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INTRODUCTION 
 

The trends toward an increased aged population (the 

proportion of individuals aged 65 years and over) is a 

major public health problem, especially in China [1, 2]. 

Worldwide, the estimated number of elderly population 

was 962 million in 2017, and the growing rate was 

approximately 3% per year [3]. China has the largest 

elderly population in the world, with more than 225 

million elderly people. The number of elderly people in  

 

China is projected to be 400 million by 2030 [4]. 

Ageing is a complex process characterized by 

progressive degradation of structural and functional 

integrity, during which the ability to maintain 

homeostasis is gradually lost, leading to the risk of 

impaired function and disease susceptibility [5–8]. 

Furthermore, ageing is a major risk factor for various 

chronic diseases [8]. However, there is great 

heterogeneity in health outcomes among elderly 

individuals of the same age group, suggesting that 
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ABSTRACT 
 

Age-related disease burdens increased over time, and whether plasma peptides can be used to accurately 
predict age in order to explain the variation in biological indicators remains inadequately understood. Here we 
first developed a biological age model based on plasma peptides in 1890 Chinese Han adults. Based on mass 
spectrometry, 84 peptides were detected with masses in the range of 0.6-10.0 kDa, and 13 of these peptides 
were identified as known amino acid sequences. Five of these thirteen plasma peptides, including fragments of 
apolipoprotein A-I (m/z 2883.99), fibrinogen alpha chain (m/z 3060.13), complement C3 (m/z 2190.59), 
complement C4-A (m/z 1898.21), and breast cancer type 2 susceptibility protein (m/z 1607.84) were finally 
included in the final model by performing a multivariate linear regression with stepwise selection. This 
biological age model accounted for 72.3% of the variation in chronological age. Furthermore, the linear 
correlation between the actual age and biological age was 0.851 (95% confidence interval: 0.836-0.864) and 
0.842 (95% confidence interval: 0.810-0.869) in the training and validation sets, respectively. The biological age 
based on plasma peptides has potential positive effects on primary prevention, and its biological meaning 
warrants further investigation. 
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actual age is not an optimal indicator of the ageing 

progress [9]. 

 

Actual age correlates with the accumulation of 

biological changes, and individuals with the same actual 

age undergo these changes at different rates [10]. 

Biological age is used to measure damage accumulation 

with age at an individual level and can be quantified 

from the known biomarkers of ageing [11, 12]. To date, 

the ageing biomarkers include telomere length [13], 

DNA methylation [14–16], transcriptomic predictor [17, 

18], plasma peptide [19], IgG N-glycosylation [20, 21], 

facial morphology [22], waist circumference density 

index [23], among others. Biological age determined by 

age-related DNA methylation has proven to be better 

than chronological age, as a predictor of 3-month 

outcomes after ischaemic stroke [24]. Biological age 

can issue a timely warning for health care and make 

people realize that his health is slipping away [12]. 

Therefore, the regular monitoring of the discrepancy 

between biological age and chronological age has 

potential positive impacts on the primary prevention 

and disease burden. 

 

Biological ageing is associated with reduced reparative 

and regenerative potential of the body [25]. The ideal 

candidates to be studied for the purpose of predicting 

biological age must be representative of the level of 

homeostatic balance in the body. Plasma peptides, such 

as hormones, cytokines and growth factors, promote 

homeostasis in many biological processes [26]. 

Additionally, some plasma peptides have been found to 

be associated with age-related diseases, including 

Alzheimer's disease, hypertension, type 2 diabetes, and 

colorectal cancer [27–31]. Furthermore, our previous 

study shows that some peptides are highly correlated 

with chronological age in a Chinese population, such as 

fragment of apolipoprotein A-I, fibrinogen alpha, 

albumin and so on [19]. In particular, the levels of 

apolipoprotein A-I and fibrinogen alpha fragment 

gradually increased between 18 and 50 years of age, 

while albumin significantly degraded in middle-aged 

individuals. In the present study, we focused on 

building a biological age model with a set of specific 

plasma peptides from a Han Chinese population. 

