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INTRODUCTION 
 

Intracerebral hemorrhage (ICH) has a high morbidity 

and mortality and accounts for 10%-15% of strokes 

[1]; it involves rupture of one or more blood vessels in 

the brain and blood leakage into the brain parenchyma 

[2, 3]. Brain injury caused by ICH occurs in two 

phases. The initial bleed disrupts the cellular 

architecture of the brain, and the hematoma increases 

intracranial pressure, impacting blood flow and 

leading to brain herniation [4]. The second phase of 

ICH injury lasts for hours or days and could be 

prevented [5, 6]. It involves a local inflammatory 

response [7] characterized by the release of  

clotting components (e.g., hemoglobin/iron) and peri-

hematomal tissue damage (e.g., breakdown of the 

blood-brain barrier [BBB]) [8]. Evidence indicates that 

the release of thrombin, hemoglobin, and iron  

 

contributes to secondary injury [9–12]. Effective 

treatment is needed for the secondary injury caused by 

hemorrhagic stroke. 

 

MicroRNAs (miRNAs) can induce posttranscriptional 

gene silencing, opening up a new strategy for treating 

human diseases [13]. Clinical and preclinical studies 

have confirmed that expression of a variety of miRNAs 

is altered in serum or cerebrospinal fluid after ICH [14–

18]; these miRNAs are involved in BBB protection [19], 

the anti-inflammatory response [20, 21], inhibition of 

microglial activation [22] and neuronal apoptosis [19], 

and revascularization [23, 24]. 

 

In this study, we performed miRNA sequencing 

(miRNA-Seq) and bioinformatics analysis to identify 

miRNAs that affect the response to ICH. Among the 15 

miRNAs with the most significant difference in 
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expression after ICH, we observed a significant decrease 

in miR-183-5p. One putative target of miR-183-5p is 

heme oxygenase-1 (HO-1), a molecule widely reported 

to exacerbate ICH brain injury [25, 26]. Here, we 

investigated the effects and mechanism of action of miR-

183-5p on injury and repair of brain tissue after ICH. 

 

RESULTS 
 

miRNA-183-5p expression in the brains of mice with 

ICH was significantly decreased 

 

To identify miRNAs affecting early injury after ICH in 

mice, miRNA-Seq of the brain tissues of mice in the 

sham group (n = 3) and the ICH group (n = 3) was 

performed. Based on our previous study and other 

reports [26, 27], the observation time point of 3 days 

after ICH was chosen because this is the time  

of maximum activation of microglia, the main 

inflammatory cells responsible for brain injury after 

ICH. Compared with the sham group, the expression of 

32 miRNAs was significantly increased in the ICH 

group, whereas that of 95 miRNAs was decreased. 

These differentially expressed miRNAs were found to 

affect multiple signaling pathways, including the  

Ras, MAPK, VEGF, and Toll-like receptor signaling 

pathways. miRNAs with a log2 fold change ≥ 2 and P < 

0.05 were considered to have statistically significant 

differential expression. miRNAs with log2 fold change 

≥ 2 were selected because significant differences in the 

expression of these miRNAs were found between the 

ICH group and the sham group and thus they were more 

likely to be involved in ICH injury. Thereafter, we 

ranked the differentially expressed miRNAs according 

to fold change in expression. The top 15 are displayed 

in Figure 1A. Thereafter, we performed quantitative 

 

 
 

Figure 1. The microRNA (miRNA) expression profiles of mouse brain tissue changed significantly after intracerebral 
hemorrhage (ICH). (A) Heat map of 15 miRNAs with the most significant difference in expression after ICH. n = 3/group. (B) The expression 

levels of the top 15 miRNAs with the most significant difference in expression identified with sequencing were verified by qPCR. n = 8/group. 
Values are presented as the mean ± standard deviation. *P < 0.05 vs. the sham group. Con, control. 
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polymerase chain reaction (qPCR) to verify these 

miRNAs and found that their changes in expression 

were consistent with the miRNA-Seq results (Figure 

1B). Using miRanda software (omicX) to predict the 

targets of these 15 miRNAs, we found that one of the 

predicted targets of miRNA-183-5p was HO-1, which 

was confirmed in our previous study to be involved in 

early inflammation and oxidative stress injury after 

ICH. In addition, our analysis of the temporal 

expression patterns of miRNA-183-5p and HO-1 after 

ICH revealed a negative correlation (Supplementary 

Figure 1), suggesting that miRNA-183-5p regulates 

HO-1 expression. 

 

miR-183-5p reduced neurologic deficits, BBB 

permeability, and lesion volume after ICH 

 

Lesion volumes were measured morphometrically 

(image analysis) 3 days after ICH. As shown in Figure 

2A, lesions were smaller in the agomir group than in the 

control group (P < 0.05), and antagomir-treated mice 

exhibited larger lesions, although the difference in 

lesion volume was not significant (P > 0.05). BBB 

permeability was evaluated by Evans blue (EB) 

extravasation and found to be significantly decreased  

(P < 0.05) in the agomir group, but unchanged in the 

antagomir group, compared to the control group  

(Figure 2B). In addition, brain edema in the ipsilateral 

striatum was significantly decreased by agomir 

pretreatment (P < 0.05) but not by antagomir 

pretreatment (Figure 2C). Our results using miRNA 

agomir and antagomir revealed that miR-183-5p 

upregulation decreased neurologic deficits on day 3 (P 

< 0.05) (Figure 2D); in contrast, miR-183-5p 

downregulation increased neurologic deficits, although 

not significantly (P > 0.05) (Figure 2D). 

 

miR-183-5p alleviated early inflammation after ICH 

 

To determine the effect of miR-183-5p on microglia 

activation and leukocyte infiltration after ICH, we 

performed an immunofluorescence experiment. We 

found that the number of activated microglia in the 

perihematomal area was lower in the agomir group  

(P < 0.05), but not the antagomir group (P > 0.05), 

when compared to the control group (Figure 3A and 

3B). In addition, the number of MPO-positive neutro-

phils in the hemorrhagic striatum was significantly 

lower in the agomir group compared with the control 

group (Figure 3A and 3B). 

