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INTRODUCTION 
 

Particulate matter (PM) is a class of air pollutants, and 

consists of airborne solid particles and liquid droplets 

[1]. PM pollution has been one of the highest risk factor 

among various researched factors in the world [2]. 

PM2.5 is characterized as the particles and droplets with 

aerodynamic diameter ≤ 2.5 μm [3]. Epidemiological 

studies have indicated that the increasingly serious air 

pollution and PM2.5 levels are closely associated  

with health-related issues,  including  the enhanced hos- 

 

pitalization, increased mortality and mortality because 

of respiratory problems, shortened lifespan due to long-

term PM2.5 exposure, as well as the up-regulated 

incidence and severity of lung cancer [4–6]. Some 

potential molecular mechanisms have been involved in 

the progression of lung injury triggered by PM2.5 

exposure, including excessive oxidative stress, pro-

inflammatory response and apoptotic cell death [7–9]. 

Recently, more and more studies have reported the 

potential of PM2.5 in increasing the risk of lung  

cancer [10, 11]. In addition, there were reports that 
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ABSTRACT 
 

PM2.5 is a class of airborne particles and droplets with sustained high levels in many developing countries. 
Epidemiological studies have indicated that PM2.5 is closely associated with the increased morbidity and 
mortality of lung cancer in the world. Unfortunately, the effects of PM2.5 on lung cancer are largely unknown. In 
the present study, we attempted to explore the role of PM2.5 in the etiology of NSCLC. Here, we found that long-
term PM2.5 exposure led to significant pulmonary injury. Epithelial-mesenchymal transition (EMT) and cancer 
stem cells (CSC) properties were highly induced by PM2.5 exposure. EMT was evidenced by the significant up-
regulation of MMP2, MMP9, TGF-β1, α-SMA, Fibronectin and Vimentin. Lung cancer progression was associated 
with the increased expression of Kras, c-Myc, breast cancer resistance protein BCRP (ABCG2), OCT4, SOX2 and 
Aldh1a1, but the decreased expression of p53 and PTEN. Importantly, mice with IL-17a knockout (IL-17a-/-) 
showed significantly alleviated lung injury and CSC properties following PM2.5 exposure. Also, IL-17a-/--
attenuated tumor growth was recovered in PM2.5-exposed mice injected with recombinant mouse IL-17a, 
accompanied with significantly restored lung metastasis. Taken together, these data revealed that PM2.5 could 
promote the progression of lung cancer by enhancing the proliferation and metastasis through IL-17a signaling. 
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demonstrated that the decreased exposure to cigarette 

smoking attenuated the incidence of lung cancer in the 

West [4, 7], underlying the importance of air pollution 

for lung cancer progression. However, little research 

has focused on the molecular mechanisms. Lung cancer 

is one of the most common malignancies worldwide and 

a major reason for tumor-associated death [12, 13]. As 

reported, NSCLC accounts for approximately 80% of 

all lung cancer cases, which includes adenocarcinoma 

and squamous cell carcinoma [14]. The 5-year survival 

rate of NSCLC is still less than 15%, which is related to 

the highly malignant potential and the lack of obvious 

symptoms for early diagnosis [15, 16]. Elevated ability 

of motility and proliferation were observed in NSCLC 

cells following PM2.5 exposure [17]. In human lung 

cancer cells, EMT could also be promoted after PM2.5 

exposure [18]. Furthermore, lung cancer stem cell 

properties induced by chronic PM2.5 exposure has also 

been reported [19]. Nevertheless, the molecular 

mechanism by which PM2.5 exposure contributes to 

NSCLC has not been well investigated. It is necessary 

to thoroughly investigate the mechanisms in NSCLC 

after exposure to particulate matter to better characterize 

gene-environment interactions and epigenetic influences 

on cancer exacerbation. 

 

Interleukin-17 (IL-17) is produced by Th17 cells and 

other cells, such as CD8+ T cells, γδ T cells, mast cells, 

invariant NKT cells, and granulocytes [20]. IL-17 plays 

an essential role in regulating inflammatory and 

autoimmune diseases [21]. Up-regulated IL-17-producing 

Th17 cells have been indicated in a variety of human 

carcinoma cases [22, 23]. For instance, the proportion of 

Th17 cells was elevated within the peripheral blood and 

tumor tissues of esophageal cancer patients [24]. Tumor-

infiltrating Th17 cells were detected in human colorectal 

cancer, which were associated with shortened disease-

free survival [25]. In addition, IL-17 might be implicated 

in the metastasis of NSCLC through promoting 

lymphangiogenesis [26]. Recent analysis also indicated 

that IL-17 might be a critical cytokine involved in the 

progression of NSCLC. Both in vivo and in vitro 

experiments showed that IL-17 could directly enhance 

the invasion of NSCLC cells [27, 28]. These findings 

revealed the potential of IL-17 in the promoting the 

development of NSCLC. IL-17a is one of six members 

(A-F) of the IL-17 family [29, 30]. In a recent study, the 

increased expression of IL-17a in the lung of patients 

with lung adenocarcinoma was reported. Local 

suppression of IL-17a in the lung of a model with lung 

cancer showed improved anti-tumor immunity featured 

by the enhanced IFNγ, a reduced number of T-regulatory 

cell and the inhibited tumor growth [31]. Although 

previous studies have illustrated the potential of IL-17a 

during lung cancer progression, its effects on NSCLC 

induced by PM2.5 have little to be reported. 

In this present study, we aimed to further explore the 

effects of PM2.5 on NSCLC progression, as well as its 

relationship with IL-17a expression change by the in vivo 

and in vitro experiments. Here, we showed that long-term 

PM2.5 exposure led to lung injury and CSC properties. IL-

17a expression levels were significantly up-regulated by 

PM2.5 in pulmonary tissues, peripheral blood lymphocytes 

and splenic lymphocytes. NSCLC patients exhibited 

higher IL-17a expression. In NSCLC cells, PM2.5 was 

discovered to promote the cell proliferation, migration 

and invasion through up-regulating IL-17a expression 

levels. Importantly, we for the first time found that IL-17a 

knockout markedly alleviated PM2.5-induced lung injury 

and CSC properties. Of note, the animal studies showed 

that PM2.5-enhanced tumor growth was clearly abolished 

by IL-17a knockout in the established tumor xenograft 

models. Additionally, results by in vivo tumor metastasis 

confirmed that IL-17a knockout inhibited metastasis  

in PM2.5-challenged mice. Therefore, our results 

demonstrated that PM2.5 could elevate the proliferation 

and metastasis via increasing IL-17a expression levels, 

accelerating NSCLC progression consequently. 

 

RESULTS 
 

PM2.5 treatments result in pulmonary injury and 

fibrosis 
 

In order to investigate the effects of PM2.5 on NSCLC 

progression, the pulmonary condition in mice with long-

term PM2.5 exposure was firstly calculated. 

Histopathological analysis of lung sections using H&E 

and Masson staining demonstrated that PM2.5 treatment 

for 3 months caused more severe injury and fibrosis than 

the FA mice (Figure 1A). Compared to the FA group, 

PM2.5 markedly increased total protein levels in BALF in 

a time-dependent manner (Figure 1B). Similarly, the 

number of total cells and neutrophils were significantly 

increased in mice exposed to PM2.5, indicating the critical 

inflammation in mice (Figure 1C, 1D). EMT is an 

important process that contributes to fibrogenesis [32]. 

