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INTRODUCTION 
 

Since the initial report of cases in Wuhan, Hubei 

Province, China, in December 2019 and January 2020, 

coronavirus disease 2019 (COVID-19) has been 

recognized as a new human disease [1]. The causative 

agent was identified as a novel coronavirus strain, named 

severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) by the Coronavirus Study Group (CSG) [2]. The 

mortality rate of SARS-CoV-2 is lower than those of 

Middle East respiratory syndrome coronavirus (MERS-

CoV) and severe acute respiratory syndrome coronavirus  

 

(SARS-CoV) [3]. However, SARS-CoV-2 spreads more 

rapidly than MERS-CoV and SARS-CoV because viral 

load and infectiousness peak before or around the time of 

symptom onset, i.e. much earlier than for both MERS-

CoV and SARS-CoV [3]. The high transmissibility of 

SARS-CoV-2 is denoted by a basic reproduction  

number (R0) of 3.39 over the whole epidemic period  

[4]. Moreover, COVID-19 can be transmitted by 

asymptomatic carriers during the incubation period [4–7], 

probably because they carry viral loads similar to those of 

symptomatic patients [8]. Although further studies are 

warranted to ascertain the epidemiological significance of 
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elevating blood pressure and impairing cerebrovascular endothelial function. Additionally, both age- and/or 
disease-related immune dysfunction and enhanced catecholamine release secondary to anxiety and stress 
may also aggravate central nervous system symptoms of severe acute respiratory syndrome coronavirus 2 
infection. Thus, assessment of systemic inflammatory biomarkers and tight control of hemodynamic 
parameters upon admission are crucial to minimize mortality and morbidity in coronavirus disease 2019 
patients with central nervous system symptoms suggestive of incipient stroke. 
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the asymptomatic cases, this suggests that asymptomatic 

transmission may be playing a substantial role in the 

outbreak [6, 9]. Notably, it is increasingly apparent that 

in many patients, neurological signs and symptoms are 

the first manifestations of COVID-19 infection [10, 11]. 

Although clinical data is not enough, there is still much 

concern that COVID-19 may increase the risk or trigger 

the onset of hemorrhagic stroke, especially in older 

patients. This review summarizes common risk factors 

for both stroke and COVID-19 severity, and potential 

mechanisms influencing the onset of hemorrhagic stroke 

in the elderly. 

 

Identification of SARS-CoV-2 as the causative agent 

of COVID-19 

 

Zhou et al. provided the first evidence that COVID-19 is 

associated with a novel coronavirus strain [12]. They 

used next-generation sequencing and pan-CoV 

Polymerase Chain Reaction (PCR) primers to determine 

the cause of the disease in 7 patients with COVID-19 in 

Hubei, most of whom were seafood market sellers or 

deliverers [12]. Their findings significantly strengthened 

the etiological association reported by investigators from 

India [13], Switzerland [14] and other places in China 

[15], who had also isolated the novel coronavirus from 

patients with COVID-19. These efforts, corroborated by 

statements from Chinese authorities, conclusively led to 

identification of SARS-CoV-2 as the causative agent of 

the COVID-19 outbreak [14]. 

 

Since its discovery, the sequence of the complete 

genome of SARS-CoV-2 has been determined  

[13, 16, 17]. It has ~29,000 nucleotides in length and 

like other CoVs, it contains at least six open reading 

frames (ORFs) and several accessory genes [13]. 

According to Chen et al. [15], the genome sequence of 

SARS-CoV-2 is 89% identical to the bat SARS-like-

CoVZXC21 and 82% identical to the human  

SARS-CoV [15]. In addition, phylogenetic analysis 

indicated that two bat SARS-Like CoVs were the 

nearest homologs of SARS-CoV-2 [13]. Based on 

genomic structure and phylogenetic analysis,  

the subfamily Coronavirinae are divided into four 

genera, namely Alphacoronavirus, Betacoronavirus, 

Gammacoronavirus, and Deltacoronavirus [13, 18, 19]. 