 

The effect of miR-183-5p on inflammation was also 

studied in vivo. ELISA showed that the inflammatory 

factors IL-1β, IL-6, and TNF-α were decreased 

significantly in the agomir group (P < 0.05) and 

slightly, but not significantly, decreased in the 

antagomir group (P > 0.05) (Figure 3C). BV2 microglia 

cocultured with hemin and miRNA agomir or antagomir 

were used to study the response of inflammatory factors 

to miRNA regulation in vitro. Culture supernatants from 

BV2 microglia treated with agomir or antagomir were 

collected, and IL-1β, IL-6, and TNF-α levels were 

determined to be similar to the results obtained in vivo 

(Supplementary Figure 2). 

 

miR-183-5p alleviated oxidative damage after ICH 

 

We next determined whether miRNA-183-5p is 

involved in the regulation of reactive oxygen species 

(ROS) and the production of divalent iron. The 

fluorescent indicator hydroethidine was used to examine 

ROS production in situ (Figure 4A and Supplementary 

Figure 3A). In vivo, the fluorescence intensity of 

hydroethidine was significantly lower in the agomir 

group (P < 0.05) but nearly unchanged in the antagomir 

group (P > 0.05). The results of Lillie staining to 

determine ferrous deposition also showed that there 

were fewer positive cells in the agomir group (P < 0.05) 

(Figure 4A) but that there was no difference in positive 

cells between the ICH and antagomir groups (P > 0.05). 

Interestingly, the amount of ROS produced by 

individual BV2 microglia in vitro did not change 

significantly, but the number of viable microglia was 

significantly reduced (Supplementary Figure 3A). This 

finding was consistent with the trends observed in vivo, 

as shown by the miRNA-183-5p–mediated reduction in 

ROS production (Supplementary Figure 3B). The lipid 

peroxidation product, 4-HNE, was assessed by ELISA. 

The in vivo (Figure 4B) and in vitro (Supplementary 

Figure 3C) results showed that miRNA agomir 

treatment decreased the 4-HNE protein level (P < 0.05), 

whereas antagomir treatment did not notably change the 

expression of 4-HNE (P > 0.05). 

 

HO-1 is a direct downstream target of miR-183-5p 

 

In view of the relationship between miRNA-183-5p and 

the time course of HO-1 expression (Supplementary 

Figure 1) and because HO-1 was predicted to be a target 

of miRNA-183-5p, we speculated that the regulatory 

function of miRNA-183-5p in early injury after ICH is 

mediated by downstream HO-1. A Dual-Luciferase 

Reporter Assay was performed to verify the relationship 

between miR-183-5p and HO-1 mRNA. Fragments of 

the HO-1 mRNA 3’-UTR containing either the binding 

site for miR-183-5p or a MUT binding site were 

designed (Figure 5A), and HEK293 cells were cultured 

for this purpose. Cotransfection of the wild-type (WT) 

3’-UTR with miR-183-5p mimic significantly reduced 

the relative luciferase activity (P < 0.05), but 

cotransfection of the MUT 3’-UTR with miR-183-5p 

mimic did not (P > 0.05) (Figure 5A). Agomir and 
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antagomir were administered in vivo via intra-

cerebroventricular injection, immediately before 

collagenase injection. The expression of HO-1 in the 

agomir group decreased significantly (P < 0.05), but 

there was no significant difference in its expression 

between the antagomir group and the ICH group  

(P > 0.05, Figure 5B). In vitro, after incubation with 20 

mM hemin for 1 hour, BV2 microglia were transfected 

with agomir or antagomir for 24 hours. HO-1 

expression was decreased in the agomir group (P < 

0.05) and was not significantly increased in the 

antagomir group (P > 0.05, Supplementary Figure 4A). 

To further confirm whether miRNA-183-5p is involved 

in neuroinflammation and oxidative stress through HO-

1, inflammatory factors and 4-HNE were measured in 

the miR-183-5p up- and downregulation groups after 

HO-1 inhibition by ZnPP. The in vitro and in vivo 

results indicated no difference in the expression of IL-

1β, IL-6, TNF-α, or 4-HNE among the ICH, agomir, 

and antagomir groups (P > 0.05) (Figure 5C and 5D, 

Supplementary Figure 4B). This suggests that the 

protective effect of miRNA-183-5p on early injury in 

patients with ICH is achieved by inhibiting HO-1 

expression. 

 

 
 

Figure 2. Administration of miR-183-5p reduced neurologic deficits, blood-brain barrier permeability, and brain injury 
volume after intracerebral hemorrhaging (ICH). (A) Left: representative images of a series of brain slices from different groups at 3 days 

after ICH. Right: quantitative analysis of hematoma volume. n = 8/group. (B) Left: representative images of brain slices from different groups 
at 3 days after ICH stained with Evans blue (EB). Right: quantitative analysis of EB extravasation. n = 8/group. (C) Brain water content in the 
different groups at 3 days after ICH. n = 8/group. Ipsi-Stri, ipsilateral striatum; Con-Stri, contralateral striatum; Cerebel, cerebellum. (D) 
Neurologic deficit scores of mice at 3 days after ICH. n = 24/group. Values are presented as the mean ± standard deviation. *P < 0.05 vs. the 
ICH group. 
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miRNA-183-5p and HO-1 affect microglial survival 

after ICH 

 

Our previous study and other reports have demonstrated 

that HO-1 is expressed primarily in the microglia after 

ICH in mice. In addition, downregulation of HO-1 

reduced the number of activated microglia [25, 26, 28]. 

Fluorescence microscopy analysis of HO-1 expression in 

this study indicated that, as previously reported, HO-1 

was expressed mostly in the microglia after ICH and that 

HO-1 expression was significantly lower in the miRNA 

agomir group (P < 0.05, Figure 6A). Although HO-1 

expression was slightly higher in the miRNA antagomir 

group (Figure 6A), this difference was not statistically 

significant (P > 0.05). The in vitro expression of HO-1 

revealed that the regulatory effect of miRNA-183-5p was 

similar to that of HO-1 activator or inhibitor (Figure 6B). 

 

In addition, exogenous miRNA-183-5p supplementation 

reduced the number of Iba-1–positive microglia. The 

downregulation of HO-1 by miRNA-183-5p had a 

damaging effect on microglia in the presence of hemin. 

The in vitro CCK-8 assay showed that the viability of 

microglia in the hemin+agomir group was significantly 

decreased, whereas the viability in the hemin+antagomir 

group was essentially the same as that in the hemin-

alone group (Supplementary Figure 5). In vitro 

experiments revealed that increasing the expression of 

HO-1 protected microglia in the presence of hemin. 