Then, fibrosis- and/or EMT-associated genes, including 

MMP2, MMP9, TGF-β1, α-SMA, Fibronectin and 

Vimentin [33, 34], in lung samples of mice were highly 

induced by PM2.5 administration in a time-dependent 

manner (Figure 1E). Both serum and lung TNF-α and IL-

6 expression levels were greatly up-regulated in PM2.5-

challenged mice (Figure 1F, 1G). These results showed 

that long-term PM2.5 exposure led to severe pulmonary 

injury in mice. 

 

PM2.5 treatments lead to cancer stem cell properties 

in mice 
 

EMT is a critical event that is often activated during the 

process of tumor invasion and metastasis. It is also an 
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important and potential driving factor for cancer initiation 

and development [35]. Then, the lung cancer markers and 

cancer stem cell features of lung cells (Kras, c-Myc, 

ABCG2, OCT4, SOX2 and Aldh1a1) [18, 36–38], and 

the tumor suppressor genes (p53 and PTEN) [39] were 

calculated using RT-qPCR and/or immunohistochemistry 

(IHC) staining. As shown in Figure 2A, 2B, Kras, c-Myc, 

ABCG2, OCT4, SOX2 and Aldh1a1 expression levels 

were highly induced in pulmonary samples from PM2.5-

treated mice compared with the FA group. In contrast, 

PM2.5 exposure time-dependently reduced the expression 

of p53 and PTEN. These results demonstrated that PM2.5 

long-term exposure could result in the cancer stem cell 

properties in vivo. 

 

 
 

Figure 1. PM2.5 treatments result in pulmonary injury and fibrosis. (A) H&E staining (up panel) and Masson trichrome staining (down 
panel) of lung sections from mice challenged with PM2.5 for the indicated time points (n = 6). Scale bar, 100 μm. (B) Protein contents in the 
BALF were measured in mice treated with PM2.5 at the indicated time (n = 8). The number of (C) total cells and (D) neutrophils of BALF were 
calculated in PM2.5-challenged mice at the indicated time (n = 8). (E) RT-qPCR analysis of genes associated with fibrosis, including MMP2, 
MMP9, TGF-β1, α-SMA, Fibronectin and Vimentin, in lung samples of PM2.5-treated mice (n = 4). (F) TNF-α and IL-6 levels in serum of PM2.5-
challenged mice were determined by ELISA (n = 8). (G) RT-qPCR analysis was used to assess TNF-α and IL-6 mRNA expression levels in 
pulmonary samples of mice treated with PM2.5 for the indicated time (n = 4). All data are expressed as mean ± SEM. *p<0.05, **p<0.01 and 
***p<0.001 compared to the FA group. 
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PM2.5 enhances IL-17a expression in mice 
 

IL-17a has pro-tumor actions, which is associated with 

angiogenesis [24, 40]. In our study, we found that IL-17a 

contents in BALF and in serum of mice were markedly 

increased by PM2.5 challenge (Figure 3A, 3B). Higher 

expression of IL-17a both from mRNA and protein 

levels were observed in pulmonary samples of mice 

exposed to PM2.5 (Figure 3C–3E). Consistently, ELISA 

results showed that IL-17a levels in the peripheral blood 

 

 
 

Figure 2. PM2.5 treatments lead to cancer stem cell properties in mice. (A) RT-qPCR analysis was used to measure lung cancer-
related biomarkers (Kras, c-Myc, ABCG2, OCT4, SOX2, Aldh1a1, p53 and PTEN) in lung tissues of mice following PM2.5 treatment at the 
indicated time (n = 4). (B) IHC staining was performed to calculate c-Myc, OCT4 and SOX2 in pulmonary sections of PM2.5-challenged mice  
(n = 6). The quantification of c-Myc, OCT4 and SOX2 relative expression was exhibited. Scale bar, 100 μm. All data are expressed as  
mean ± SEM. *p<0.05 and **p<0.01 compared to the FA group. 
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lymphocytes and in splenic lymphocytes were markedly 

up-regulated in PM2.5-treated mice compared to the FA 

group (Figure 3F, 3G). Together, findings above 

indicated that PM2.5 exposure could promote IL-17a 

expression, which might be involved in the initiation and 

progression of lung cancer. 

 

IL-17a expression is up-regulated in patients with 

lung cancer 

 
To confirm the regulatory role of IL-17a potentiated by 

PM2.5 during lung cancer development, here the 

expression change of IL-17a in patients with lung cancer 

was at first explored. As shown in Figure 4A, an obvious 

up-regulation of IL-17a in the lung cancer tissues 

compared to the normal tissues was detected by IHC 

staining, and IL-17a expression was found to be 

positively correlated with lung cancer progression. RT-

qPCR and western blotting analysis also demonstrated 

that IL-17a expression levels were higher in lung  

cancer samples compared to the adjacent normal tissues 

(Figure 4B, 4C). We also found that patients with low 

IL-17a expression exhibited better overall survival rates 

than that of the group with high IL-17a expression 

 

 
 

Figure 3. PM2.5 enhances IL-17a expression in mice. (A, B) IL-17a contents in BALF and serum were measured by ELISA, respectively  
(n = 8). (C) RT-qPCR, (D) western blotting and (E) IHC analysis of IL-17a in lung tissues of mice challenged with PM2.5 for the indicated time  
(n = 6). Scale bar, 100 μm. (F, G) IL-17a levels in the peripheral blood lymphocytes and in splenic lymphocytes were calculated using ELISA 
analysis (n = 8). All data are expressed as mean ± SEM. *p<0.05, **p<0.01 and ***p<0.001 compared to the FA group. 
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(Figure 4D). These results indicated that IL-17a increase 

was associated with poor clinical outcomes of patients 

with lung cancer. 

 

PM2.5 elevates the proliferation in NSCLC cells 

 

To confirm the effects of PM2.5 on NSCLC, the in vitro 

experiments using A549 and H1299 were performed. At 

first, we found that PM2.5 exposure led to significant up-

regulation of TNF-α and IL-6 in the supernatants of 

Th17 cells compared to the Control group (Figure 5A). 

Higher IL-17a contents in supernatants collected from 

PM2.5-exposed Th17 cells were observed (Figure 5B). In 

addition, IL-17a expression levels in Th17 cells were 

also markedly increased by PM2.5 treatment in 

comparison to the Control group (Figure 5C–5E). 

Results above showed that PM2.5 could up-regulate  

IL-17a expression levels in Th17 cells. 

 

Then, NSCLC cell lines of A549 and H1299 were 

incubated in the culture medium composed of the fresh 

medium and the conditional medium from Th17 cells 

with or without PM2.5 stimulation at 3:1. CCK-8 

analysis showed that A549 and H1299 cells cultured in 

medium from Th17 cells with PM2.5 treatment exhibited 

higher cell proliferative activity (Figure 5F). Similar 

proliferative trends were observed in A549 and  

H1299 cells by the colony formation and EdU assays 

(Figure 5G, 5H). These results demonstrated that PM2.5 

exposure could promote the proliferation of NSCLC 

cells. 

 

PM2.5 contributes to the migration and invasion of 

NSCLC cells 
 

We next explored the effect of PM2.5 exposure on 

NSCLC cell migration and invasion. A549 and H1299 

cells have high migratory and invasive abilities [41]. 

Under PM2.5-exposed circumstances, A549 and H1299 

cells had higher migration and invasion compared to the 

control group by transwell analysis (Figure 6A–6C). 