 

RESULTS 
 

Description of the subjects 
 

This cross-sectional study included 1890 participants of 

Han Chinese descent. The summary of demographic 

variables was shown in Table 1. The median age was  

34 years (P25 27 years, P75 45 years) in all subjects,  

34 years (27 to 45 years) in male subjects, and 36 years  

(26 to 46 years) in female subjects (Table 1). All 

anthropometric variables, except for age and age group 

variables, were significantly different between male and 

female subjects (P < 0.001). Compared with female 

participants, the male subjects had greater height, 

weight, systolic blood pressure (SBP), diastolic blood 

pressure (DBP), and body mass index (BMI). 

 

Model for predicted biological age 
 

Among 84 detected peptides with masses in the range of 

0.6-10.0 kDa, 13 identified peptides with amino acid 

sequences were used for subsequent analysis (Table 2). 

In particular, 11 peptides were selected for further 

analysis based on univariate linear regression (Table 3), 

except for fragment of complement C3 (m/z 1120.39) 

and complement C4-A (m/z 1052.53). As shown in 

Table 4, five plasma peptides, including fragments of 

apolipoprotein A-I (m/z 2883.99), fibrinogen alpha 

chain (m/z 3060.13), complement C3 (m/z 2190.59), 

complement C4-A (m/z 1898.21), and breast cancer 

type 2 susceptibility protein (m/z 1607.84), were 

identified by stepwise selection in a multivariate linear 

regression based on these 11 peptides and all 

demographic traits (BMI, SBP, DBP, age group). 

Finally, a biological age model was built based on the 

five identified plasma peptides and three demographic 

variables (Table 4). The estimated biological age can be 

calculated using the following equation (1). 

 

Biological age = 13.3 + 0.122 × BMI + 0.107 × SBP + 

21.0 × age group + (-0.014) × Apolipoprotein A-I 

fragment (m/z 2883.99) + 0.004 × Fibrinogen alpha 

chain fragment (m/z 3060.13) + 0.011 × Complement 

C3 fragment (m/z 2190.59) + (-0.005) × Complement 

C4-A fragment (m/z 1898.21) + 0.019 × Breast cancer 

type 2 susceptibility protein fragment (m/z 1607.84)(1) 

 

All samples (from 1890 Chinese Han adults) were 

randomly divided into the training set (1500 samples) and 

validation set (390 samples). This model accounted for 

72.3% of the variation in chronological age, with a 

correlation between the actual age and biological age of 

0.851 (95% confidence interval (95% CI): 0.836-0.864) 

in the training set. Furthermore, in the validation set, the 

biological age was linearly correlated with the actual age 

(correlation coefficient (r) = 0.842, 95% CI: 0.810-

0.869), and the normalized mean square error (NMSE) 

was 0.30. Visual analysis of the correlations between 

biological age and chronological age is presented in 

Figure 1. The predictive effect of the model is considered 

outstanding when the correlation curve is a straight line 

and its slope is equal to 1. The 95% CI of the fitted  

curve broadened with age, suggesting that the variation  

in biological age and heterogeneity among different 

individuals increased with actual age. Thus, plasma 

peptides can serve as potential biomarkers for
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Table 1. Characteristics of the participants. 

Parameters Total (n=1890) Males (n=1136) Females (n=754) P 

Age, year 34 (27-45) 34 (27-45) 36 (26-46) 0.512 

≤ 39  1177 (62.28%) 721 (63.47%) 456 (60.48%)  

40-59 593 (31.38%) 323 (28.43%) 270 (35.81%)  

≥ 60 120 (6.35%) 92 (8.10%) 28 (3.71%)  

Age group, %    0.148 

≤ 40 years old 1225 (63.81%) 751 (66.11%) 474 (62.86%)  

> 40 years old 665 (35.19%) 385 (33.89%) 280 (37.14%)  

Height, cm 169 (163-173) 172 (169-176) 162 (158-166) < 0.001* 

Weight, kg 67 (58-76) 73 (66-81) 57 (52-63) < 0.001* 

BMI, kg/m2 23.7 (21.2-25.9) 24.6 (22.5-26.8) 21.8 (19.9-24.1) < 0.001* 

SBP, mmHg 120 (110-130) 120 (112-130) 114 (104-124) < 0.001* 

DBP, mmHg 78 (70-82) 80 (70-86) 72 (66-80) < 0.001* 

*P < 0.05 indicating that the peptide was taken as a significant one. BMI: Body mass index; SBP: Systolic blood pressure; DBP: 
Diastolic blood pressure. 