Thus, miR-183-5p may decrease microglia survival and 

inhibit microglia from promoting inflammation and 

oxidative damage. 

 

MiR-18 3-5p regulates HO-1 independent of Nrf2 

 

Because Nrf2 is recognized as the main regulator of 

HO-1 [29, 30], we determined the relationship between 

miR-183-5p, HO-1, and Nrf2 after ICH. After ICH, 

Nrf2-/- mice exhibited low HO-1 expression, and 

treatment with tBHQ, an Nrf2 activator, increased HO-1 

expression in WT mice with ICH (Supplementary 

Figure 6A). When HO-1 expression was regulated by 

 

 
 

Figure 3. Treatment with miR-183-5p alleviated early inflammation after intracerebral hemorrhage (ICH). (A) Representative 

immunofluorescence images of Iba-1–positive microglia and myeloperoxidase (MPO)-positive neutrophils in different groups at 3 days after 
ICH. n = 8/group. (B) Quantitative analysis of Iba-1– or MPO-positive cells in (A). Scale bars = 50 μm. (C) Quantitative analysis of cytokine 
expression in the brains of mice from different groups at 3 days after ICH. n = 8/group. Values are presented as the mean ± standard 
deviation. *P < 0.05 vs. the ICH group. 
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CoPP or ZnPP, p-Nrf2 was increased or decreased, 

respectively (Supplementary Figure 6B). In miR-183-

5p agomir–treated Nrf2-/- mice, HO-1 expression was 

significantly inhibited (P < 0.05), but in miR-183-5p 

antagomir–treated Nrf2-/- mice, HO-1 expression was 

slightly, although not significantly, increased (P > 

0.05) (Supplementary Figure 6C). Among the Nrf2-/- 

mice, miR-183-5p expression was higher in the group 

pretreated with the HO-1 inhibitor ZnPP (P < 0.05) 

and slightly reduced in the group pretreated with the 

HO-1 activator CoPP (P > 0.05, Supplementary 

Figure 6D). 

 

 
 

Figure 4. Treatment with miR-183-5p alleviated oxidative damage after intracerebral hemorrhaging (ICH). (A) Representative 

immunofluorescence images showing hydroethidine-positive reactive oxygen species (ROS) (n = 8/group) and ferrous deposition stained 
with Lillie dye (n = 8/group) in different groups at 3 days after ICH. Arrows indicate ferrous deposition in cells. Quantitative analysis of ROS 
fluorescence intensity and ferrous deposition in cells corresponding to the above are shown below. Scale bars = 50 μm. (B) Quantitative 
analysis of 4-HNE in the brains of mice from different groups at 3 days after ICH. n = 8/group. Values are presented as the mean ± standard 
deviation. *P < 0.05 vs. the ICH group. 
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Next, we sought to verify whether miRNA-183-5p could 

directly affect the function of Nrf2 in the ICH model. 

Previous studies have shown that phosphorylation of the 

Neh2 domain of Nrf2 at Ser-40 promotes the 

dissociation of Nrf2 from Keap1 and its translocation 

into the nucleus, where it induces the activation of 

antioxidant response elements (AREs) [31, 32]. tBHQ 

has been shown to promote the phosphorylation of Nrf2 

[33]. p-Nrf2 expression, measured by western blotting, 

indicated that miR-183-5p upregulation suppressed the 

phosphorylation of Nrf2 (P < 0.05), whereas this 

regulatory effect of miR-183-5p was absent in the 

absence of HO-1 (P > 0.05, Figure 7A and 7B). 

Furthermore, we determined whether activation of Nrf2 

directly affected the expression of miRNA-183-5p. The 

reverse transcriptase (RT) qPCR results confirmed that 

activation or knockout of Nrf2 suppressed or promoted 

miR-183-5p expression (P < 0.05), respectively, but that 

this regulatory effect of Nrf2 was also absent in the 

absence of HO-1 (P > 0.05, Figure 7C). 

 

 
 

Figure 5. miR-183-5p alleviated early inflammation and oxidative damage by directly targeting heme oxygenase-1 (HO-1). (A) 

Above: schematic showing the potential miR-183-5p binding site in the HO-1 3’-untranslated region (3’-UTR). A mutant (MUT) HO-1 3’-UTR 
was introduced by replacing the wild type (WT) binding sequence with a mutant sequence. Below: inhibition of relative luciferase activity of 
HO-1 3’-UTR reporter molecules in human embryonic kidney 293 cells mediated by miR-183-5p. miR-183-5p MM, miR-183-5p mimic; NC, 
nontarget control. (B) Above: western blotting revealed that miRNA-183-5p downregulated HO-1 expression. Below: quantitative analysis of 
HO-1 protein expression in different groups. n = 8/group. (C) Quantitative analysis of cytokine expression in the brains of mice from different 
groups pretreated with the HO-1 inhibitor zinc protoporphyrin IX (ZnPP) at 3 days after ICH. n = 8/group. (D) Quantitative analysis of 4-HNE 
expression in the brains of mice from different groups pretreated with the HO-1 inhibitor ZnPP at 3 days after ICH. n = 8/group. Values are 
presented as the mean ± standard deviation. *P < 0.05 vs. the ICH group. 
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DISCUSSION 
 

In this study, we observed changes in the expression of 

many miRNAs in the brain tissue of mice after ICH. 

Among these miRNAs, miR-183-5p was demonstrated 

to have a protective effect on ICH mice. After injecting 

agomir-183-5p into the lateral ventricles of ICH mice, 

we observed a decrease in iron accumulation, brain 

ROS production, BBB injury, the inflammatory 

response, neurologic impairment, and microglial 

activation. Although previous studies have shown that 

the HO-1 activator CoPP can significantly increase the 

expression of HO-1, the antagomir of miR-183-5p did 

not upregulate the expression of HO-1 as expected. We 

have found that the physiologic level of miR-183-5p is 

not high in brain tissue. Agomir is a chemically 

modified miRNA; in vivo injection of agomir can 

greatly increase the expression of miR-183-5p and thus 

promote its role in inhibiting HO-1. Antagomir can 

combine with miR-183-5p after ICH, resulting in the 

loss of its ability to bind HO-1 mRNA. However, due to 

the further decrease in miR-183-5p expression after 

ICH, the degree of miR-183-5p inhibition by antagomir 

is not enough to significantly restore the effect of HO-1. 