Wound healing analysis confirmed that PM2.5 exposure 

 

 
 

Figure 4. IL-17a expression is up-regulated in patients with lung cancer. (A) Images showing IL-17a expression levels in tumor 
samples from patients with lung cancer using IHC. Scale bar, 100 μm. (B) IL-17a expression levels in the primary lung tumor specimens and 
the adjacent normal tissue samples by RT-qPCR (n = 48). (C) Western blot analysis of IL-17a expression levels in the primary lung tumor 
specimens and the paired lung alveolar tissue samples (n = 8). (D) Kaplan-Meier survival curves for overall survival (OS) in lung cancer patients 
according to the expression levels of IL-17a. All data are expressed as mean ± SEM. **p<0.01. 



 

www.aging-us.com 11585 AGING 

enhanced the migration of cells compared with the 

untreated control cells (Figure 6D, 6E). Moreover, the 

mRNA expression levels of EMT-associated genes 

including MMP2, MMP9, TGF-β1, α-SMA, Fibronectin 

and Vimentin were markedly up-regulated in NSCLC 

cells cultured in medium containing supernatants from 

PM2.5-incubated Th17 cells (Figure 6F). IF staining 

further demonstrated that the conditional medium from 

PM2.5-treated Th17 cells led to the expression of N-

cadherin in A549 and H1299 cells (Figure 6G). 

 

 
 

Figure 5. PM2.5 elevates the proliferation in NSCLC cells. (A–E) Th17 cells were treated with 100 μg/cm2 of PM2.5 for 24 h, and then all 
cells and supernatants were collected for the analysis. (A) TNF-α and IL-6 levels in the supernatants were measured using ELISA. (B) IL-17a 
contents in the collected supernatants were calculated using ELISA. (C) RT-qPCR and (D) western blot analysis were used to measure IL-17a 
expression levels in the harvested cells. (E) IF staining of IL-17a in the harvested cells. Scale bar, 20 μm. (F) Th17 cells were treated with  
100 μg/cm2 of PM2.5 for 24 h, and then the conditional medium was collected, and mixed with fresh RPMI1640 absolute medium at 1:3. The 
composed culture medium was exposed to A549 and H1350 cells for 12, 24, 48 or 72 h. Then, the NSCLC cells were collected for cell 
proliferation analysis using CCK-8 analysis. (G, H) Th17 cells were incubated with 100 μg/cm2 of PM2.5 for 24 h, and then the conditional 
medium was collected, and mixed with fresh RPMI1640 absolute medium at 1:3. Then, the composed culture medium was subjected to A549 
and H1350 cells for another 24 h. Subsequently, all cells were harvested to assess the cell proliferation using colony formation and EdU 
assays. Scale bar, 100 μm. Quantification of colony formation assay and EdU was exhibited. All data are expressed as mean ± SEM. *p<0.05 
and **p<0.01 compared to the Ctrl group. 
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Collectively, the results in this section demonstrated 

that PM2.5-induced circumstances could accelerate EMT 

in NSCLC. 

 

IL-17a treatment promotes the proliferation and 

EMT in NSCLC cells 

 

To further confirm the effects of IL-17a on NSCLC 

progression, Recombinant Human IL-17a was then 

subjected to A549 and H1299 cells. CCK-8 analysis 

demonstrated that IL-17a treatment markedly promoted 

the proliferation of NSCLC cells (Figure 7A). Colony 

formation and EdU assays confirmed the role of IL-17a 

in promoting NSCLC proliferation (Figure 7B, 7C). 

Transwell analysis demonstrated that the number of cells 

in migration and invasion was markedly up-regulated by 

IL-17a addition (Figure 7D, 7E). Furthermore, MMP2, 

MMP9, TGF-β1, α-SMA, Fibronectin and Vimentin 

 

 
 

Figure 6. PM2.5 contributes to the migration and invasion of NSCLC cells. (A–G) Th17 cells were exposed to 100 μg/cm2 of PM2.5 for 
24 h. Then, the obtained medium was collected, and mixed with fresh RPMI1640 absolute medium at 1:3 dilutions. Next, A549 and H1350 
cells were treated with the composed culture medium for another 24 h. Subsequently, all cells were collected for the following analysis. (A) 
Transwell analysis was used to determine the migration and invasion of lung cancer cells. Scale bar, 100 μm. (B, C) Quantification of the 
number of cells in migration and invasion. (D) Wound healing analysis was performed to assess the migration of lung cancer cells. (E) The 
number of NSCLC cells in migration was quantified following wound healing analysis. (F) RT-qPCR analysis was used to calculate the mRNA 
expression levels of genes associated with EMT. (G) IF staining of N-cadherin in A549 and H1350 cells treated as indicated. Scale bar, 50 μm. 
All data are expressed as mean ± SEM. *p<0.05 and **p<0.01 compared to the Ctrl group. 
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mRNA levels were significantly induced by IL-17a in 

A549 and H1299 cells (Figure 7F). The role of IL-17a in 

promoting N-cadherin was verified by IF staining as 

displayed in Figure 7G. Together, results in this regard 

illustrated that IL-17a could enhance the proliferation 

and EMT in NSCLC. 

IL-17a knockout alleviates pulmonary injury and 

cancer stem cell properties in mice following PM2.5 

exposure for 3 months 
 

The in vivo and in vitro experiments above demonstrated 

that PM2.5 could up-regulate IL-17a expression to 

 

 
 

Figure 7. IL-17a treatment promotes the proliferation and EMT in NSCLC cells. (A–G) A549 and H1350 cells were treated with or 
without IL-17a (100 ng/ml) for 24 h, and then were collected for the following studies. (A) CCK-8 analysis was used to determine the cell 
proliferative activity. (B) Colony formation and EdU assays were used to determine the cell proliferative condition. Scale bar, 100 μm.  
(C) Quantification of the number of cells by colony formation and EdU analysis. (D) Transwell analysis was used to calculate the number of 
cells in migration and invasion. Scale bar, 100 μm. (E) Quantification of the counts of the migrated and invaded cells. (F) RT-qPCR analysis was 
used to measure EMT-associated genes in A549 and H1350 cells. (G) IF staining of N-cadherin in A549 and H1350 cells. Scale bar, 50 μm. All 
data are expressed as mean ± SEM. *p<0.05 and **p<0.01 compared to the Ctrl group. 
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subsequently promote the progression of NSCLC via 

enhancing the proliferation and EMT processes. In order 

to further confirm the significant role of IL-17a 

regulated by PM2.5 in pulmonary progression and lung 

cancer development, IL-17a knockout (IL-17a-/-) mice 

were used subsequently. As shown in Figure 8A, H&E 

and Masson staining showed that PM2.5-induced 

pulmonary injury and fibrosis were attenuated when IL-

17a was deleted in mice. Total proteins in BALF 

induced by long-term PM2.5 exposure were significantly 

 

 
 

