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INTRODUCTION 
 

Acute myeloid leukemia (AML) is a heterogeneous 

hematological malignancy [1, 2]. Three types of gene 

mutations are thought to play major roles in the 

pathogenesis of classical AML. Types I and II 

mutations are related to cellular proliferation and 

differentiation, while type III mutations affect genes 

encoding epigenetic factors involved in the patho-

genesis and progression of AML [3]. 

 

Adenylyl cyclases (ADCYs) have been attracting 

increased attention in recent years [4]. These enzymes, 

which catalyze the generation of cAMP from ATP  

 

[5, 6], differ in their responses to upstream regulatory 

pathways and their distribution, and play essential roles 

in learning, synaptic plasticity, cardiovascular responses 

and tumorigenesis [7–10]. The nine members of the 

ADCY family (ADCY1-ADCY9) exhibit distinct 

responses to G protein coupled receptors and have been 

grouped into three subgroups based on their functional 

activities and sequence homology. Group 1 consists of 

ADCY1, ADCY3 and ADCY8, which are mainly 

distributed in neuronal tissues and stimulated by 

Ca+2/calmodulin [10]. Group 2 contain ADCY2, 

ADCY4 and ADCY7, which are Ca+2- independent and 

are stimulated by G proteins [11]. Group 3 includes 

ADCY5 and ADCY6, which are mainly expressed in 
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the Hi-C data. Functional analysis of these FANGs revealed abnormal activation of the MAPK signaling pathway. 
Drug sensitivity tests showed that fasudil plus trametinib or sapanisertib had a synergistic effect suppressing 
AML cell viability and increasing apoptosis. These findings suggest that dysregulation of ADCY expression leads 
to altered signaling in the MAPK pathway in AML and that the ADCY expression profile may be predictive of 
prognosis in AML patients. 
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heart and brain and are suppressed by G proteins [12]. 

In addition, there is ADCY9, which exhibits limited 

expression and is distinct from the other isoforms in that 

it is not activated by forskolin [13]. 

 

Aberrant expression of these isoforms can lead to 

changes in receptor-mediated activation of ADCYs, as 

well as alterations in the downstream signaling path-

ways [14]. However, the clinical impact of abnormal 

ADCY expression and its prognostic value has rarely 

been explored [15]. Dysregulated expression of ADCYs 

has been identified in colorectal cancer (CRC), 

hepatocellular carcinoma (HCC), prostate cancer, 

pancreatic cancer and cervical cancer [11, 16–18]. 

However, the mechanism underlying the abnormal 

ADCY expression seen in hematopoietic malignancies 

and their functional analysis has not yet been fully 

elucidated. 

 

In the present study, we used bioinformatics analysis 

with online public data to explore possible functions of 

ADCYs and their unique prognostic value in AML. We 

also examined the regulation of ADCY-related 

pathways as potential targets for therapeutic inter-

vention. 

RESULTS 
 

Transcription of ADCYs in AML 

 

We initially used Oncomine databases to compare 

ADCY expression in various tumors and in controls 

(Figure 1). We found that ADCYs were highly 

expressed in cases of kidney tumor and leukemia. In 

Stegmaier’s dataset, a 3.002-fold increase in ADCY1 

expression was detected in AML as compared to control 

tissues. Similar increases in ADCY1 expression in AML 

were also seen in Haferlach’s dataset (4.766-fold), 

Valk’a Leukemia Statistics (1.503-fold), and 

Andersson’s Leukemia Statistics (1.298-fold) (Table 1). 

Elevated ADCY2 expression (1.034-fold) was also 

detected in AML patients vs. control samples. 

Consistent with that finding, Valk et al.’s data showed 

that ADCY2 was upregulated 1.823-fold in AML, while 

Stegmaier et al. showed it to be upregulated 1.8331-

fold. In addition, ADCY3 expression was upregulated 

1.312-fold in AML vs. control, and ADCY5 and ADCY6 

expression was upregulated 1.025-fold and 1.105-fold, 

respectively. In Haferlach’s dataset, ADCY9 expression 

increased 1.292-fold in AML, while Valk Leukemia 

Statistics showed a 1.137-fold increase (Table 1). 

 

 
 

Figure 1. Transcription of ADCYs within tumors (Oncomine). 
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Table 1. The significant transcriptional changes of ADCYs in AML (Oncomine). 