 

 
 

Figure 6. miRNA-183-5p affected microglial survival by targeting heme oxygenase-1 (HO-1) after intracerebral hemorrhage 
(ICH). (A) Left: representative immunofluorescence images of HO-1 in Iba-1–positive microglia at 3 days after ICH. Right: percentage of 

both Iba-1– and HO-1–positive cells in Iba-1–positive microglia. Scale bars = 50 μm, n = 8/group. *P < 0.05 vs. the ICH group. (B) Above: 
representative immunofluorescence images of HO-1 in BV2 microglia from different groups at 24 hours after hemin treatment. Below: 
percentage of HO-1–positive BV2 microglia. Scale bars = 50 μm, n = 3/group. *P < 0.05 vs. the hemin group. ZnPP, zinc protoporphyrin IX; 
CoPP, cobalt protoporphyrin IX. 
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Free heme is harmful to cells, and the metabolization of 

heme into ferrous iron (Fe2+) prevents it from producing 

an excess of ROS [34]. In this regard, HO-1, as a 

metabolic enzyme of heme, has a protective effect on 

brain parenchyma in the event of a hemorrhage. 

However, we observed that inflammation and oxidative 

stress increased when HO-1 increased in mouse brain 

tissue. It is worth noting that during ICH, the types of 

cells enriched by HO-1 are primarily microglia. This 

suggests that the role of HO-1 in promoting injury during 

ICH may be related to this uneven cell distribution. 

Microglia, the intrinsic immune cells in the central 

nervous system, have been reported to respond rapidly to 

injury after ICH [6, 27, 35], contributing to inflammation 

and oxidative stress [1, 28, 36, 37]. It is possible that high 

HO-1 expression protects microglia in the ICH environ-

ment [38], further promoting inflammation and oxidative 

damage. In our in vitro experiment, we used CCK-8 to 

determine the survival rate of BV2 microglia treated with 

hemin. We found that, compared with the control group, 

HO-1 expression and the survival rate of BV2 cells 

treated with miR-183-5p agomir decreased and that the 

level of inflammatory factors secreted into the cell 

suspension decreased in conjunction with the number of 

cells. Thus, although HO-1 has a protective effect on 

microglia, the increase in the number of surviving 

microglia compared to other cells promotes inflammation 

and oxidative damage in the brain after ICH. 

 

 
 

Figure 7. miR-183-5p regulated heme oxygenase-1 (HO-1) independent of Nrf2. (A) Western blotting revealed that miRNA-183-5p 

is an HO-1–dependent inhibitor of Nrf2 phosphorylation. n = 8/group. (B) Quantitative analysis of the relative expression of p-Nrf2 protein 
in (A). (C) Quantitative analysis of the HO-1–dependent inhibitory effect of Nrf2 on miR-183-5p by RT-qPCR. n = 8/group. Values are 
presented as the mean ± standard deviation. *P < 0.05 vs. the intracerebral hemorrhaging (ICH) group. ZnPP, zinc protoporphyrin IX; tBHQ, 
tert-butylhydroquinone. 
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Iron also plays an important role in oxidative stress after 

ICH [39, 40]. Many studies have confirmed that 

bivalent iron promotes production of ROS in cerebral 

hemorrhage models; in addition, removal of divalent 

iron reduces brain injury [40–42]. Normally, HO-1 

promotes decomposition of heme, releasing Fe2+, which 

can be degraded. However, in the acute phase of ICH, 

increased heme metabolism produces Fe2+ in amounts 

that exceed the metabolic capacity of the brain. 

Subsequently, the release of Fe2+ triggers the Fenton 

reaction [40], prompting microglia to produce large 

amounts of ROS. In our current study, the levels of Fe2+ 

and ROS in the brain tissue of the ICH mice receiving 

agomir-183-5p were lower than in the brain tissue of the 

control group [26]. The products of heme degradation 

also produce carbon monoxide (CO) and biliverdin, 

both of which are protective against oxidative damage 

from an ROS attack [43, 44]. On the one hand, 

microglia degrade heme to avoid continuous oxidation; 

on the other hand, CO and biliverdin protect microglia 

from ROS. Heme, Fe2+, and inflammation promote 

early injury of brain tissue after ICH. Overactive 

microglia reduce the level of heme but rapidly increase 

Fe2+ and inflammation. In a previous study [26], we 

found that although HO-1 promotes brain injury in the 

early stages of ICH, it promotes the recovery of 

neurologic function in the later stages. This is related to 

the role of HO-1 in promoting the metabolism of heme 

and reducing continuous oxidation. 

 

The putative targets of miR-183-5p were predicted using 

miRanda software in this study (Supplementary Table 

1). We also determined the differentially expressed 

mRNAs (Supplementary Table 1) in the brain of mice 3 

days after ICH by mRNA-Seq. These mRNAs 

(Supplementary Table 1), which are present not only in 

the predictive targets of miRNA-183-5p, but also in the 

differentially expressed mRNAs of brain tissues after 

ICH, may be the ones that competitively bind miR-183-

5p and participate in the process of ICH. For example, it 

has been reported that neurons are protected by restoring 

HK2-mediated glucose uptake during ischemic brain 

injury [45]. Melatonin protects brain tissue by inhibiting 

Serpina3n-mediated neuroinflammation [46]. In 

addition, the brain tissue damage caused by IL-6 

depends on the trans-signaling mechanism mediated by 

Serpina3n [47]. Lpxn [48], Sucnr1 [49], and Csf2rb2 

[50] seem to be related to the migration of macrophages. 

Ptbp3 [51] can promote the growth and metastasis of 

colorectal cancer through the activation of HIF-1α, and 

HIF-1α is involved in the ICH process [52]. After ICH, 

these mRNAs may compete with HO-1 mRNA to 

combine miR-183-5p and may affect the regulation of 

ICH processes by miR-183-5p. To confirm the effect of 

miR-183-5p on ICH through HO-1, ZnPP was 

administered to downregulate HO-1 expression. As 

expected, when HO-1 was inhibited, there was no 

difference in the expression of inflammatory factors or 

4-HNE between the agomir-treated, antagomir-treated, 

and ZnPP-treated ICH groups or in BV2 cells in vitro. 

These results suggest that miR-183-5p exerts its anti-

inflammatory and antioxidant effects by inhibiting HO-

1. We also observed that miR-183-5p and miR-6958-3p 

were the only miRNAs that targeted HO-1 after ICH. 