Figure 8. IL-17a knockout alleviates pulmonary injury and cancer stem cell properties in mice following PM2.5 exposure for  
3 months. (A) H&E staining (up panel) and Masson trichrome staining (down panel) of lung sections from IL-17a+/+ and IL-17a-/- mice 
challenged with or without PM2.5 for 3 months (n = 6). Scale bar, 100 μm. (B) Protein levels in BALF were measured (n = 8). (C) The total 
number of cells in BALF was assessed (n = 8). (D) The number of neutrophils in BALF was measured (n = 8). (E) Serum TNF-α and IL-6 levels in 
mice were measured by ELISA (n = 8). (F) TNF-α and IL-6 mRNA levels in the pulmonary samples were determined using RT-qPCR analysis  
(n = 4). (G) Fibrosis-associated genes as shown were tested using RT-qPCR analysis (n = 4). (H) Genes associated with lung cancer progression 
were calculated using RT-qPCR analysis (n = 4). (I) IHC staining of c-Myc and SOX2 in pulmonary sections from the indicated groups of mice  
(n = 6). Scale bar, 100 μm. All data are expressed as mean ± SEM. *p<0.05 and **p<0.01 compared to the FA/IL-17a+/+ group; +p<0.05 
compared to the PM2.5/IL-17a+/+ group. 
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abolished in IL-17a-/- mice (Figure 8B). Markedly 

reduced total number of cells and the number of 

neutrophils in BALF were detected in IL-17a-/- mice 

following PM2.5 exposure (Figure 8C, 8D). Compared to 

the PM2.5/IL-17a+/+ group, TNF-α and IL-6 expression 

levels in serum and lung tissues were markedly decreased 

in IL-17a-/- mice after PM2.5 exposure for 3 months 

(Figure 8E, 8F). RT-qPCR analysis showed that IL-17a 

deletion evidently reduced the expression of MMP2, 

MMP9, TGF-β1, α-SMA, Fibronectin and Vimentin in 

pulmonary samples of PM2.5-challenged mice compared 

to that of the wild type mice (Figure 8G). Furthermore, 

lung cancer markers including Kras, c-Myc, ABCG2, 

OCT4, SOX2 and Aldh1a1 induced by PM2.5 were also 

markedly abolished when IL-17a was knocked out; 

however, p53 and PTEN mRNA expression levels 

restrained by PM2.5 were significantly rescued in mice 

with the loss of IL-17a (Figure 8H). IHC staining 

confirmed the role of IL-17a-/- in suppressing c-Myc and 

SOX2 expression in lung tissues of PM2.5-exposed mice 

(Figure 8I). The in vivo results above demonstrated that 

reducing IL-17a expression could alleviate PM2.5-induced 

pulmonary injury and the expression of genes associated 

with lung cancer progression. 

 

PM2.5-promoted tumor growth and metastasis are 

associated with IL-17a in xenograft mouse models 
 

In this regard, A549-drived xenograft mouse models 

were established using C57BL6 mice to further explore 

the effects of PM2.5 on NSCLC progression, as well  

as the potential of IL-17a involved. As shown in  

Figure 9A–9C, the tumor size, volume and weight were 

highly promoted by PM2.5 exposure compared to the Ctrl 

group, and similar results were observed in mice injected 

with IL-17a. Of note, PM2.5-enhanced tumor growth was 

clearly abrogated in IL-17a-/- mice; however, this effect 

was restored when IL-17a was again injected to mice. In 

addition, no significant difference was observed in the 

change of body weight of mice from different groups 

(Figure 9D). KI-67, as a marker of cell proliferation, was 

clearly up-regulated by PM2.5 exposure and IL-17a 

injection when compared to the Ctrl group. IL-17a 

deficiency considerably reduced KI-67 expression in 

tumor samples from PM2.5-challenged mice, while being 

restored by IL-17a reinjection. Similar expression 

alterations were detected in SOX2 by IHC staining 

(Figure 9E). The in vivo metastasis was then 

investigated. Lung metastasis was greatly promoted in 

mice treated with PM2.5 or IL-17a. Of note, compared to 

the wild type mice, IL-17a-/- mice exhibited markedly 

alleviated metastasis in vivo following PM2.5 exposure, 

but this effect was abrogated when mice were re-injected 

with IL-17a (Figure 9F–9H). Finally, RT-qPCR results 

indicated that metastatic markers, including MMP2, 

MMP9, TGF-β1 and α-SMA, were markedly up-

regulated by PM2.5 exposure or IL-17a addition. 

Consistently, mice with IL-17a deficiency exhibited 

reduced expression of these genes, which were, 

however, significantly rescued by IL-17a reinjection to 

mice (Figure 9I). Collectively, these in vivo results 

illustrated that PM2.5 exposure could accelerate the 

growth of NSCLC and metastasis, which was largely 

dependent on the expression of IL-17a. 

 

DISCUSSION 
 

NSCLC is a critical disease with high morbidity and 

mortality worldwide. Long-term PM2.5 exposure is 

tightly associated with NSCLC progression. Increasing 

studies have shown the importance of IL-17a in 

promoting tumor development, including NSCLC, via 

multiple mechanisms [23–29]. In this research, chronic 

PM2.5 exposure at high dose caused significant 

pulmonary damage and fibrosis. On the other, the 

expression levels of lung cancer biomarkers were highly 

induced by PM2.5 exposure in lung tissues. IL-17a 

expression was markedly up-regulated in pulmonary 

samples, peripheral blood lymphocytes and splenic 

lymphocytes from PM2.5-exposed mice. Clinical 

analysis demonstrated that IL-17a expression was 

significantly up-regulated in NSCLC patients. PM2.5 

exposure caused IL-17a expression in the isolated Th17 

cells. Essentially, NSCLC cells cultured in the 

conditional medium from PM2.5-incubated Th17 cells 

exhibited markedly increased cell proliferation and 

EMT processes. Consistently, recombinant human IL-17a 

considerably led to NSCLC cell proliferation, migration 

and invasion. Notably, the in vivo experiments further 

demonstrated that PM2.5-induced pulmonary damage 

was alleviated in mice with IL-17a knockout. In 

addition, IL-17a deletion markedly abolished the role of 

PM2.5 in promoting tumor growth and metastasis in 

mouse models. Taken together, all these results 

expanded the understanding of pulmonary carcinogenesis 

of PM2.5 through increasing IL-17a expression levels, and 

thus IL-17a could be a biomarker for lung cancer 

prediction under the stress of PM2.5. 
 

Several molecular mechanisms contribute to the onset 

and pathogenesis of PM2.5-induced lung injury, such as 

oxidative stress, inflammation and fibrosis [7–9]. In our 

present study, we further confirmed that PM2.5 exposure 

led to significant inflammatory response in pulmonary 

tissues of mice, as evidenced by the significantly up-

regulated expression of TNF-α and IL-6, which were in 

accordance with previous reports [8]. TGFβ1 is the 

most recognized isoform involved in respiratory 

diseases, which is important to the pro-fibrotic switch, 

matrix production, suppression of lung epithelial cells’ 

proliferation, and is enhanced during pulmonary 

inflammation progress [42, 43]. TGFβ1 promotes the 
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expression of MMPs, including MMP2 and MMP9, and 

enhances the components of the extracellular matrix, 

such as collagens and fibronectins through up-regulating 

EMT-related transcription factors [32–34, 44]. A large 

number of studies have demonstrated the favorable 

effects of TGFβ1 on the pathological symptoms of lung 

injury, including PM2.5-triggered pulmonary damage, 

which is associated with the extracellular matrix (ECM) 

accumulation and fibrosis formation [45, 46]. In our 

research, we also demonstrated that PM2.5 exposure  

led to fibrosis in lung tissues, accompanied with 

significantly up-regulated expression of TGFβ1, MMP2, 

MMP9, Fibronectin, α-SMA and Vimentin. 