Table 2. Characteristics of identified plasma peptide in the participants. 

Peak Amino acid sequence  Peak identity Total (n=1890) 

m/z 2044.75 K.VFDEFKPLVEEPQNLIK.Q Albumin 105.3 (40.0-160.1) 

m/z 2065.31 D.APRIKKIVQKKLAGDESAD.- Pro-Platelet basic protein 35.3 (14.2-75.1) 

m/z 2487.01 S.NSRDDGNSVFPAKASATGAGPAAAEK.R 

Hyperpolarization-activated 

cyclic nucleotide-gated 

potassium channel 1  

26.1 (16.7-42.1) 

m/z 3428.10 K.YWSQQIEESTTVVTTQSAEVGAAETTLTELR.R Keratin 18 60.4 (24.3-113.5) 

m/z 2883.99 L.LPVLESFKVSFLSALEEYTKKLNTQ.- Apolipoprotein A-I  36.4 (19.5-59.2) 

m/z 1076.14 E.GDFLAEGGGVR.G Fibrinogen alpha chain 30.2 (20.6-41.8) 

m/z 3060.13 K.SSSYSKQ(+.98)FTSSTSYNRGDSTFESKSYK.M Fibrinogen alpha chain 73.6 (33.3-135.6) 

m/z 1120.39 T.HRIHWESAS.L Complement C3 18.5 (13.1-25.7) 

m/z 2190.59 G.SPMYSIITPNILRLESEET.M Complement C3 45.7 (26.2-80.4) 

m/z 1052.53 K.SHALQLNNR.Q Complement C4-A 20.6 (13.7-29.9) 

m/z 1898.21 S.STGRNGFKSHALQLNNR.Q Complement C4-A 24.3 (14.8-56.8) 

m/z 1607.84 P.KC(+57.02)KEMQNSLN(+.98)NDK.N 
Breast cancer type 2 

susceptibility protein 
19.0 (9.97-38.8) 

m/z 2211.86 V.YRLPPLRKGEVLPLPEAN(+.98)F.P Histidine-rich glycoprotein 38.1 (20.0-80.8) 

Data were presented as median together with interquartile range. Peptide content in human plasma is measured in intensity.  

predicting biological age, and their practical application 

warrants further research. 

 

DISCUSSION 
 

Biological age is a health indicator associated with 

chronological age, senescence and disease, and it can 

reflect dynamic and alterable health status better than 

chronological age [32]. In the present study, we built a 

biological age model correlated with actual age (r = 

0.842, 95% CI: 0.810-0.869) in the validation set that 

explained 72.3% of the variation in chronological age, 

but its predictive ability still needs further verification. 

To the best of our knowledge, this study is the first 

attempt to build a biological age model based on plasma 

peptides in Han Chinese adults. 

Matrix-assisted laser desorption/ionization time-of-

flight mass spectrometry (MALDI-TOF-MS) is a key 

tool for peptide analysis of human body fluids, such as 

plasma, saliva and urine samples [26]. Based on this 

method, thirteen peptides were identified their amino 

acid sequences, and five of these peptides were used to 

construct a biological age model (fragment of 

apolipoprotein A-I (m/z 2883.99), fibrinogen alpha 

chain (m/z 3060.13), complement C3 (m/z 2190.59), 

complement C4-A (m/z 1898.21), and breast cancer 

type 2 susceptibility protein (m/z 1607.84)). Compared 

to our previous study, our study found four novel 

peptides associated with age [19]. The fragment of 

apolipoprotein A-I (m/z 2883.99) was found to be a 

biomarker of biological age in our previous study [19], 

which is consistent with our results. The level of plasma
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Table 3. Univariate linear regression analysis for each identified peptide. 