However, the difference in miR-6958-3p expression 

before and after ICH did not meet the log2 fold change ≥ 

2 criterion, indicating that its participation in the ICH 

process is not as significant as that of miR-183-5p. 

 

Nrf2 is a transcription factor that promotes upregulation 

of ARE-mediated antioxidant gene expression [53, 54]. 

Nrf2 is activated by cellular oxidative stress and 

electrophiles, and it upregulates many genes that 

decrease oxidative stress (e.g., superoxide dismutase and 

HO-1) or induce phase II metabolism (in which 

exogenous electrophiles, e.g., xenobiotics, are 

catabolized) [55]. In the current study, we found that 

HO-1 expression was greatly decreased in Nrf2-/- ICH 

mice, whereas the Nrf2 activator, tBHQ, increased HO-1 

expression, consistent with a report by Zhao et al. [56]. 

Although the experimental results from the ICH model 

of Nrf2 knockout mice confirmed the brain-protective 

effect of Nrf2 [57], HO-1 seems to weaken this effect as 

a by-product. Therefore, we wanted to determine 

whether exogenous miR-183-5p could reduce HO-1 

expression without affecting the activation of Nrf2 or 

whether there is a feedback regulation mechanism 

between miR-183-5p and Nrf2. This information is 

important to determine whether miR-183-5p can be 

used to inhibit HO-1 and enhance the brain-protective 

effect of Nrf2 in the treatment of secondary injury after 

ICH. 

 

We analyzed Nrf2 phosphorylation after up- and 

downregulation of miR-183-5p expression and found a 

negative correlation between p-Nrf2 and miR-183-5p 

expression. When HO-1 was knocked down, the 

regulation of miRNA-183-5p did not change the 

expression level of p-Nrf2. When phosphorylation of 

Nrf2 was inhibited, or promoted in Nrf2-/- and tBHQ-

treated mice, miRNA-183-5p was upregulated or 

downregulated, respectively; however, this regulatory 

relationship disappeared when HO-1 was knocked down. 

Therefore, the regulation of Nrf2 and miR-183-5p is 

related via HO-1. 

 

We also found that exogenous miR-183-5p agomir is 

protective against ICH injury, and this effect is HO-1 

dependent, similar to the effect of the HO-1 inhibitor 

ZnPP (Supplementary Figure 7) in our previous  

study [26]. The secondary injury of ICH is mainly 

manifested by clot-derived cytotoxic factors and 
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neuroinflammation [58]. Hemoglobin from the clot 

induces NO production [59]. Hemoglobin also increases 

the permeability of the BBB by activating protease-

activated receptor-1 (PAR-1) [60]. BBB destruction is 

the main cause of increased hematoma and brain edema 

after ICH [61]. Counterintuitively, HO-1, an enzyme 

that promotes hemoglobin metabolism, aggravates brain 

damage in the early stages of ICH. This may be due to 

the fact that hemoglobin and heme also directly activate 

microglia and that the IL-1β and TNF-α secreted by 

microglia increase the permeability of the BBB and the 

volume of hematoma [62]. In addition, activated 

microglia can also secrete chemokine to recruit 

neutrophils and monocytes in the circulation, further 

aggravating neuroinflammation [63–65]. One of the by-

products of heme metabolism catalyzed by HO-1 is the 

increase of divalent iron, which increases the production 

of ROS and promotes oxidative damage. 

 

To sum up, overexpression of miR-183-5p protects brain 

tissue and improves neurologic function after ICH by 

inhibiting HO-1 expression. 

 

In conclusion, we have illustrated that miRNA-183-5p 

expression is significantly decreased after ICH in mice. 

Exogenous agomir-183-5p reduces oxidative stress and 

neuroinflammation by inhibiting HO-1 mRNA expres-

sion. In addition, we also confirmed that miR-183-5p is 

associated with Nrf2, but only indirectly, through HO-1. 

The miR-183-5p/HO-1 axis may be a novel therapeutic 

target for reduction of secondary neuroinflammation 

and oxidative damage in hemorrhagic stroke. 

 

MATERIALS AND METHODS 
 

Animals and experimental design 

 

All animal experiments were approved by the 

Institutional Animal Care and Use Committee of Harbin 

Medical University, Harbin, China. Male C57BL/6 mice 

weighing 20-25 g (8 weeks old) were purchased from 

the Laboratory Animal Center of Harbin Medical 

University. Male Nrf2-/- mice weighing 20-25 g (8 weeks 

old; CCME Dock No. CCME868348, Johns Hopkins 

University School of Medicine) were generously 

donated by Prof. Wang. The experimental design is 

shown in Figure 8. 

 

Agomir-183-5p (miR40000212-4-5) and antagomir-183-

5p (miR30000212-4-5) were synthesized by RiboBio 

(Guangzhou, China). The HO-1 inhibitor, zinc 

protoporphyrin IX (ZnPP, 282820), and inducer, cobalt 

protoporphyrin IX (CoPP, C1900), were purchased from 

Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO, USA). 

Nrf2 activator tBHQ (8.41424) was also purchased from 

Sigma-Aldrich. 

ICH models 
 

Collagenase was used to induce ICH, as described 

previously [41, 66, 67]. Briefly, mice were anesthetized 

with ketamine (100 mg/kg) and xylazine (10 mg/kg, 

intraperitoneal [IP] injection) and placed in a prone 

position on a stereotaxic apparatus (Zhongshi 

Dichuang, Beijing, China). An incision was made in 

the middle of the scalp, and a burr hole was drilled with 

a dental drill. Thereafter, a Hamilton syringe (Gaoge, 

Shanghai, China) was inserted stereotaxically through 

the hole into the right striatum (coordinates [68]: 0.8 

mm anterior and 2.2 mm lateral of the bregma, 3.0 mm 

deep). ICH was induced by administering 0.4 μL of 

collagenase VII-S (0.075 U in 500 nL of saline, Sigma-

Aldrich) over a 5-minute period. To avoid backflow, 

the microsyringe was kept in situ for a further 10 

minutes before being slowly withdrawn. Following 

collagenase infusion, the craniotomies were sealed  

with bone wax, and the wounds were sutured. Sham 

operations were performed via stereotaxic injection  

of an equal volume (0.4 μL) of saline instead of 

collagenase. The rectal temperature of the animals was 

maintained at 37°C throughout the experimental and 

recovery periods. 
 