Currently, seven human CoVs have been reported: 229E 

(HCoV-229E), OC43 (HCoV-OC43), NL63 (HCoV-

NL63), HKU1 (HCoV-HKU1), SARS-CoV, MERS-

CoV, and SARS-CoV-2. HCoV-229E and HCoV-NL63 

belong to the Alphacoronavirus genus, while HCoV-

HKU1, SARS-CoV, MERS-CoV, and HCoV-OC43  

are Betacoronavirus members [18]. SARS-CoV-2 is 

also classified as a novel Betacoronavirus belonging  

to the subgenus Sarbecovirus of the Coronaviridae 

family [13, 15]. 

The 3’ terminal one-third of SARS-CoV-2 genome 

sequence encodes four structural proteins, namely spike 

protein (S), envelope protein (E), membrane protein 

(M), and nucleocapsid protein (N). Among these, the S 

gene is particularly important for receptor binding and 

host specificity [13]. Infection by CoV begins with the 

binding of the S protein, a surface antigen determining 

viral tropism, to cell-surface molecules expressed in 

host cells [20]. As shown in Table 1, host receptors for 

the seven human CoVs include human aminopeptidase 

N (CD13) for HCoV-229E [21]; 9-O-acetylated sialic 

acid for HCoV-OC43 [22]; angiotensin-converting 

enzyme 2 (ACE2) for SARS-CoV [22]; ACE2 for 

HCoV-NL63 [23, 24]; 9-O-acetylated sialic acid for 

HCoV-HKU1 [25, 26]; dipeptidyl peptidase 4 (DPP4) 

for MERS-CoV [27]; and ACE2 by SARS-CoV-2 [18]. 

 

Potential impact of COVID-19 on hemorrhagic 

stroke in the elderly 
 

At presentation, the most common symptoms in 

COVID-19 patients are fever, dry cough, and shortness 

of breath, whereas headache, diarrhea, and vomiting are 

more rare [3, 28–30]. However, early neurological 

symptoms (e.g. headache, epilepsy, and unconsciousness), 

without obvious respiratory symptoms, have been 

reported for numerous COVID-19 patients [10, 31]. A 

2005 case report by Xu et al. provided the first direct 

evidence that SARS-CoV has the ability to infect the 

central nervous system (CNS) [32]. A predicted cDNA 

fragment specific for SARS-CoV was amplified by 

nested RT-PCR from Vero-E6 cell cultures inoculated 

with a brain tissue extract from a symptomatic patient, 

and presence of enveloped virus particles, 80–90 nm  

in diameter, was found by transmission electronic 

microscopy [32]. Shortly before this finding, another 

study had reported the case of a 32-year-old woman 

with SARS whose cerebrospinal fluid tested positive 

for SARS-CoV [33]. These findings were further 

supported by experiments in mice that demonstrated 

the ability of various CoVs to cause CNS infections 

[34–36]. Indeed, SARS-CoV-2 shares similar 

characteristics with SARS-CoV, and both anecdotal 

and statistical data indicate that neurologic symptoms 

are not common in COVID-19 patients [10]. Since it is 

well known that cerebral hemorrhage may result from 

viral infection of the CNS compromising the 

neurovascular unit [37–40], available evidence strongly 

suggest that SARS-CoV-2 infection may greatly 

increase the incidence of hemorrhagic stroke, 

especially in at-risk patients. 

 

Shared risk factors 
 

Hypertension is the most important risk factor for cerebral 

hemorrhage [41, 42]. Of note, for the 138 COVID-19 
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Table 1. Human coronavirus species and their receptors. 