Variables Coefficient SE P 95% CI 

Albumin (m/z 2044.75) -0.005 0.002 0.012* (-0.008, -0.001) 

Pro-Platelet basic protein (m/z 2065.31) -0.008 0.005 0.100* (-0.018, 0.002) 

Hyperpolarization-activated cyclic nucleotide-gated 

potassium channel 1 (m/z 2487.01) 
0.040 0.014 0.004* (0.013, 0.067) 

Keratin 18 (m/z 3428.10) 0.014 0.005 0.002* (0.005, 0.023) 

Apolipoprotein A-I (m/z 2883.99) 0.040 0.009 < 0.001* (0.023, 0.058) 

Fibrinogen alpha chain (m/z 1076.14) -0.064 0.017 < 0.001* (-0.097, -0.030) 

Fibrinogen alpha chain (m/z 3060.13) 0.009 0.003 0.002* (0.003, 0.015) 

Complement C3 (m/z 1120.39) -0.048 0.029 0.100 (-0.105, 0.009) 

Complement C3 (m/z 2190.59) 0.011 0.005 0.034* (0.001, 0.022) 

Complement C4-A (m/z 1052.53) 0.002 0.023 0.921 (-0.042, 0.046) 

Complement C4-A (m/z 1898.21) -0.007 0.004 0.074* (-0.014, 0.001) 

Breast cancer type 2 susceptibility protein (m/z 

1607.84) 
0.015 0.009 0.072* (-0.001, 0.032) 

Histidine-rich glycoprotein (m/z 2211.86) 0.007 0.004 0.090* (-0.001, 0.016) 

*P < 0.10 indicating that the peptide was taken as a significant one. The P value of pro-platelet basic protein (m/z 2065.31) was 
0.0996 which rounded to three decimal places (0.100). Complement C3 (m/z 1120.39) and Complement C4-A (m/z 1052.53) 
were not selected for further multivariate linear regression analysis. SE: Standard error; 95% CI: 95% Confidence interval. 
 

Table 4. Multiple linear regression analysis for biological age. 

Variables Coefficient SE P 95% CI 

Constant 13.3 1.73 < 0.001* (9.9, 16.7) 

BMI 0.122 0.054 0.025* (0.016, 0.229) 

SBP 0.107 0.015 < 0.001* (0.079, 0.136) 

Age group 21.0 0.387 < 0.001* (20.2, 21.7) 

Apolipoprotein A-I (m/z 2883.99)  -0.014 0.006 0.035* (-0.026, -0.001) 

Fibrinogen alpha chain (m/z 3060.13)  0.004 0.002 0.050* (3.69 × 10-6, 7.50 × 10-3) 

Complement C3 (m/z 2190.59) 0.011 0.004 0.003* (0.004, 0.019) 

Complement C4-A (m/z 1898.21) -0.005 0.003 0.053 (-1.02 × 10-2, 5.50 × 10-5) 

Breast cancer type 2 susceptibility protein (m/z 1607.84)  0.019 0.006 0.002* (0.007, 0.031) 

*P < 0.05 indicating that the peptide was taken as a significant one. The P value of fibrinogen alpha chain (m/z 3060.13) was 
0.0498 which rounded to three decimal places (0.050). Adjusted R2 = 0.723. 
BMI: Body mass index; SBP: Systolic blood pressure; SE: Standard error; 95% CI: 95% Confidence interval. 

 

 
 

Figure 1. The correlation between chronological age and biological age. (A) The model performance based on the validation set.  
(B) The model performance presented by sex in the validation set. Dotted and solid curves were fitted to describe correlations between 
biological age and chronological age in females and males, respectively. The shade region was a pointwise 95% confidence interval. 
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apolipoprotein A-I is associated with premature 

coronary artery disease [33] and clinical progression of 

Alzheimer's disease [34]. We previously found 

fibrinogen alpha chain (m/z 1076.14) fragment is 

related to ageing [19], whereas the other fragment of 

ageing-related fibrinogen alpha chain (m/z 3060.13) 

was used to build this biological age model in our study. 

Fibrinogen play an positive role in promoting blood 

haemostasis and leukocyte function regulation in 

inflammation [35]. However, elucidating the effect of 

the level of fibrinogen alpha chain fragment (m/z 

3060.13) on ageing still requires further research. 