Intracerebroventricular and IP injection 
 

Agomir-183-5p or antagomir-183-5p (0.5 nmol 

dissolved in 0.4 μL of phosphate-buffered saline  

[PBS]) was administered before ICH via intra-

cerebroventricular injection. The injection was 

performed according to an earlier protocol [69]. The 

mice were anesthetized and placed in a prone position, 

and a stereotactic head frame was attached. A scalp 

incision was made along the midline, and a hole was 

drilled on the right side of the skull (0.5 mm posterior 

and 1.0 mm lateral to the bregma). Agomir-183-5p or 

antagomir-183-5p (0.4 μL) was microinjected into the 

left lateral ventricle through a Hamilton syringe (2.5 

mm deep). The needle was kept in situ for a further 5 

minutes after injection to prevent possible leakage and 

then slowly withdrawn over 4 minutes. After the needle 

was removed, the craniotomies were closed with bone 

wax. 
 

CoPP and ZnPP were dissolved in 0.2 M NaOH, the 

pH was adjusted to 7.4, and the solutions were diluted 

to 1 mg/mL in normal saline. CoPP (5 mg/kg) was 

intraperitoneally injected 24 hours before collagenase 

injection and thereafter injected once a day for 4 days. 

ZnPP (5 mg/kg) was intraperitoneally injected 2 hours 

after collagenase injection and thereafter injected once 

a day for 3 days. Needles were inserted into mice  

in the sham operation group, without injection.  

tBHQ was dissolved in a solution of 10% dimethyl 
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sulfoxide (DMSO) and 90% corn oil (50 mg/kg) and 

was intraperitoneally injected at 8-hour intervals, 

beginning 1 hour after ICH. 

 

Sequencing analysis of miRNA expression 

 

Low-molecular-weight RNA was isolated from the 

brains of mice in the ICH 3-day and sham groups using 

the mirVana RNA Isolation Kit (Thermo Fisher 

Scientific Inc., Waltham, MA, USA). MiRNA 

expression profiles were determined with the Illumina 

HiSeq 4000 platform (Illumina, Inc., San Diego, CA, 

USA) according to the manufacturer’s instructions. The 

sequencing process was supported by Annoroad Gene 

Technology Co., Ltd. (Beijing, China). 

 

Tissue processing 

 

For immunofluorescence analyses, the mice were 

subjected to cardiac perfusion with cold saline followed 

by 4% paraformaldehyde. The brains were removed and 

fixed in 4% paraformaldehyde at 4°C for 24 hours. 

 

 
 

Figure 8. The experimental design. Sham group, sham operation group; ICH group, collagenase-induced intracerebral hemorrhage group; 

miRNA-seq, miRNA sequencing; miR-183-5p, microRNA-183-5p; HO-1, heme oxygenase-1; ICH 1 d, 3 d, 7 d, 14 d, 28 d groups, 1 day, 3 days, 7 
days, 14 days, 28 days after collagenase-induced intracerebral hemorrhage groups; ZnPP, HO-1 inhibitor zinc protoporphyrin IX; Nrf2-/-, 
nuclear factor erythroid 2-related factor knockout; CoPP, HO-1 inducer cobalt protoporphyrin IX; tBHQ, Nrf2 activator tert-
butylhydroquinone. 
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After fixation, the brains were embedded in optimal 

cutting temperature compound (OCT, Sakura Tissue-

Tek, Sakura Finetek USA, Inc., Torrance, CA, USA) 

and coronally sliced into 15-μm sections. For RT-qPCR 

and western blot analyses, the mice were perfused with 

cold saline. The brains were then dissected on ice, and 

the tissues were flash-frozen in liquid nitrogen and 

stored at –80°C until further use. 

 

Ferrous deposition analysis 

 

Lillie ferrous staining (G3320, Solarbio Technology Co., 

Ltd., Beijing, China) was performed to evaluate ferrous 

deposition. The tissue was fixed in 10% neutral buffered 

formalin, routinely dehydrated and embedded. The 4-μm-

thick sections were routinely dewaxed and rehydrated. 

The slices were washed with distilled water for 1 minute 

and then soaked in Lillie stain for 30 minutes before being 

fully flushed for 2-5 minutes with distilled water. To stain 

the nuclei, slides were stained with nuclear solid red 

staining solution (Solarbio) for 5-10 minutes and rinsed 

with distilled water for 5 seconds. This was followed by 

conventional dehydration, clearing, and neutral gum 

mounting. For each mouse, 12 locations were selected  

(4 fields per section and 3 sections per mouse) to obtain 

the average number of Lillie-positive cells per mm2. 

 

Lesion volume analysis 

 

To estimate hematoma volumes, the mouse brains were 

sliced coronally through the needle entry site to obtain 

serial slices (1-mm thickness) anterior and posterior to 

the needle entry plane. Photographs of the serial slices 

were taken, and the lesion areas were analyzed using 

ImageJ software. Lesion volume (mm3) was calculated 

by multiplying the lesion area in each section by the 

thickness of the section and adding up this value for all 

sections containing the lesion [70]. 

 

Brain water content 

 

Brain edema was determined on day 3 by the wet-dry 

weight ratio method, as described previously [71]. This 

value was calculated as follows: (wet weight – dry 

weight)/wet weight of the brain tissue × 100%. 

 

BBB permeability 

 

BBB permeability was determined 3 days after ICH by 

EB extravasation [8]. Briefly, EB (2%, 2 mL/kg, Sigma-

Aldrich) was injected via the caudal vein 0.5 hours 

before perfusion. EB leakage was used to assess BBB 

permeability. The mouse brains were sliced coronally 

through the needle entry site to obtain serial slices (1-

mm thickness) anterior and posterior to the needle entry 

plane. Photographs of the serial slices were taken, and 

the EB extravasation areas were analyzed using ImageJ 

software. The total EB staining volume (mm3) was 

calculated by multiplying the EB staining area in each 

section by the thickness of the section and adding up 

this value for all sections with EB staining. 

 

Neurologic deficits 

 

Six neurologic tests were carried out by an investigator 

blinded to the treatment groups. These tests assessed 

body symmetry, gait, climbing behavior, circling 

behavior, front limb symmetry, and compulsory 

circling. Performance was scored from 0 to 4 for each 

test, and the maximum deficit score was 24 [72]. 