 Fold Change p Value t Test Source and/or Reference 

3.002 0.001 3.917 Stegmaier Leukemia Statistics 

1.503 0.029 2.243 Valk Leukemia Statistics 

4.766 0.00000244 1.05 Haferlach Leukemia Statistics 

1.298 0.048 1.806 Andersson Leukemia Statistics 

1.034 0.009 2.522 Haferlach Leukemia Statistics 

1.823 0.009 2.894 Valk Leukemia Statistics 

1.831 0.046 1.664 Stegmaier Leukemia Statistics 

1.312 2.73E-27 12.339 Haferlach Leukemia Statistics 

1.223 0.036 2.085 Valk Leukemia Statistics 

ADCY4 NA NA NA NA 

ADCY5 1.025 0.000799 3.24 Haferlach Leukemia Statistics 

ADCY6 1.105 0.00018 3.678 Haferlach Leukemia Statistics 

ADCY7 NA NA NA NA 

1.292 0.0000000000917 6.758 Haferlach Leukemia Statistics 

1.137 0.022 2.27 Valk Leukemia Statistics 

NA, not available. 

Prognosis analysis of ADCYs in AML 

 

Expression levels of ADCYs between AML and 

matched control data from The Cancer Genome Atlas 

(TCGA) and the Genotype-Tissue Expression (GTEx) 

databases were compared on the basis of the Gene 

Expression Profiling Interactive Analysis (GEPIA) 

dataset (http://gepia.cancer-pku.cn/). These results 

showed that the expression of genes for all 9 ADCY 

isoforms was higher in AML samples than in control 

samples (Figure 2A, 2B). In addition, the association 

between ADCY expression and AML patient survival 

was explored using the LinkedOmics website 

(http://www.linkedomics.org/login.php). Using Kaplan-

Meier analysis, we found that increased mRNA 

expression of ADCY2 (P = 0.03994), ADCY3 (P = 

0.01924), ADCY4 (P = 0.02211), and ADCY7 (P = 

0.01772) were significantly associated with poor overall 

survival (OS) in AML patients (Figure 3A). In addition, 

decreased levels of ADCY9 mRNA tended to indicate a 

poorer prognosis (P=0.078), though the effect was not 

statistically significant. Analysis of the GEPIA dataset 

revealed that median OS was shorter in AML patients 

showing higher expression of ADCY2, 3, 4, and 7 

(Figure 3B). 

 

We next used TCGA datasets to analyze the relationship 

between the common genetic and epigenetic mutations 

and ADCY expression. The samples were divided into 

two groups based on their mutations in AXSL1, 

CEBPA, FLT3, IDH1, IDH2, KIT, MLL, NPM1, RAS, 

TET2 and WT1 and then compared ADCY expression 

levels between the wild type (WT) and mutation (MUT) 

groups (Supplementary Table 2). We detected greater 

ADCY1 expression in the CEBPA WT group than the 

MUT group (p=0.005), whereas expression of ADCY9 

was higher in the MUT group (p<0.001). For NPM1, 

expression levels of ADCY1 (p=0.02), ADCY2 

(p<0.001) and ADCY4 (p=0.009) were much higher in 

MUT than WT group, while expression of ADCY3 

(p<0.001) and ADCY6 (p=0.006) was higher in WT 

group. There were also scattered differences among 

these mutations. For example, expression of ADCY2 

was higher in the FLT3 MUT group (p<0.001), and 

ADCY4 was more highly expressed in the IDH1 and 

IDH2 MUT groups (p=0.019 and p<0.001 respectively). 

Analysis of the relationships between the three 

subgroups of ADCY isoforms and these common 

mutations revealed no significant correlation with gene 

mutations (Supplementary Table 2). We therefore 

suggest that there is little correlation between these gene 

mutations in AML. 

 

Enrichment analysis of the frequently altered 

neighbor genes (FANGs) of ADCYs in AML 
 

We investigated ADCY alterations, gene relevance,  

and the interaction networks using the cBioPortal 

http://gepia.cancer-pku.cn/
http://www.linkedomics.org/login.php
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database for AML (TCGA Provisional; 

http://www.linkedomics.org/admin.php). ADCY alterations 

were detected in 32.52% of 163 AML patients (Figure 

4A, 4B). In addition, exploration of the relevance of 

ADCYs showed the potential for positive gene relevance 

among the ADCY family (Figure 4C). 

 

We then constructed a network for ADCYs using the 

3D Genome Browser (http://3dgenome.org). This 

enabled us to simultaneously examine the gene 

regulatory events and the 3D genomic organization. 