 

Accumulating studies have indicated that TGFβ1 

expression within the tumor microenvironment is 

frequently enhanced in NSCLC [47]. TGFβ1 stimulates 

tumor cell EMT, and promotes cell motility and 

 

 
 

Figure 9. PM2.5-promoted tumor growth and metastasis are associated with IL-17a in xenograft mouse models.  
(A) Representative images of tumor samples isolated from each group of mice as indicated (n = 6). Scale bar, 1 cm. (B) Tumor volume was 
measured (n = 6). (C) Tumor weight was recorded (n = 6). (D) The body weight of mice was recorded (n = 6). (E) IHC staining was used to 
determine KI-67 and SOX2 expression levels in the tumor sections (n = 4). Scale bar, 100 μm. (F) H&E staining of pulmonary tissues (n = 4; 
Scale bar, 100 μm) and (G) pictures of lung samples isolated from the indicated groups of mice to calculate the metastatic nodules on the 
surface of lungs (n = 6). (H) The number of lung metastatic nodules was quantified (n = 6). (I) RT-qPCR analysis was used to calculate the 
expression of metastasis-associated genes as displayed (n = 4). All data are expressed as mean ± SEM. *p<0.05 and **p<0.01. 
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metastasis via the activation of its down-streaming 

signaling pathways, subsequently favoring the 

expression of several transcriptional factors such as 

MMP2s, α-SMA and Fibronectin [48]. Therefore, TGF-

β1 plays a critical role in inducing carcinogenesis. 

Previous studies have demonstrated that PM2.5 exposure 

could enhance NSCLC progression, which was partly 

associated with the EMT event [17, 49]. Given the 

considerably activation of TGFβ1 signaling during lung 

cancer progression, we hypothesized that NSCLC might 

be also associated with the long-term PM2.5 exposure. 

Herein, NSCLC biomarkers were measured in our 

study. RT-qPCR and IHC staining assays here 

demonstrated that the expression levels of lung cancer 

markers and cancer stem cell features of lung cells, 

including Kras, c-Myc, ABCG2, OCT4, SOX2 and 

Aldh1a1 [18, 36–38], were markedly increased in lung 

tissues of PM2.5-challenged mice. In contrast, tumor 

suppressors p53 and PTEN [39] were decreased in 

pulmonary samples of mice in response to PM2.5. All 

these in vivo findings validated that chronic PM2.5 

exposure enhanced the risk of lung cancer. 

 

Th17 cells are enriched within peripheral blood 

mononuclear cells and tumor tissues. IL-17a is mainly 

produced by Th17 cells, which is closely associated 

with the development of various types of tumors, 

including lung cancer [26–28, 50]. Elevated IL-17-

producing cells were involved in the poor survival and 

lymphangiogenesis in NSCLC patients [51]. In addition, 

IL-17 up-regulated the net angiogenic activity and the in 

vivo growth of NSCLC through increasing CXCR2-

dependent angiogenesis [52]. Here in our study, the 

markedly increased expression of IL-17a was detected 

in lung tissues, peripheral blood lymphocytes and 

splenic lymphocytes of mice with long-term PM2.5 

exposure, further demonstrating the potential of PM2.5 

in inducing lung cancer by increasing IL-17a expression 

levels. The clinical analysis in our study showed that 

IL-17a expression was markedly up-regulated in 

NSCLC patients, and its elevation was associated with 

the worse overall survival rate, which was in line with 

previous study [51]. Increasing studies have illustrated 

that Th17/IL-17a axis may promote the progression of 

solid tumors (lung, liver and ovarian cancers) and 

hematologic cancers (chronic lymphocytic leukemia 

and myeloma) [31, 53–56]. Here, IL-17a expression 

was greatly increased by PM2.5 in Th17 cells. NSCLC 

cells cultured in the conditional medium from PM2.5-

incubated Th17 cells showed significantly elevated cell 

proliferation and EMT process compared to the control 

group. Functions of IL-17 relevant to tumor involve the 

induction of cytokines such as IL-6 and TGF-β1 [57, 58]. 

Consistently, our in vitro findings indicated that IL-17a 

treatment evidently up-regulated TGF-β1 expression, as 

well as its down-streaming signals such as MMP2, 

MMP9, α-SMA, Fibronectin and Vimentin, implying 

the EMT event in NSCLC cells. These in vitro results 

revealed the critical role of IL-17a induced by PM2.5  

in promoting lung cancer development through 

accelerating EMT event. PM2.5-challenged mice with 

IL-17a knockout exhibited markedly alleviated lung 

injury and cancer stem cell property. In addition, the in 
vivo subcutaneous tumor model confirmed that A549-

drived tumor growth was further accelerated by PM2.5, 

which was clearly abolished by the loss of IL-17a, 

accompanied with significantly reduced lung metastasis. 

Therefore, IL-17a might play a promotional role in 

PM2.5-induced progression of lung cancer. 

 

In conclusion, our study for the first time provided solid 

evidence that long-term PM2.5 exposure could enhance 

the risk of NSCLC through promoting the expression of 

IL-17a, thereby increasing lung cancer cell proliferation 

and metastasis. Reducing IL-17a might be a promising 

strategy to treat air pollution-associated NSCLC. 

However, further studies are still warranted in future to 

investigate if there are other underlying mechanisms 

involved in PM2.5-promoted lung cancer development. 

 

MATERIALS AND METHODS 
 

PM2.5 sampling preparation 
 

The procedures for PM2.5 sampling preparation were 

referred to previous study with certain modification  

[59, 60]. In brief, to collect exposure mass, quartz filter  

(8 cm × 10 cm, 2500QAT-UP, Pallflex Products, 

Putnam, USA) was used to continuously and weekly 

collect PM2.5 from Beijing Worker’s Sports Complex 

located in the central area of Beijing (Beijing, China) 

from January 2017 to June 2017 at a flow rate of 180 

L/min. All particle size we collected was less than 2.5 

μm. Ambient PM2.5 filters were stored at -80°C until 

experiments. The sampling was then treated with 

anhydrous alcohol and dissolved in pyrogen-free water. 

Subsequently, the extraction was sonicated for 2 days in 

an ultrasonic box and then concentrated through vacuum 

freeze-drying. Next, the double-distilled water was 

added to freeze-dried product, followed by centrifugation 

at 5000 rpm. The water-insoluble fraction was suspended 

in D-Hank’s buffer (Gibco Corporation, USA) for 

further experiments. The organic content has been added 

in the supporting files (Supplementary Table 1). 

 

Animals and treatments 
 

Animal studies were performed in accordance with the 

principles of laboratory animal care (NIH publication 

revised 1985) and were approval by the Shandong 

Cancer Hospital and Institute, Shandong First Medical 

University and Shandong Academy of Medical Sciences 
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(Ji’nan, China). The wild type, male C57BL/6J  

(IL-17a+/+) at 6-8 weeks of age were purchased from 

Beijing Vital River Laboratories (Beijing, China). The 

male IL-17a knockout (IL-17a–/–) mice (with C57BL/6J 

background) also at 6-8 weeks of age were purchased 

from the Jackson Laboratory (Bar Harbor, ME). Prior to 

the animal experiments, all mice were allowed to 

acclimation for the lab condition for a week before PM 

exposure (animal numbers were listed in the figure 

legends). They were raised in a specific pathogen-free 

(SPF) facility at a controlled temperature and humidity 

(25 ± 2°C, 50 ± 5% humidity) environment with a 

standard 12 h/12 h light/dark cycle. All mice were given 

ad libitum access to water and food in their cages. 