Complement C3 activates immune function through 

complement activation [36]. Furthermore, we also 

found that other peptides (fragment of complement C4-

A (m/z 1898.21) and breast cancer type 2 susceptibility 

protein (m/z 1607.84)) can be used in predicting 

biological age, whereas their specific mechanisms in 

ageing remain to be elucidated. 

 

According to the findings of previous studies, this 

candidate biological age model had a better age 

correlation in the validation set (r = 0.842, 95% CI: 

0.810-0.869) than telomere length (r = 0.695 (95% CI: 

0.575-0.0.815), without validation) [13], transcriptomic 

predictor (r ranged from 0.348 to 0.744 in different 

independent cohorts) [17] and IgG Fc N-glycosylation 

(r = 0.59 for the Chinese population, and r = 0.84 for 

the European population) [20, 21], but a weaker 

correlation with DNA methylation age (r = 0.96) in 

their corresponding validation cohorts covering the 

entire adult life span and different ethnic populations 

[15]. Compared to the abovementioned micro biological 

age, the two macro biological ages also showed strong 

correlations with the actual age ( r ranged from 0.85 to 

0.86 for the three-dimensional facial image-based age 

predictor and r = 0.992 for the waist circumference 

density index) [22, 23]. Therefore, composite biomarker 

predictors may have potential for biological age 

assessment. In addition, our results were consistent with 

the large heterogeneity in health state of elderly 

individuals for the variation in biological age increased 

with chronological age (95% CI widen with age) [9]. 

We defined a "age group" variable, a binary variable 

grouped by 40 years old, based on complex changes of 

different peptides in different age groups (five age 

groups 18-29, 30-39, 40-49, 50-59, ≥ 60 years) [19]. 

The "age group" variable defined 40 years old as the 

demarcation point artificially based on the balance 

between these groups. Moreover, women older than 40 

years of age will experience the transitional stage 

characterized by a transition from the reproductive to 

the non-reproductive stage [37]. Epidemiological 

studies showed a high prevalence of obesity [38], 

diabetes mellitus [39], and stroke [40] in adults older 

than 40 years.  

There are several limitations of our study that should be 

acknowledged. First, due to the limitations of 

experimental conditions, there may be bias in the 

peptide analysis because we did not control for pH, 

removal of oxygen, storage under argon and enzyme 

inhibitors of all plasma samples, though we controlled 

for storage time and temperature [41]. Second, although 

MS-based peptide analysis has been widely used, the 

detection and identification process is complicated and 

time-consuming, and the pre-treatment of plasma has a 

great influence on peptide analysis [42]. Therefore, the 

pre-treatment of plasma samples and peptide analysis 

still requires methodological advancement. Finally, 

people aged 60 years or older comprised a relatively 

low proportion of the population (6.35%), which may 

lead to selection and information bias (Table 1). This 

biological age model needs to be explored in larger and 

more representative samples, including those of a  

non-Asian ethnicity, as our study only included Chinese 

Han adults. 

 

Our finding has certain implications for ageing. This 

study is the first attempt to develop a biological age 

model based on plasma peptides in Han Chinese adults. 

Biological age based on plasma peptides may have the 

potential to indicate homeostasis abnormalities and the 

rate of ageing. Our study provided evidence for further 

research in peptide-based biological age. This evidence 

may help us to understand the underlying mechanisms 

of ageing through five age-related peptides. 

 

In conclusion, our study suggested that plasma peptide 

profiles can be used to build a biological age model. 

This candidate model involving peptides and clinical 

traits was able to account for 72.3% of the variation in 

actual age, and this biological age correlated with 

chronological age (r = 0.842, 95% CI: 0.810-0.869) in 

the validation set. However, the practical applications of 

this model in primary prevention warrant further 

investigation. 

 

MATERIALS AND METHODS 
 

Subjects 
 

This cross-sectional study recruited 1927 participants of 

Han Chinese ancestry during regular health check-ups 

at Xuanwu Hospital, Capital Medical University, 

Beijing, China. Individuals who were 18 years old or 

older were eligible. In addition, subjects with a history 

of somatic or psychiatric abnormalities in their medical 

records and those who had used medication two weeks 

prior to the study were excluded. Subjects who had a 

history of cerebral infarction, cerebral haemorrhage, 

other cerebrovascular diseases, congenital heart disease, 

acute myocardial infarction, liver disease, renal failure, 
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malignant tumour, chronic obstructive pulmonary 

disease, or rheumatoid arthritis were also excluded. In 

this study, 37 participants who had missing data for one 

or more clinical traits were subsequently excluded. 