Topologically associating domains (TADs) of ADCYs 

were identified through analysis of Hi-C data from 

THP1 cells, which enables us to predict the potential 

target genes (Figure 4D). The top 58 FANGs were 

screened in combination with the related ADCY genes 

reported in the cBioPortal dataset (Figure 5A).  

The results showed that genes involved in energy 

 

 
 

Figure 2. Expression of ADCYs in AML and normal samples (GEPIA). (A) The expression levels of ADCYs in AML compared with normal 
samples. (B) The TPM values of ADCYs in AML and normal samples. T represents AML samples and N represents normal samples. 

http://www.linkedomics.org/admin.php
http://3dgenome.org/
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metabolism, including ATP5F1A, ATP5F1B, CMPK1, 

GNAI1 and GNAI2, were closely associated with 

ADCYs (Supplementary Table 1). In addition, Figure 

5B shows the protein-protein interactome network 

determined using Metascape (http://metascape.org/gp/ 

index.html). The neighborhood protein network, where 

proteins were densely connected, was identified using 

the MCODE algorithm. 

 

The Database for Annotation, Visualization  

and Integrated Discovery (DAVID) (https://david. 

ncifcrf.gov/summary.jsp) was used to predict potential 

functional pathways of ADCYs as well as their 

associated genes. Biological processes analysis 

showed that the cAMP-mediated signaling (GO: 

0019933), the cAMP biosynthetic process (GO: 

0006171), and the adenylate cyclase – activating/ 

inhibiting G-protein coupled receptor signaling 

pathway (GO: 0007193 and 0007189) were 

significantly regulated by ADCYs in AML (Figure 

5C). Using molecular functions analysis, we also 

found that cAMP-dependent protein kinase inhibitor/ 

regulator activity (GO: 0008603, 0004862 and 

0004691), cAMP binding (GO:0030552), and G-

protein beta/gamma-subunit complex binding (GO: 

0031683) were highly enriched in the ADCYs in AML 

(Figure 5E). In addition, cellular components analysis 

showed that plasma membrane/membrane raft (GO: 

 

 
 

Figure 3. Significance of ADCYs in predicting the prognosis for AML patients. (A) The prognostic values of ADCYs in LinkedOmics 
datasets. (B) The prognostic values of ADCYs in GEPIA. 

http://metascape.org/gp/index.html
http://metascape.org/gp/index.html
https://david.ncifcrf.gov/summary.jsp
https://david.ncifcrf.gov/summary.jsp


 

www.aging-us.com 11869 AGING 

0005886 and 0044853), heterotrimeric G-protein 

complex (GO: 00058334), and cAMP-dependent 

protein kinase complex (GO: 0005952) were also 

significantly regulated by ADCYs (Figure 5D). Most 

of these were genes known to be associated with 

energy metabolism. 

 

Predicted therapeutic targets for ADCYs in AML 
 

Significant terms among the gene membership profiles 

were identified using the Metascape tools and then 

hierarchically divided into a tree based on Kappa-

statistical resemblance (Figure 6A). Next, Kyoto 

Encyclopedia of Genes and Genomes (KEGG) analyses 

were carried out to examine the pathways related to 

ADCY and FANG functions using the proteomicsdb 

dataset (https://www.proteomicsdb.org/). We found 

these genes were enriched in six important pathways 

related to AML leukemogenesis: endocrine resistance 

pathway, purine metabolism pathway, the Calcium 

signal transduction pathway, the MAPK signaling 

pathway, the cGMP-PKG signal transduction pathway, 

and the Rap1 signal transduction pathway (Figure 6B). 

Among those, the MAPK signaling pathway was found 

to be critical. The protein-drug interaction map 

suggested that MAPK signaling pathway inhibitors, 

including ROCK inhibitors (Fasudil, Y-39983 and 

Ripasudil), MEK inhibitors (Trametinib, TAK-733, 

Selumetinib, Ro-5126766, Refametinib, Pimasertib 

and PD-325901), and mTOR inhibitors (Sapanisertib, 

OSI-027) were associated with a tightly connected 

network that could potentially mediate therapeutic 

effects in AML (Figure 6C). 