 

As for PM2.5 challenge, IL-17a+/+ and IL-17a-/- mice 

were exposed to either filtered air (FA) or PM2.5 (168.5 ± 

4.9 μg/m3, flow rate of 80 L/min) for 6 h/day,  

7 days/week for 1 week, 1 month or 3 months in an 

environmentally relevant and real-world PM with a PM-

exposure system (Huironghe’s Air Pollution Exposure 

System for the Whole Body of Animals, HAPES, 

Beijing Huironghe Technology Co. LTD., Beijing, 

China) to perform whole-body exposure of mice. The 

control (FA) mice were exposed to an identical protocol 

with the exception of a high-efficiency particulate-air 

filter positioned in the inlet valve to remove all of the 

PM2.5 in the filtered air stream. After each treatment, all 

mice were sacrificed. Blood was collected from mice by 

cardiac puncture, and serum was centrifuged at 10,000 

rpm for 10 min at 4°C. Then, the supernatant was 

collected for further analysis. The lung tissues were 

removed for histological, RT-qPCR and western blot 

analysis. 

 

As for in vivo subcutaneous tumor model, the male 

C57BL/6 mice (8-10 weeks, IL-17a+/+ and IL-17a-/-) 

were used in the study. Hair in the lower dorsal skin of 

anesthetized mice was carefully trimmed with an 

electric clipper. A549 cells (1 × 106 cells/mouse) in  

100 μL of PBS were subcutaneously injected in the hair-

trimmed area on day 0. Then, all mice were randomly 

divided into 5 groups (animal numbers were listed in 

the figure legends), and treated as followings: 1) the IL-

17a+/+ Control (Ctrl) group without any treatments; 2) 

PM2.5-exposed group of IL-17a+/+ mice performed as 

described in the 4.2.1 section; 3) mice in the i.v. IL-17a 

group were injected with Recombinant Mouse IL-17a  

(1 μg/mouse per day; R&D System, USA) in sterile PBS 

intravenously through the tail vein; 4) PM2.5-exposed 

group of IL-17a-/- mice also performed as described in 

the 4.21.1 section; 5) PM2.5-exposed group of IL-17a-/- 

mice with the i.v. injection of Recombinant Mouse IL-

17a (1 μg/mouse per day). During the treatments, the 

tumor size was measured every 2 days using calipers, 

and the body weight of mice was recorded. Tumor 

volume was calculated using the formula volume = (L × 

W2) × 0.52, where L is the largest diameter and W is the 

smallest diameter. After treatments for 4 weeks, all 

mice were sacrificed and the tumors were dissected for 

weighing and further analysis. 

 

For tumor metastasis assay, the A549 cells (1 × 106 

cells/mouse) were implanted into IL-17a+/+ or IL-17a-/- 

mice by tail vein injection. All mice were randomly 

divided into 5 groups (animal numbers were listed in the 

figure legends), and treated as followings: 1) the IL-

17a+/+ Control (Ctrl) group without any treatments; 2) 

PM2.5-exposed group of IL-17a+/+ mice performed as 

described in the 4.2.1 section; 3) mice in the i.v. IL-17a 

group were injected with Recombinant Mouse IL-17a  

(1 μg/mouse per day; R&D System) in sterile PBS 

intravenously through the tail vein; 4) PM2.5-exposed 

group of IL-17a-/- mice also performed as described in the 

4.21.1 section; 5) PM2.5-exposed group of IL-17a-/- mice 

with the i.v. injection of Recombinant Mouse IL-17a  

(1 μg/mouse per day). Tumor metastasis was monitored. 

At 60 days after injection, all mice were sacrificed, the 

tumor nodules formed on the lung surfaces were 

analyzed, and the lung tissues were embedded in paraffin 

for H&E staining or stored for RT-qPCR analysis. 

 

BALF isolation and analysis 
 

BALF samples from each group of mice were 

simultaneously harvested. A total of 0.5 mL of BALF 

was collected. Then, total cells and neutrophils were 

counted using a hemocytometer in a double-blind 

manner for the calculation of the proportion of 

polymorphonuclear neutrophils. Protein concentrations 

in BALF were assessed using a BCA Protein Assay Kit 

(Pierce, USA) in accordance with the manufacturer’s 

protocols. 

 

ELISA assessments 
 

TNF-α and IL-6 levels in serum (#ADI-900-047 for 

TNF-α, Peprotech, USA; #M6000B for IL-6, R&D 

System, USA) or supernatants (#DTA00D for TNF-α, 

R&D System; #D6050 for IL-6, R&D System) were 

measured using commercial kits according to the 

manufacturer’s instructions. IL-17a contents in BALF, 

serum or supernatants of mice were measured using 

ELISA kit (BEK-2054-2P, Biosensis, Australia) 

purchased from Amyjet Scientific (Wuhan, China) 

following the protocols recommended by the 

manufacturer. 

 

RT-qPCR 
 

Total RNA was isolated from frozen lung tissues, tumor 

samples or the cultured cells using TRIZOL reagent 
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(Invitrogen, USA) following the manufacturer’s 

instructions. Then, 2 μg of RNA was reverse-

transcribed using the Transcriptor First Strand cDNA 

Synthesis Kit (Roche, USA). RT-qPCR assays were 

conducted by the use of the SYBR Premix Ex Taq II 

(TaKaRa, Dalian, China) on an ABI7900 real-time 

system (Applied Biosystems, USA). The PCR 

conditions were 95°C for 10 min; 40 cycles of 95°C for 

10 s, 60°C for 10 s and 72°C for 20 s; and a final 

extension at 72°C for 10 min. The 2–ΔΔCt method was 

used to quantify the relative expression level of RNA 

between groups. The transcription of the principal gene 

GAPDH was served as the internal control. The primer 

sequences for the genes used in the study were listed in 

Supplementary Table 2. 

 

Western blotting 
 

Proteins were extracted from lung tissues, tumor 

samples or cultured cells and homogenized in lysis 

buffer (Beyotime, Nanjing, China). The protein 

concentrations were calculated using a BCA Protein 

Assay Kit (Pierce) following the instructions provided 

by the manufacturer. Protein samples (20-50 μg) were 

separated on 8-12% SDS-PAGE gels and transferred to 

polyvinylidene difluoride (PVDF) membranes 

(Millipore, MA, USA). The membranes were then 

blocked using Tris-buffered saline containing Tween-20 

(TBST) with 5% skim milk powder for 1.5 h at room 

temperature, followed by incubation with primary 

antibodies (IL-17a, PA5-46947, ThermoFisher 

Scientific, USA; GAPDH, ab8245, Abcam) overnight at 

4°C. Then, the membranes were incubated with a 

horseradish peroxidase (HRP)-conjugated anti-mouse or 

anti-rabbit IgG antibody (Abcam) for 1 h at room 

temperature. Membranes were finally treated with ECL 

reagents (Millipore) according to the manufacturer’s 

instructions. GAPDH was served as the loading control. 

 

Immunohistochemistry analysis 

 

The pulmonary tissues or tumor samples were isolated 

from each group of mice as indicated, immersed in 4% 

paraformaldehyde for 24 h and then transferred to 70% 

ethanol. After dehydrated, all tissue samples were 

embedded in paraffin, and sectioned at 5-μm thickness. 