 

Cell culture and treatment 

 

The BV2 murine microglial cell line was obtained from 

Peking Union Medical College (Beijing, China). The 

cells were cultured in Dulbecco’s Modified Eagle 

Medium/Nutrient Mixture F-12 (DMEM/F-12) 

supplemented with 10% fetal bovine serum (Thermo 

Fisher Scientific), 2 mM glutamine, 100 U/mL 

penicillin, and 100 mg/mL streptomycin, and incubated 

at 37°C in a 5% CO2 humidified atmosphere. The cells 

were exposed to hemin (10 μM), agomir-183-5p (50 

nM), antagomir-183-5p (50 nM), ZnPP (20 mM), or 

CoPP (20 mM) for 24 hours. The grouping was similar 

to that of animal experiments. 

 

Immunofluorescence 

 

Frozen sections (15-μm thick) or cells that had been 

fixed with 4% paraformaldehyde were blocked with 

10% goat serum at 22°C for 30 minutes and incubated 

overnight with primary antibodies at 4°C. Goat anti-

mouse or anti-rabbit antibodies (1:200) from Jackson 

ImmunoResearch Laboratories, Inc. (West Grove, PA, 

USA) were incubated with the sections or cells for 1 

hour at 22°C the following day. The following primary 

antibodies were used: mouse monoclonal anti-HO-1 

(1:100, ADI-OSA-110, Enzo Life Sciences, Inc., 

Farmingdale, NY, USA), rabbit anti-Iba-1 (1:200, 

ab178846, Abcam Plc., Cambridge, UK), and rabbit 

anti-myeloperoxidase (MPO, 1:100, ab9535, Abcam). 

For each mouse, 12 locations were selected (4 fields per 

section and 3 sections per mouse) to obtain the average 

number of positive cells. An investigator blinded to the 

experimental groups analyzed the sections using ImageJ 

software. 

 

qPCR 

 

Total RNA was isolated from mouse striatum and BV2 

cells sing TRIzol reagent (Beyotime, Shanghai, China) 

according to a published protocol [73]. A PrimeScript 
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RT Reagent Kit with gDNA Eraser (Beyotime) and a 

Mir-X miRNA First-Strand Synthesis Kit including 

primers for U6 (Beyotime) were applied to synthesize 

cDNA from mRNA and miRNA, respectively. RT-

qPCR was performed using an iQ5 real-time PCR 

system (Bio-Rad Laboratories, Inc., Hercules, CA, 

USA) with SYBR Premix Ex Taq (Beyotime). Every 

sample was run in triplicate, and the results were 

analyzed using the 2-ΔΔCT method. U6 and β-actin were 

used to normalize the miRNA and mRNA levels, 

respectively. The following primers were synthesized 

by Tiangen Biotech Co., Ltd. (Beijing, China): HO-1 

primers: 5’-CGG GCC AGC AAC AAA GTG-3’ 

(forward), 5’-AGT GTA AGG ACC CAT CGG AGA 

A-3’ (reverse); β-actin primers: 5’-TCC TCC CTG 

GAG AAG AGC TA-3’ (forward), 5’-TCA GGA GGA 

GCA ATG ATC TTG-3’ (reverse). The first cDNA 

strands were synthesized from miRNAs using poly(A) 

tailing. 

 

Western blot analysis 

 

Briefly, brain tissue or BV2 microglia were 

homogenized in radioimmunoprecipitation assay buffer 

(P1003B, Beyotime) containing a protease inhibitor 

cocktail (P8340, Sigma-Aldrich) and then sonicated on 

ice. After centrifugation, the supernatant was collected 

for a western blot assay. Aliquots of each sample, 

containing 20 μg of protein, were separated by SDS-

PAGE and transferred onto a nitrocellulose membrane. 

The membrane was blocked with 5% nonfat milk in a 

Tris-buffered saline, 0.1% Tween 20 solution (TBST) 

for 2 hours (pH 7.4) and incubated overnight with 

primary antibodies against HO-1 (1:1000, Enzo Life 

Sciences), Nrf2 (1:1000, ab62353, Abcam), p-Nrf2 

(1:5000, ab76026, Abcam), or β-actin (1:1000, ZsBio, 

Beijing, China), at 4°C. Thereafter, the membrane was 

incubated with secondary antibody for 1 hour at 22°C, 

and visualization was performed with a chemi-

luminescence apparatus (HaiGene, Harbin, China). 

 

Luciferase reporter assay 

 

The WT HMOX1 3’-untranslated region (3’-UTR), 

which contains the binding site for miR-183-5p, and the 

mutant (MUT) HMOX1 3’-UTR were amplified and 

inserted into the pmiR-RB-REPORT vector (RiboBio 

Co., Ltd., Guangzhou, Guangdong, China) with XhoI 

and SacI double digestion. Both recombinant vectors 

were verified by DNA sequencing. Human embryonic 

kidney 293 (HEK293) cells were subcultured in 96-well 

plates and cotransfected with the recombinant vectors, 

miR-183-5p mimic (miR-183-5p MM), or nontarget 

control (NC) using Lipofectamine 2000 (Thermo Fisher 

Scientific). The cells were lysed 48 hours after 

transfection and subjected to a Dual-Luciferase Reporter 

Assay (Promega Corporation, Madison, WI, USA) using 

a Varioskan Flash spectral scanning multimode reader 

(Thermo Fisher Scientific). Renilla luciferase activity 

was normalized to that of firefly luciferase. 

 

ELISA 

 

According to the previous grouping, the brain 

homogenates of mice 3 days after ICH were assessed 

using ELISA. IL-1β (p1301, Biotime, Shanghai, China), 

IL-6 (PI326), TNF-α (PT512), and 4-HNE (ab238538, 

Abcam) levels were determined according to the 

manufacturers’ instructions. The concentrations of 

cytokines and 4-HNE (pg/mL) were determined using 

standard curves obtained from known amounts of IL-1β, 

IL-6, or TNF-α and were expressed as a percentage 

relative to their concentrations in the ICH group. BV2 

microglia were divided into groups according to the 

previous experimental design section, the corresponding 

reagents were added to the cell culture media, and the 

cells were cultured for 24 hours. At the end of the 

incubation, the culture media were collected. The 

concentrations of cytokines and 4-HNE (pg/mL) in the 

culture media were expressed as a percentage relative to 

their concentrations in the culture media of cells 

stimulated with hemin (10 μM). 