Coronavirus species Discovery year Cellular receptor 

HCoV-229E 1966 Human aminopeptidase N (CD13) 

HCoV-OC43 1967 9-O-acetylated sialic acid 

SARS-CoV 2003 ACE2 

HCoV-NL63 2004 ACE2 

HCoV-HKU1 2005 9-O-acetylated sialic acid 

MERS-CoV 2012 DPP4 

SARS-CoV-2 2019 ACE2 

 

confirmed cases analyzed by Wang et al. [30], 43 

patients (31.2%) were hypertensive, a proportion that 

reflects, relative to other diseases, the higher 

susceptibility to SARS-CoV-2 infection conferred by 

hypertension. Similar results were recently reported by 

both Guan et al. [26] and the Novel Coronavirus 

Pneumonia Emergency Response Epidemiology Team 

[50]. SARS-CoV-2 infection in humans is mediated by 

binding of the receptor-binding domain (RBD) of the 

viral S glycoprotein to ACE2 receptors in host cells, 

and this in turn may lead to downregulation of ACE2 

expression [20, 43]. Since reduced ACE2 expression 

implies increased Ang II availability, COVID-19 

patients with pre-existing hypertension may 

experience large blood pressure (BP) fluctuations, 

making them especially susceptible to hemorrhagic 

stroke episodes. 

 

There is a close relationship between systolic BP 

variability (SBPV) and poor prognosis of cerebral 

hemorrhage. Divani et al. reported that elevated SBPV 

in the first 24 h of admission was related to unfavorable 

in-hospital prognosis in patients with intracerebral 

hemorrhage (ICH) [44]. Since BP elevations resulting 

from downregulation of ACE2 expression may occur 

after SARS-CoV-2 infection, higher SBPV may be 

present on admission in hemorrhagic stroke patients 

affected by COVID-19. Therefore, the management of 

BP might require additional attention during the hyper-

acute and acute hemorrhagic stroke phases in COVID-

19 patients, as both high absolute BP levels and high BP 

fluctuations are main determinants of cerebral 

hemorrhage prognosis. 

 

Diabetes is also an independent risk factor for 

hemorrhagic stroke [42]. Huang et al. reported that 

among 41 patients with laboratory- confirmed SARS-

CoV-2 infection, 8 (20%) cases had diabetes; this again 

represents a higher proportion of comorbidity cases 

compared with other diseases [45]. Indeed, available 

data suggest that among COVID-19-confirmed cases 

with underlying chronic diseases, diabetes ranks second 

after hypertension [29, 45]. 

Elevated plasma D-dimer levels were associated with 

increased risk of hemorrhagic stroke [41]. Recently, 

Chen et al. conducted a retrospective, single-center study 

including 99 patients with COVID-19 and found elevated 

D-dimer levels in 36 patients (36%) [28]; however, 

mortality rate for this subgroup was not reported. 

Meanwhile, in a similar study assessing 191 COVID-19-

confirmed patients, D-dimer greater than 1 mg/L on 

admission was associated with significantly increased 

odds (p = 0.0033) of in-hospital death [46]. Of note, a 

recently posted pre-print article reporting on 248 

consecutive COVID-19 cases in Wuhan found D-dimer 

elevation (≥ 0.50 mg/L) in 74.6% (185/248) of the 

patients. D-dimer levels correlated with disease severity, 

and values >2.14 mg/L predicted in-hospital mortality 

with a sensitivity of 88.2% and specificity of 71.3% [47]. 

 

Surprisingly, two recent studies have reported an 

association between SARS-CoV-2 infection and the 

incidence of stroke [31, 48]. A single center, 

retrospective, observational study by Li et al reported a 

5% risk of ischemic stroke and a 0.5% risk of cerebral 

hemorrhage in 221 patients with SARS-CoV-2 infection 

from Wuhan, China [48]. In this cohort, patients with 

new onset stroke are obviously older, more likely  

to present with severe COVID-19 and have the above  

risk factors including hypertension, diabetes and  

elevated plasma D-dimer levels [48]. Another study  

of 214 patients reported 5 (5.7%) developed acute 

cerebrovascular diseases including 4 (4.6%) patients 

with ischemic stroke and 1 (1.1%) with cerebral 

hemorrhage in severe patients with COVID-19 [31]. 

Nevertheless, further studies including larger sample 

sizes, more exhaustive assessment of patients’ clinical 

histories, and additional molecular analysis are clearly 

needed to determine in which cases stroke is directly 

triggered by SARS-CoV-2 infection, or it occurs 

coincidentally [49]. 