Finally, a total of 1890 participants were included in the 

subsequent analysis. Further details of the study design, 

recruitment procedure, and physical examination were 

previously described [19]. 

 

Ethics approval  
 

Written informed consent was obtained from each 

participant, and all procedures were implemented in 

accordance with the regulations of the ethics committee 

of Capital Medical University, Beijing, China.  

 

Collection of plasma samples 

 
The plasma samples for peptide analysis were collected 

according to a standard protocol. Fresh fasting blood 

samples were collected from the cubital vein into blood 

collection tubes (containing ethylenediaminetetraacetic 

acid). The plasma was separated by centrifugation at 

3,000 rpm for 15 min and then stored at −80 °C until 

peptide analysis. The number of freeze-thaw cycles of 

all samples is basically the same during this process. 

After the plasma samples of all the participants were 

collected, peptide analysis was completed at the shortest 

possible time.  

 

Magnetic bead-based sample preparation for 

peptide analysis 
 

As in previous studies [27, 28, 43], all plasma samples 

were fractionated using weak cation exchange magnetic 

beads to gather and enrich the proteins or peptides, 

according to the instructions provided by the supplier 

(ClinProt™, Bruker Daltonics, Billerica, USA) [44, 45]. 

The samples were purified and isolated through three 

steps: binding, washing, and elution. The specific 

details of this process were published in a previous 

study [19]. Then, the resulting eluates were stored in a –

20 °C freezer until further MS analysis. 

 

Peptides profiling and processing of spectral data 
 

Peptide profiling was performed by MALDI-TOF-MS 

[28, 43]. First, the eluted samples were diluted in a 

matrix solution of α-cyano-4-hydroxycinnamic acid and 

ethanol and acetone, which was prepared daily. Then, 1 

µl of the diluted samples was pipetted onto a MALDI-

TOF-MS target (AnchorChip™, Bruker Daltonics, 

Billerica, USA) and dried at room temperature before 

analysis. Finally, MALDI-TOF-MS measurements were 

performed using the Autoflex TOF instrument (Bruker 

Daltonics, Billerica, USA). Profile spectra were 

acquired from an average of 400 laser shots per sample, 

with the defined mass range of peak intensities 

(measured as m/z) of 600–10,000 Da. 

 

Quality control was carried on before the MS analysis, 

with 11 peptides as external standards where the 

average molecular weight deviation was no more than 

100 µg/g. After testing every 8 samples, each standard 

preparation was re-calibrated. Additionally, 13 

reference samples were run as external standards. The 

system performance is considered acceptable when the 

coefficient of variability is less than 30%. All reference 

peptides and samples were prepared in the same matrix 

solution as above. All of the solutions and buffers were 

prepared using MS-grade reagents. 

 

The MALDI mass spectra of peptides were analysed 

using ClinProTools (ClinProt software version 2.0, 

Bruker Daltonics, Billerica, USA) to subtract the 

baseline, normalize the spectra (using total ion current), 

and determine the peak m/z values and intensities in the 

mass range of 600–10,000 Da. In brief, local noise 

estimates were applied to estimate the background, then 

the background was subtracted from each spectrum. 

Peptide peaks with a signal-to-noise ratio higher than 

5.0 were detected and defined. The cut-off value of the 

signal-to-noise ratio was set at 5.0 because this value 

was a good compromise between over detection and 

sensitivity. A mass shift of no more than 0.1% was 

determined for the spectra alignment. The peak area was 

used for quantitative standardization. To determine the 

peak m/z values or intensities in the target mass range, a 

± 2 Da mass accuracy for each spectrum was tolerated 

[46]. To evaluate the experimental reproducibility, 

triplicate measurements were performed to examine the 

standard deviation on the same MALDI-TOF-MS 

instrument. In our study, the standard deviation was less 

than 10%, so the reproducibility for the MALDI-TOF 

MS instrument was considered acceptable.  