Then, the sections were stained with hematoxylin and 

eosin (H&E) or Masson’s trichrome kit (Nanjing 

Jiancheng Co., Ltd., Nanjing, China) according to the 

manufacturers’ protocols. Immunohistochemistry (IHC) 

was performed using the streptavidin peroxidase (SP, 

Jackson ImmunoResearch Inc., USA) method according 

to the kit’s protocols. The obtained tissue sections were 

then immersed in sodium citrate, heated in water-bath 

for 10 min at 98°C for antigen retrieval, and cooled to 

room temperature. Next, endogenous peroxidase was 

blocked using 3% hydrogen peroxide for 10 min. After 

washing with PBS, the tissue sections were treated with 

5% normal goat serum (KeyGen Biotech, Nanjing, 

China), and then were incubated with the primary 

antibodies against c-Myc (ab32072, Abcam), OCT4 

(ab18976, Abcam), SOX2 (PA1-094, ThermoFisher 

Scientific), IL-17a (ab79056, Abcam), IL-17a (PA5-

79470, ThermoFisher Scientific) and KI-67 (MA5-

14520, ThermoFisher Scientific) overnight at 4°C. Then, 

horseradish peroxidase (HRP)-conjugated secondary 

antibodies (Abcam) were used to visualize the antibody 

signal with diaminobenzidine (DAB, KeyGen Biotech). 

The tissue sections were calculated under a light 

microscope (Nikon, Japan). The quantification of IHC 

results was performed using Image-Pro Plus 6.0 software 

(Media Cybernetics, USA). 

 

Human samples 

 

48 pairs of fresh lung cancer and the adjacent 

noncancerous tissues were collected from the Shandong 

Cancer Hospital and Institute, Shandong First Medical 

University and Shandong Academy of Medical Sciences 

(Ji’nan, China). The clinic pathological characteristics 

of patients were shown in Supplementary Table 3. 

These clinical tissue samples were histologically 

confirmed by H&E staining. The study was approved 

by the Ethics Committee of the Shandong Cancer 

Hospital and Institute, Shandong First Medical 

University and Shandong Academy of Medical 

Sciences, and was conducted in accordance with the 

ethical principles indicted by the Helsinki Declaration. 

The informed consent was obtained from all patients 

involved. 

 

Cells and culture 
 

Lymphocyte isolation from spleen 

The spleen samples were isolated from each group of 

mice following PM2.5 challenge or not, and washed with 

PBS. Then, the spleen tissues were placed in a 200-

mesh stain steel sieve over a culture dish supplemented 

with 5 mL lymphocyte isolation separation medium 

(Absin, Shanghai, China) and grounded into small 

pieces using the plunger of glass syringe. Then, the 

liquid was transferred into a centrifuge tube, and 200-

500 μL of RPMI-1640 medium (Gibco) was added to 

the tube, followed by centrifugation at 800 × g for  

30 min at room temperature. After centrifugation, three 

layers were formed. The middle milky layer containing 

lymphocytes was subsequently transferred into a new 

test tube. The obtained lymphocytes were rinsed with 

PBS, suspended in RPMI-1640 medium (Gibco) with 

10 % fetal calf serum (Solarbio), and then transferred 

into a culture bottle. All these procedures were 

performed under sterile condition. Finally, the lympho-
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cyte viability was measured following the trypan blue 

exclusion criteria, and the viability was over 95%. The 

purified lymphocyte was finally used for ELISA 

analysis. 

 

Peripheral blood mononuclear cells (PBMCs) 

isolation 
PBMCs were isolated from mouse peripheral blood 

samples using the standard Ficoll-Hypaque density 

gradient centrifugation methods as previously indicated 

[61, 62]. In brief, T lymphocytes were prepared from 

mouse PBMCs by negative selection with magnetic 

bead depletion of non-T lymphocytes with the EasySep 

mouse T lymphocytes isolation kit (Stemcell 

Technologies, USA) according to the instructions 

provided by the manufacturer. Then, the purity of T 

lymphocytes was calculated using the flow cytometry 

analysis and was found to be greater than 95%. 

 

Th17 differentiation, NSCLC cell culture and 

treatment 
At first, total splenic T cells were purified using the 

negative selection with the EasySep™ Mouse CD4+ T 

Cell Isolation Kit (Stemcell Technologies, Canada) 

according to the manufacturer’s protocols, and then 

were purified to > 95%. CD4+ purity was assessed 

through FACS-sorting using anti-CD4 FITC (Becton 

Dickinson, USA). For gating, viable cells were selected 

according to their Forward-scatter (FSC) values. Next, 

T-helper cells were isolated as CD4+ cells (> 97% total 

viable cells). T cells were planted in 12-well plates 

supplemented with plate bound 5 μg/ml of anti-CD3 

(Abcam) and 2 μg/ml of soluble anti-CD28 (Abcam) 

antibodies at 2 × 106 cells/well in RPMI 1640 medium 

(Gibco) containing 15% inactivated fetal bovine serum 

(FBS, Gibco). For Th17 cell differentiation, splenic T 

cells were incubated with IL-6 (20 ng/ml), IL-23  

(15 ng/ml), IL-1β (10 ng/ml), and TGF-β (5 ng/ml) (all 

from Invitrogen, USA), and IFN-γ-IL-2- and IL-4 

directed antibodies (R&D Systems) as previously 

indicated [63]. Th17 differentiation was measured using 

flow cytometry [64]. Then, PM2.5 at 100 μg/cm2 was 

subjected to the obtained Th17 cells for 24 h. The 

supernatants and cells after treatments were collected 

for ELISA, RT-qPCR, western blot and IF assays. 

 

Human NSCLC cells including A549 and H1350 were 

purchased from the American Type Culture Collection 

(ATCC, Manassas, USA). All these cancer cells were 

grown in RPMI 1640 medium (Gibco, USA) 

supplemented with 10% FBS (Gibco) and 100 U/mL 

penicillin/streptomycin. Cells were grown at 37°C in a 

humidified atmosphere containing 5% CO2 and 95% air. 

Recombinant human IL-17a (R&D System) was used to 

stimulate NSCLC cells as described in the figure 

legends. 

CCK-8 analysis and EdU determination 
 

After each treatment, the cell viability analysis was 

conducted using the CCK-8 detection kit (Dojindo, 

Kumamoto, Japan) according to the protocols as 

described by the manufacturer. Finally, the absorbance 

was measured with a microplate reader at a wavelength 

of 450 nm. 

 

After treatments, the cell proliferation ability was 

calculated through the EdU incorporation assay with the 

EdU Assay Kits (Life Technologies, USA) following 

the protocols recommended by the manufacturer, and 

was finally observed with a fluorescent microscope 

(Olympus, Japan). 

 

Colony formation analysis 
 

For colony formation analysis, 1000 cells after treatments 

were plated in a 10 cm dish and allowed to grow for 14 

days at 37°C in 5% CO2. Then, the surviving colonies 

(more than 50 cells in each colony) were counted using a 

microscope following Giemsa staining. 
 