 

Convergence of inflammatory mediators 
 

Inflammatory monocyte-macrophages (IMMs) and 

neutrophils are major sources of cytokines and 
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chemokines involved in the pathogenicity of SARS-

CoV-2 [50]. Some of these factors represent classical 

inflammatory biomarkers associated with secondary 

brain injury following cerebral hemorrhage and may 

have prognostic value in hemorrhagic stroke patients 

[51–55]. Lattanzi et al. recently reviewed available 

evidence pointing to the relevance of assessing the 

neutrophil-to-lymphocyte ratio (NLR) to determine 

inflammatory status in ICH patients [54]. In turn, 

newer studies confirmed NLR’s predictive value for 

prognosis of ICH [56, 57]. Neutrophil-derived matrix 

metalloproteinases (MMPs) are upregulated after acute 

ICH, contributing significantly to tissue destruction 

and activation of neuro-inflammatory cascades [54]. 

Accordingly, research suggests that it may be possible 

to mitigate brain damage by early, short-term 

inhibition of MMPs [53]. Napoli et al. reported  

that increased concentrations of serum C-reactive 

protein (CRP), a marker of inflammation, may be an 

independent predictor of ICH outcome [52]. 

Nevertheless, it should be considered that interethnic 

genomic differences may influence CRP status and its 

predictive values on different stroke phenotypes. 

Another marker, namely serum neutrophil gelatinase-

associated lipocalin (NGAL), a member of the 

lipocalin family of proteins associated with transport 

of small hydrophobic molecules, plays an important 

role in the innate immune response and has also been 

identified as an independent predictor for outcome 

following hemorrhagic stroke [51]. Given that these 

inflammatory biomarkers have been associated with 

both SARS-CoV-2-related cytopathic effects and 

hemorrhagic stroke outcome, it would be worthwhile 

to explore which changes in inflammatory biomarkers 

occur after hemorrhagic stroke and their predictive 

value in patients with and without COVID-19. This 

would allow to better define reliable indices of 

hemorrhagic stroke severity and functional recovery. 

 

Substantially reduced peripheral lymphocyte counts were 

evident in severe COVID-19 cases [28–30, 45, 58]. Xu et 

al. reported pathological findings of lung, liver, and heart 

biopsies, as well as blood cell analysis, from a patient 

who died of COVID-19 [59]. The findings showed 

infiltration of IMMs in the lung, whereas peripheral  

CD4 and CD8 T cells were reduced in number but 

overactivated. The authors suggested that severe immune 

injury in this patient was due to overactivation of T cells, 

manifested by increased representation of highly pro-

inflammatory CCR6+ Th17 CD4 T cell subsets and 

enhanced cytotoxic capacity of CD8 T cells. These data 

suggest that although lymphopenia is a common feature 

in patients with COVID-19, it may be paralleled by a 

pro-inflammatory phenotypic switching in T cell subsets 

that could be critically associated with disease severity 

and mortality [9, 59]. 

In addition, it was suggested that like SARS-CoV, 

SARS-CoV-2 also acts on lymphocytes in the 

respiratory mucosa, leading to a systemic “cytokine 

storm” concomitant with reduced peripheral blood 

lymphocytes which impairs cellular immune function 

[28]. This effect will be clearly potentiated by 

immune senescence, a well-described phenomenon in 

many middle-aged and elderly people [60], and 

aggravated by underlying conditions such as 

hypertension, diabetes, and cerebrovascular disease. 

This evidence points to worsened outcomes for 

patients with COVID-19 and cerebral hemorrhage 

comorbidity. 