 

Cell viability 

 

BV-2 microglia (2000 cells in 100 μL per well) were 

seeded into 96-well plates and divided into the 

following four groups (eight wells per group): the 

sham group, hemin (10 μM), hemin (10 μM) + 

agomir-183-5p (50 nM), and hemin (10 μM) + 

antagomir-183-5p (50 nM). The cells were incubated 

for 24 hours, after which 10 μL of Cell Counting Kit-

8 (CCK-8) (C0041, Biotime, Beijing, China) were 

added to each well and incubated at 37°C for 4 hours. 

CCK-8 contains a novel highly water-soluble 

tetrazolium salt that is reduced by dehydrogenase 

activity in the cell to form a yellow, water-soluble 

formazan dye. The amount of formazan dye is directly 

proportional to the amount of living cells. After 

incubation, the optical density value at 450 nm was 

measured using a microplate reader (model 680, Bio-

Rad). Cell viability was compared to that in the sham 

group (100%). 

 

In situ detection of ROS 

 

In vivo ROS detection 

ROS were evaluated after ICH via in situ detection of 

oxidized hydroethidine [74]. Hydroethidine (Thermo 

Fisher Scientific) was dissolved in DMSO and then 

diluted in PBS to a final concentration of 1 mg/mL. 

Three hundred milliliters of hydroethidine were injected 
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intraperitoneally on day 3 after ICH, 2 hours before the 

brains were harvested. Fluorescence intensity of 

predefined areas of the hemorrhagic striatum in the 

brain sections was determined. An investigator blinded 

to the experimental groups analyzed the sections using 

ImageJ software. 

 

In vitro ROS detection 

A total of 1 mg of hydroethidine was dissolved in 2 mL 

of DMSO to prepare a stock solution at a concentration 

of 1.59 mM. The stock solution was diluted to 10 µM in 

DMEM. After exposure to hemin, agomir-183-5p, or 

antagomir-183-5p for 24 hours, the above solution was 

added, followed by incubation for 2 hours, and the 

fluorescence intensity was determined. 

 

Statistical analyses 

 

Differences between two groups were compared using 

the Mann-Whitney U test. Statistical comparisons among 

multiple groups were made using the Kruskal-Wallis  

test. Statistical significance was defined as P < 0.05. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. A negative correlation was observed between the time course of heme oxygenase-1 (HO-1) 
expression and miR-183-5p after intracerebral hemorrhaging (ICH). (A) Above: western blotting showed HO-1 expression at 

different time points after ICH. Below: quantitative analysis of HO-1 protein expression at different time points after ICH. n = 8/group. (B) 
Quantitative analysis of HO-1 mRNA expression at different time points after ICH by qPCR. n = 8/group. (C) Quantitative analysis of miRNA-
183-5p expression at different time points after ICH by qPCR. n = 8/group. Values are presented as the mean ± standard deviation. *P < 
0.05 vs. the sham group. 
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Supplementary Figure 2. Treatment with miR-183-5p reduced cytokine release from BV2 microglia exposed to hemin. 
Quantitative analysis of cytokine expression in the supernatants of cultured BV2 microglia from different groups at 24 hours after hemin 
treatment. n = 3/group. Values are presented as the mean ± standard deviation. *P < 0.05 vs. the hemin group. 

 

 

 
 

Supplementary Figure 3. Treatment with miR-183-5p reduced reactive oxygen species (ROS) production by damaging BV2 
microglia exposed to hemin. (A) Representative immunofluorescence images of hydroethidine-positive ROS in BV2 microglia from 

different groups. n = 3/group. miR-183-5p reduced the number of microglial cells treated with hemin for 24 hours, and the total amount of 
ROS decreased. (B) Quantitative analysis of ROS fluorescence intensity in (A). (C) Quantitative analysis of 4-HNE in BV2 microglia from 
different groups. n = 3/group. Values are presented as the mean ± standard deviation. *P < 0.05 vs. the hemin group. 
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Supplementary Figure 4. miR-183-5p alleviated inflammation and oxidative damage by directly targeting heme oxygenase-
1 (HO-1). (A) Above: western blotting revealed that miRNA-183-5p downregulated HO-1 expression. Below: quantitative analysis of HO-1 

protein expression in different groups. n = 3/group. (B) Quantitative analysis of cytokines from the supernatants of cultured BV2 microglia 
and 4-HNE expression in BV2 microglia from different groups pretreated with the HO-1 inhibitor zinc protoporphyrin IX (ZnPP) at 24 hours 
after hemin treatment. n = 3/group. Values are presented as the mean ± standard deviation. *P < 0.05 vs. the hemin group. 
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Supplementary Figure 5. miR-183-5p reduced the viability of BV2 microglia exposed to hemin. The Cell Counting Kit-8 (CCK-8) 

assay revealed that administration of agomir-183-5p reduced the optical density values, as determined using a microplate reader. n = 
3/group. Values are presented as the mean ± standard deviation. *P < 0.05 vs. the hemin group. 
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Supplementary Figure 6. Regulatory relationship between miR-183-5p, heme oxygenase-1 (HO-1), and Nrf2. (A) Above: 

western blotting revealed that Nrf2 activation promoted HO-1 expression in mice at 3 days after intracerebral hemorrhaging (ICH). n = 
8/group. Below: quantitative analysis of HO-1 protein expression in the different groups above. (B) Above: western blotting revealed that 
HO-1 promoted Nrf2 activation in mice at 3 days after ICH. n = 8/group. Below: quantitative analysis of relative p-Nrf2 protein expression in 
the different groups above. (C) Above: western blotting revealed that miR-183-5p reduced HO-1 expression independent of Nrf2 in mice at 
3 days after ICH. n = 8/group. Below: quantitative analysis of HO-1 protein expression in the different groups described above. (D) RT-qPCR 
revealed that miR-183-5p expression was increased in the presence of the HO-1 inhibitor zinc protoporphyrin IX (ZnPP) at 3 days after ICH. 
n = 8/group. Values are presented as the mean ± standard deviation. *P < 0.05 vs. the ICH group. CoPP, cobalt protoporphyrin IX; tBHQ, 
tert-butylhydroquinone. 
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Supplementary Figure 7. Intraperitoneal injection of ZnPP inhibited the expression of HO-1 in brain tissue of mice 3 days 
after intracerebral hemorrhage. n = 8/group. Values are presented as the mean ± standard deviation. *P < 0.05. ZnPP, zinc 

protoporphyrin IX. 
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SUPPLEMENTARY TABLE 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

Supplementary Table 1. mRNAs that may be involved in the ICH process and bind with miR-183-5p. 