Immunofluorescence (IF) staining 
 

After treatments, the cells were fixed in 4% 

paraformaldehyde for 20 min and permeated using 0.5% 

Triton X-100 (Solarbio, Beijing, China) in PBS for  

5 min. After blocking with 5% goat serum (Solarbio) for 

1 h, the cells were incubated with primary antibodies 

(anti-IL-17a antibody, Abcam, ab79056; anti-N-cadherin 

antibody, Abcam, ab18203) at 1:100 dilutions overnight 

at 4°C in a humidified chamber, followed by incubation 

with fluorescently labeled secondary antibodies (goat 

anti-rabbit IgG H&L, Abcam, ab150077; goat anti-rabbit 

IgG H&L, Abcam, ab150088) for 1 h. Then, the cells 

were counterstained with DAPI (Beyotime) for nuclear 

staining. The images were observed under a fluorescence 

microscope (Olympus), and the images were analyzed 

using Image Pro Plus 6.0. 
 

Transwell analysis 
 

For the migration analysis, the treated cells were 

suspended in serum-free DMEM (Gibco), and 1 × 105 

cells were then plated in the top chamber lined with an 

uncoated 8.0 µm pore membrane (Millipore). For the 

invasion analysis, 1 × 105 cells were plated in the top 

chamber coated with Matrigel (Corning, USA). 

Subsequently, the chambers were inserted into a 24-well 

plate supplemented with DMEM containing 20% FBS 

(Gibco). After incubation for 24 h at 37°C in 5% CO2, 

the cells undergoing migration or invasion through the 

membrane were stained using 0.1% crystal violet, and 

were quantified with a microscope (Olympus). 
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Wound healing assays 
 

Cell motility was calculated through the use of a scratch 

wound assay. The cells and the controls were incubated 

in 6-well dishes with or without the conditional medium 

until 80-90% confluent. Then, the cell layers were 

carefully wounded with sterile tips and washed twice 

with fresh medium. Cells were incubated with fresh 

medium and observed under a microscope at 24 h after 

wounding. Three random visual fields were quantified. 

 

Statistical analysis 

 

Data in our study were represented as Means ± standard 

error of the mean (SEM). Differences among groups 

were analyzed using one-way analysis of variance 

(ANOVA), followed by a post hoc Tukey’s test. 

Comparisons between two groups were performed using 

an unpaired Student’s t-test. The survival rate was 

analyzed using the Kaplan-Meier method. All results 

were analyzed using GraphPad Prism Software Version 

6.0 (GraphPad Software, California, USA). Differences 

were considered to be significant when p value < 0.05. 

All experimenters were blinded to the animal genotype 

and grouping information. Data from the animal 

experiments were collected through a blinded manner. 

All in vitro experiments were repeated at least three 

independent times unless specifically demonstrated in 

the figure legends. 
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Supplementary Table 1. Components of the collected PM2.5 (ng/m3) used in the study. 

Element Ambient PM2.5 

Magnesium 26.75 ± 3.96 

Selenium 0.46 ±0.04 

Cerium 0.04 ± 0.01 

Copper 2.96 ± 0.32 

Potassium 36.74 ± 7.58 

Barium 3.29 ± 0.18 

Sodium 59.07 ± 8.23 

Lead 2.08 ± 0.96 

Sulfur 1036.72 ± 378.29 

Aluminum 28.63 ± 8.47 

Cadmium 0.53 ± 0.07 

Strontium 0.48 ± 0.18 

Rubidium 0.08 ± 0.02 

Nitrogen 0.39 ± 0.28 

Cobalt 0.11 ±0.01 

Iron 59.25 ± 11.29 

Lanthanum 0.02 ± 0.01 

Manganese 1.72 ± 0.47 

Antimony 0.52 ± 0.29 

Molybdenum 0.74 ± 0.20 

Chromium 7.19 ± 1.08 

Vanadium 0.36 ± 0.14 

Phosphorus 17.07 ± 3.08 

Arsenic 0.92 ± 0.18 

Titanium 0.97 ± 0.05 

Calcium 93.53 ± 14.09 

Zinc 10.96 ± 1.68 
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Supplementary Table 2. The primer sequences for the genes used in the study. 

Primers Forward Sequence (5’-3’) Reverse Sequence
 (5’-3’) 

mMMP2 TTCCGCTTCCAGGGCACA CACCTTCTGAGTTCCCACCAA 

mTNF-α ACCTGGCCTCTCTACCTTGT CCCGTAGGGCGATTACAGTC 

mIL-6 CAACGATGATGCACTTGCAGA TCTCTCTGAAGGACTCTGGCT 

mMMP9 CGTCGTGATCCCCACTTACT CGTCGTGATCCCCACTTACT 

mTGF-β1 GACTCTCCACCTGCAAGACC GACTCTCCACCTGCAAGACC 

mα-SMA CTGCCGAGCGTGAGATTGT CTTCGTCGTATTCCTGTTTGCT 

mFibronectin CATGAAGGGGGTCAGTCCTA TAGGTTTGCAGGTCCATTCC 

mVimentin TGGACGTTTCCAAGCCTGAC CTGTCTCCGGTACTCGTTTGACT 

mKras AGACACGAAACAGGCTCAGG GCATCGTCAACACCCTGTCT 

mc-Myc TCACCAGCACAACTACGCCG CAGGATGTAGGCGGTGGCTT 

mABCG2 TCGCAGAAGGAGATGTGTTGAG CCAGAATAGCATTAAGGCCAGG 

mOCT4 AGCTGCTGAAGCAGAAGAGG AGATGGTGGTCTGGCTGAAC 

mSOX2 GCGGAGTGGAAACTTTTGTCC CGGGAAGCGTGTACTTATCCTT 

mAldh1a1 ATGGTTTAGCAGCAGGACTCTTC CCAGACATCTTGAATCCACCGAA 

mp53 TAACAGTTCCTGCATGGGCCGC AGGACAGGCACAAACACGCACC 

mPTEN AGACCATAACCCACCACAGC AGTGCCACGGGTCTGTAATC 

mIL-17 ACCGCAATGAAGACCCTGAT CAGGATCTCTTGCTGGATGAGA 

mGAPDH GGTGAAGGTCGGTGTGAACG CCCGTAGGGCGATTACAGTC 

hIL-17 CTACAACCGATCCACCTCACC AGCCCACGGACACCAGTATC 

hMMP2 TGAGCTATGGACCTTGGGAGAA CCATCGGCGTTCCCATAC 

hMMP9 CATCGTCATCCAGTTTGGTG AGGGACCACAACTCGTCATC 

hTGF-β1 GTACCTGAACCCGTGTTGCT GTATCGCCAGGAATTGTTGC 

hα-SMA CATGGCATCATCACCAACTG GCTGGGACATTGAAAGTCTC 

hFibronectin AGATGAGTGGGAACGAATGTCT GAGGGTCACACTTGAATTCTCC 

hVimentin GCTGAATGACCGCTTCGCCAACT AGCTCCCGCATCTCCTCCTCGTA 

hGAPDH GGAGTCAACGGATTTGGTC GGCAACAATATCCACTTTACC 
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Supplementary Table 3. Correlation between expression of IL-17a and clinical pathologic features of NSCLC patients.  

Characteristic 
IL-17a 

P-values 
Low (n=74) High (n=42) 

Age 

≥50 43 23 

<50 31 19 

Gender 

Male 49 28 

Female 25 14 

Pathologic type 

Squamous cell carcinoma 42 20 

Adenocarcinoma 32 22 

Tumor size (cm) 

≥3 42 18 

<3 32 24 

Tumor location 

Left lung 36 22 

Right lung 38 20 

TNM classification 

T1 14 10 

T2 31 15 

T3 20 9 

T4 9 8 

Distant metastasis 

No 53 16 

Yes 21 26 

 