 

Possible mechanisms underlying COVID-19 effects 

on hemorrhagic stroke in the elderly 
 

ACE2 expression 

Soon after the COVID-19 outbreak, investigations 

confirmed that the ACE2 receptor, abundantly expressed 

in lung alveolar epithelial cells, enables SARS-CoV-2 

entry into host cells through the RBD of the virus’ S 

glycoprotein [12, 61, 62]. The RBD that confers ACE2 

binding specificity is part of the S1 subunit of the large 

ectodomain of the S protein. The ectodomain contains 

also an S2 subunit, which mediates fusion between the 

viral and host cell membranes [61]. A ternary structure 

of the RBD of SARS-CoV-2 was obtained by molecular 

simulation, revealing that the structure is essentially 

superimposable (72% identity) to that of SARS-CoV, 

except for a flexible loop with CNGVEGFNC that 

replaces the rigid loop with CTPPALNC present in 

SARS-CoV [61]. Further analysis indicated that the 

unique F486 residue in the flexible loop can penetrate 

deep into a hydrophobic pocket in ACE2 formed by F28, 

L79, Y83, and L97 [61]. 

 

ACE2 was identified in 2000 as a homolog of the 

angiotensin-converting enzyme (ACE), although with 

different substrate specificity [63]. ACE2 primarily acts 

on angiotensin II (Ang-II), a major bioactive peptide 

[43], to generate the vasodilatory heptapeptide Ang-(1-

7), while ACE acts on angiotensin I (Ang-I) to generate 

Ang-II [43]. ACE2 counterbalances the vasopressor 

effect of the ACE/Ang-II/AT1 axis by stimulating 

vasodilation through the ACE2/Ang-(1-7)/MasR axis 

[64, 65]. Demonstrating the adversarial relationship 

between ACE and ACE2, Crackower et al. reported that 

heart function is impaired in ace2-deficient mice,  

and this effect can be rescued by ablation of ACE 

expression [66]. ACE2 expression is widely distributed 

across different cells and tissues. To date, it was 

identified in epithelial cells of the oral mucosa  

[62], pulmonary alveolar type II cells [67–69], 

esophagus upper and stratified epithelial cells, 

absorptive enterocytes from ileum and colon [69], 
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cholangiocytes [70], myocardial cells, kidney proximal 

tubule cells, and bladder urothelial cells [46]. In 

addition, ACE2 expression has also been detected in 

vascular endothelial and smooth muscle cells [71] and 

in some neurons [43, 64, 71–73], including those in the 

cardio-respiratory center of the brainstem [43]. The 

widespread expression of ACE2 is thus consistent with 

the reported effects of SARS-CoV-2 on multiple tissues 

and organs. Binding of SARS-CoV-2 to ACE2 

receptors in brain blood vessels may trigger the release 

of proinflammatory cytokines and chemokines such as 

interleukin-6 (IL-6) and tumor necrosis factor (TNF), 

leading to activation and extravasation of lymphocyte 

subsets, neutrophils, and macrophages with subsequent 

neurological manifestations [74]. On the other hand, 

neuronal ACE2 expression could also be a  

significant factor in COVID-19 cases associated with 

cerebral hemorrhage. Research on the 2003 SARS 

outbreak concluded that downregulation of ACE2 

expression occurred in infected organs, including  

lungs [75], kidney [43], heart [76], liver [43], and brain 

[43]. Similarly, a study by Chen et al. reported 

decreased ACE2 expression in the lungs of COVID-19 

patients [61]. 

 

Downregulation of ACE2 expression may increase risk 

of hemorrhagic stroke in several ways: i) ACE2 

deficiency in the brain may impair endothelial function 

in cerebral arteries, leading to a 4-fold elevation in the 

risk of cerebrovascular events, including hemorrhagic 

stroke [77]; ii) Downregulation of ACE2 expression 

may increase local Ang-II levels, which acting on AT1 

receptors may rise BP and facilitate hypertrophy and 

fibrosis [64]; iii) Decreased ACE2 expression would 

also lead to reduced generation of Ang (1-7) and 

depression of Ang (1-7)/MasR signaling, thus 

preventing its vasodilatory, growth inhibiting, and 

antifibrotic actions [64, 78] (Figure 1). 

