 0.755 1.164 0.558 

KIAA1524 0.243 0.139 0.342 8.40×10-06 1.383 1.103 1.733 4.94×10-03 

MKI67 0.199 0.093 0.301 2.84×10-04 1.440 1.115 1.859 5.14×10-03 

BTG1 -0.188 -0.290 -0.081 6.29×10-04 1.257 0.869 1.819 0.225 

BOP1 0.122 0.014 0.227 2.72×10-02 1.170 0.910 1.505 0.222 

BTG4 -0.118 -0.223 -0.010 3.29×10-02 0.995 0.769 1.288 0.971 

CDC123 0.111 0.003 0.217 4.46×10-02 1.798 1.045 3.097 3.41×10-02 

PA2G4 0.091 -0.017 0.197 9.94×10-02     

MTCP1NB 0.079 -0.030 0.185 1.55×10-01     

C8orf22 -0.067 -0.174 0.042 2.29×10-01     

HEY1 0.061 -0.048 0.168 2.71×10-01     

PPDPF -0.058 -0.166 0.050 2.92×10-01     

SIPA1L2 0.055 -0.054 0.162 3.24×10-01     

MTCP1 0.047 -0.061 0.155 3.94×10-01     

SIPA1L3 -0.039 -0.146 0.070 4.84×10-01     

URGCP 0.036 -0.073 0.144 5.17×10-01     

SAV1 -0.032 -0.139 0.077 5.69×10-01     

BTG3 -0.024 -0.132 0.084 6.63×10-01     

PDS5B -0.023 -0.131 0.085 6.74×10-01     

SIPA1 -0.008 -0.117 0.100 8.80×10-01     

PEA15 -0.006 -0.114  0.103  9.20×10-01     

SIPA1L1 0.000 -0.108  0.108  9.99×10-01     
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Supplementary Materials 
 

Please browse Full Text version to see the data of Supplementary Materials 1 to 4. 

 

 

Supplementary Material 1. Epigenome-wide association results in LUAD patients. Only summary results of 
interaction terms were shown in the table. 

 

Supplementary Material 2. Epigenome-wide association results in LUSC patients. Only summary results of 
interaction terms were shown in the table. 

 

Supplementary Material 3. Results of genome-wide trans-regulation analysis of cg14326354 methylation using gene 
expression data and DNA methylation data from TCGA. 

 

Supplementary Material 4. Results of Tumor mutational burden (TMB) analysis of each sample from TCGA. 