 

Identification of the amino acid sequences of the 

peptides 
 

The amino acid sequences of the peptides were 

identified using the nanoliquid chromatography–

electrospray ionization–tandem mass spectrometry 

(nano-LC/ESI–MS/MS) system, which is comprised of 

an Aquity UPLC system (Waters, Milford, MA, USA) 

and an LTQ Obitrap XL mass spectrometer (Thermo 

Fisher Scientific, Bremen, Germany) equipped with a 

nano-ESI source. In brief, the peptide solution was 

loaded onto a symmetry C18 trap column 

(nanoACQUITY) (180 µm × 20 mm × 5 µm) and then 

analysed by symmetry C18 analytical column 

(nanoACQUITY, Waters, Milford, MA, USA) (75 µm 

× 150 mm × 3.5 µm). The mobile phases A, mobile 
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phases B, flow rate and gradient elution were operated 

according to the published paper [19]. The running 

mode of the MS instrument was operated in a data-

dependent model. The range of the full scan was 400–

2,000 m/z with a mass resolution of 100,000 at m/z 400. 

The FDR cut-off value was set to 0.01 during the whole 

identification process. The eight strongest monoisotopic 

ions were the precursors for collision-induced 

dissociation. The MS/MS spectra were restricted to two 

consecutive scans per precursor ion followed by a 60-

sec of dynamic exclusion.  

 

To identify the peptides, the chromatograms were 

analysed using BioWorksBrowserTM 3.3.1 SP1 software 

(Thermo Fisher Scientific, Bremen, Germany). The 

resulting mass lists were located on the Sequest™ (IPI 

Human v3.45) database (Thermo Scientific, Waltham, 

MA, USA). Due to the generation of the peak list, the 

parent ion and fragment mass relative accuracy were set 

at 50 µg/g and 1 Da, respectively. MS/MS product-ion 

mass spectra were presented in Figure 2. 

 

Measurements 
 

The dataset consisted of 7 main demographic variables: 

age (years), gender, height (cm), weight (kg), BMI 

(kg/m2), SBP (mmHg), DBP (mmHg). Considering that 

participants at different ages might have large variation 

in physiological functions [37–40], the constructed 

model included a “age group” variable defined by a 

binary indicator, where people aged 40 years and below 

were represented as 1, and people aged above 40 years 

were represented as 2. In addition, 84 peptides were 

detected, with masses in the range of 0.6-10.0 kDa. 

Among these peptides, 13 peptides were successfully 

identified as known amino acid sequences. These 

demographic variables above and the 13 identified 

peptides were used for subsequent analysis. 

 

Statistical analysis 

 

Continuous variables were expressed as median and 

interquartile ranges. Frequencies and percentages were 

used to express the categorical variables. Continuous 

variables in the two gender groups were compared using 

the Mann-Whitney U test. The χ2 test was used to 

compare proportions for categorical variables. 

Multivariate linear regression was used for the 

biological age model. The samples were randomly 

divided into the training set (1500 samples) and 

validation set (390 samples). The training set and the 

independent validation set were used for modelling and 

model validation, respectively. First, a univariate linear 

regression model was implemented for preliminary 

selection. If the peptide had a P value lower than the 

entering threshold (P < 0.10), then the peptide could be

 

 
 

Figure 2. The total ion current chromatograms of secondary ion mass spectrometry. 
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used for further variable screening. Second, all candidate 

peptides were entered in a multivariate linear regression 

with stepwise selection adjusting for all demographic 

variables. The direction argument and entering threshold 

of stepwise regression were set to “both” and “0.10”, 

respectively. The criteria for variable selection were 

based on the Akaike information criterion. Finally, 

variables identified by stepwise selection were used to 

build the final biological age mode. The performance of 

this biological age model was evaluated by the 

coefficient of determination (R2) and NMSE of 

prediction errors in the independent validation set. Except 

for variable screening of peptides in regression analysis, a 

two-tailed P-value < 0.05 was considered statistically 

significant. All statistical analyses were performed using 

R version 3.3.3 (R Foundation for Statistical Computing, 

Vienna, Austria). 
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