 

 
 

Figure 1. Potential mechanisms mediating increased risk of hemorrhagic stroke in COVID-19 patients. The RBD of SARS-CoV-2’ 
spike protein interacts with ACE2, leading to ACE2 downregulation. ACE2 deficiency impairs endothelial function in cerebral arteries and 
determines an increase in Ang-II levels, which elevates BP through activation of AT1 receptors (AT1R). Simultaneously, reduced ACE2 leads 
to a decrease in Ang (1-7) levels, weakening its vasculo-protective effects mediated by Mas receptor (MasR) activation. 
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It calls for special attention the fact that COVID-19 

may exacerbate any underlying hypertension and put 

patients at higher risk for hemorrhagic stroke. Several 

mechanisms may contribute to hemorrhagic stroke in 

hypertensive patients infected with SARS-CoV-2. 

These include fibrinoid necrosis, promoted by 

increased vascular pressure [79], and extensive 

structural and functional alterations in endothelium 

and smooth muscle in intracerebral arteries, often 

aggravated by atherosclerosis, especially in the 

elderly [80]. 

 

Endothelial dysfunction at the blood-brain barrier 
The BBB is a semi-permeable structure consisting of 

a well-defined basement membrane and endothelial 

cells bound by tight junctions that limit the passage of 

macromolecules into the brain parenchyma. The BBB 

lies in close apposition to brain cell types, including 

pericytes, astrocytes, microglia, and neurons, and is 

especially susceptible to damage by both hypertension 

and diabetes [81, 82]. Xu et al. reported that a 

chemokine, i.e. the monokine/Mig/CXCL9, induced 

by IFN-g mostly in glial cells, might be involved in 

the brain immunopathology triggered by SARS [32]. 

Elevated Mig levels in the blood are correlated with 

brain infiltration of CD68+ monocytes/macrophages 

and CD3+ T lymphocytes in the brain [32]. Given the 

similarities between SARS-CoV-2 and SARS-CoV, 

this mechanism deserves further exploration as it may 

lead to therapeutic strategies to prevent or attenuate 

brain pathology in COVID-19 patients. 

 

The BBB is a dynamic and complex structure that 

helps maintain brain homeostasis and compensates 

fluctuations in the systemic circulation [83]. 

Expression of ACE2 in endothelial cells of the BBB 

may be a gateway for SARS-CoV-2 entry into the 

brain [83]. Moreover, the ensuing ACE2 down-

regulation, compounded by age-related ACE2 

deficiency in older patients, might further increase 

endothelial dysfunction and risk of ICH [77]. More 

studies are needed to ascertain the impact of ACE2 

expression at the BBB and its effect on SARS-CoV-2-

mediated CNS symptoms, particularly ICH. 

 

Immunity and inflammation 
There is accruing evidence that viral CNS infections 

may cause hemorrhage stroke [37, 39, 84]. The 

pathogenesis may involve cytokine, chemokine, and 

protease actions increasing BBB permeability, and 

damage and/or demise of the neurovascular unit 

during the necrotizing process [37]. Although the 

specific mechanisms remain unclear, it is obvious that 

the type and extent of the immune response triggered 

by the SARS-CoV-2 determine symptoms severity. A 

recent study from Anderson et al. revealed that bats, 

the most likely source of the novel SARS-CoV-2, 

have evolved a highly specific innate immune 

response characterized by a large expansion of the 

type I interferon gene family [85]. While this may 

clarify the basis of bats’ immune resistance to SARS-

CoV-2, there are still many open questions about the 

mechanism(s) mediating immune defense against 

CoV-2 in humans. In this regard, it will be very 

valuable to ascertain and compare immunological (i.e. 

T cell status, cytokine expression) and genetic (i.e. 

HLA haplotypes) profiles between symptomatic and 

asymptomatic COVID-19 patients, which have shown 

to influence responses to recent viral outbreaks [86]. 

This should allow predicting why high viral 

replication early in the course of infection would lead 

to the “cytokine storm” characteristic of severe 

COVID-19 cases [50]. 

 

Anxiety and stress 
The current COVID-19 outbreak has undoubtedly 

increased anxiety, fear, and stress in many  

people around the world. Social stress, anxiety,  

and depression are potential risk factors for 

hemorrhagic stroke, therefore adequate management 

of these conditions is a key aspect in primary 

prevention of cerebrovascular disease [87, 88].  

The locus coeruleus, a structure in the brainstem, 

consists mainly of adrenergic neurons that play a 

crucial role in the genesis of anxiety by releasing 

catecholamines that critically influence the stress 

response [89]. Indeed, research has shown that 

excessive adrenergic stimulation by catecholamines 

could lead to severe vasospasm and microcirculation 

disturbances, thus increasing the risk of hemorrhagic 

stroke [90]. 

 

Aging 
Although people of all ages can be infected, middle-

aged and elderly people are most severely affected by 

COVID-19, suggesting that aging is a prominent risk 

factor. Accordingly, it seems logical that the risk of 

hemorrhagic stroke in COVID-19 patients would 

increase significantly with age, although a recent 

article by Oxley et al reported COVID-19-related 

stroke episodes occurred in five young patients [91]. 

Based on available evidence, Camacho et al. 

concluded that age is a strong risk factor for 

hemorrhagic stroke, the deadliest stroke type [92]. 

Their study highlights several age-related processes 

and pathologies, including cerebral microembolism, 

white matter lesions, vascular basement membrane 

thickening, and increased BBB permeability, which 

determine endothelial damage, changes in vessel 

elasticity, and ensuing fluctuations in blood flow and 

pressure that cause loss of autoregulation and increase 

the risk of ICH [92]. 
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Research on both animal models and humans 

indicated that aging is closely associated with 

endothelial dysfunction and oxidative stress in 

cerebral arteries [93–97]. Moreover, studies in rodents 

suggested that these deleterious effects can be 

promoted by alterations in the RAS system in aged 

brains. Specifically, works by Pena-Silva et al. [77] 

and Labandeira-Garcia et al. [98] suggested that age-

related downregulation of ACE2 and AT2 expression 

may promote vascular dysfunction because the anti-

inflammatory/anti-oxidant effects of AngII/AT2 and 

Ang1-7/MasR signaling are overridden by pro-

inflammatory/pro-oxidant signaling through the 

AngII/AT1 axis. Although confirmatory data in 

humans is still needed, these studies provide strong 

support for the overall concept that brain RAS activity 

has a critical effect on cerebrovascular function 

during aging and may contribute to endothelial 

dysfunction, oxidative stress, and risk of hemorrhagic 

stroke. 

 

CONCLUSIONS 
 

COVID-19 emerged as a new human infectious 

disease caused by SARS-CoV-2, a novel coronavirus. 

A significant proportion of COVID-19 cases, especially 

older patients, manifest neurological, rather than 

respiratory, symptoms on admission and may be at 

higher risk of developing cerebral hemorrhage. The 

mechanisms by which COVID-19 may promote 

hemorrhagic stroke in the elderly are not yet clear, but 

may involve downregulation of ACE2 expression 

secondary to SARS-CoV-2 binding to neurovascular 

ACE2 receptors. This might increase Ang-II expression 

and decrease Ang (1-7) expression, leading to severe 

BP elevation. increased BBB permeability, and 

extensive alterations in endothelium and smooth 

muscle function in intracerebral arteries. The patients 

most gravelly affected by COVID-19 have underlying 

hypertension disease, which greatly increases the risk 

of hemorrhagic stroke. Since SBPV in the first 24 h of 

admission predicts cerebral hemorrhage outcome, 

special attention should be paid to management of  

BP in at-risk COVID-19 patients. Predisposing factors 

may be compounded in COVID-19 patients by the 

inability of their immune system to efficiently prevent 

or counteract the pernicious effects of the pro-

inflammatory cytokines released upon infection. In 

addition, anxiety and stress may lead to enhancement  

of adrenergic tone and trigger vasospasm and 

microcirculation disturbances, further contributing to 

cerebrovascular symptoms. In light of this, exploring 

the changes in inflammatory biomarkers occurring in 

COVID-19 patients with CNS symptoms suggestive of 

incipient stroke would aid diagnosis and treatment to 

avoid irreversible outcomes. 
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