 

Sensitivity effect and synergistic effect of inhibitors 

in AML 
 

From among the abovementioned drugs, we chose 

three inhibitors that are currently in clinical trials and 

assessed their effects on the viability of cells from four 

AML cell lines. Using fasudil (ROCK inhibitor), 

trametinib (MEK inhibitor) and sapanisertib (mTOR 

inhibitor) with Kasumi-1, MOLM13, OCI-AML3 and 

OCI-AML2 cells, we found that all cells were 

sensitive to 50 μM fasudil, with about 50-60% of cells 

remaining viable after treatment for 48 h. Kasumi-1 

cells were the most sensitive to trametinib (10 nM), 

with 50% of cells viable after 48 h (Figure 7A), and 

MOLM13 cells also showed sensitivity, with 60-70% 

remaining viable after 48 h (Figure 7B). By contrast, 

these drugs elicited no reduction in OCI-AML3 and 

OCI AML2 cell viability. However, both OCI-AML2 

and OCI-AML3 cells were sensitive to 500 nM 

sapanisertib, with only 50-60% of cells remaining 

viable after 48 h (Figure 7C, 7D), which was 

consistent with previous reports [19]. Kasumi-1 and 

MOLM13 cells were less sensitive to 500 nM 

sapanisertib, with about 80% of cells remaining viable 

 

 
 

Figure 4. Visual summary of ADCY alterations. (A) Summary of ADCY alterations in AML (cBioPortal). (B) Details of ADCY alterations in 
AML (cBioPortal). (C) Gene relevance analysis among the ADCY family. (D) 3D genome of ADCYs in THP1 cells. 

https://www.proteomicsdb.org/


 

www.aging-us.com 11870 AGING 

after 48 h. The IC50 of inhibitors in these AML cell 

lines were displayed in Table 2. Notably, AML cell 

viabilities could be significantly decreased by 

combining fasudil with trametinib or sapanisertib. The 

synergistic effect of fasudil plus trametinib was 

somewhat greater than fasudil plus sapanisertib. On 

the other hand, no synergistic effect on AML cell 

viability was seen with trametinib plus sapanisertib 

(Table 2). 

 

Given the ability of fasudil, trametinib and sapanisertib 

to reduce the viability in AML cell lines, we next 

sought to validate the effects of these inhibitors using 

mononuclear cells isolated from the bone marrow of 

primary AML patients. Consistent with the results from 

cell lines, patient cells treated with fasudil and 

trametinib or sapanisertib were less viable than cells 

treated with a single inhibitor. The synergistic 

efficiency of fasudil plus trametinib was greater than 

that of fasudil plus sapanisertib (Figure 7E). Consistent 

with those results, annexin V and PI staining showed 

that single inhibitors induced apoptosis among AML 

patient cells and that this effect was enhanced by 

treatment with fasudil plus trametinib or sapanisertib 

(Figure 7F). 

 

DISCUSSION 
 

Dysregulation of ADCY expression has been reported in 

various solid cancers [11, 13, 15, 17], but the role of 

ADCYs in the development and progression of those 

cancers remains unclear, and bioinformatics analysis in 

AML is still lacking [20]. To explore the potential 

functions of ADCYs and their regulatory network in 

AML, we used the data published online to gain further 

insight into AML. Examination of both the Oncomine 

and TCGA datasets revealed that levels of ADCY 

expression are higher in AML patients than in control 

subjects. Additionally, we found that ADCYs may have 

prognostic values in AML, and that among the ADCY, 

high expression of group 1 (ADCY3, not ADCY1) and 

group 2 (ADCY2, ADCY4 and ADCY7) was associated 

with a poorer prognosis for all AML samples. Among 

the ADCY gene family members, ADCY1 is the most 

 

 
 

Figure 5. Enrichment analysis of ADCY FANGs in AML patients. (A) Network for ADCYs and the top 58 FANGs (cBioPortal). (B) Detailed 
net-structure of ADCY proteins in AML (Metascape). Bubble diagrams showing the top 58 FANGs in AML. (C) Biological processes. (D) Cellular 
components. (E) Molecular functions. 
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Figure 6. KEGG Enrichment and therapeutic targets of ADCYs in AML. (A) Significant terms among the gene memberships 
(Metascape). (B) KEGG analysis of FANGs in AML. (C) Protein-drug interaction map for inhibitors of the MAPK pathway in AML. 
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Figure 7. Sensitivity effect of inhibitors in AML. (A–D) Sensitivity effect of fasudil, trametinib and sapanisertib in AML cell lines of 
Kasumi-1 (A), MOLM13 (B), OCI-AML2 (C) and OCI-AML3 (D). (E) Sensitivity effect of inhibitors in AML patient samples. (F) Apoptosis induced 
by inhibitors among AML patient cells. 

 

extensively investigated in solid cancers, where it is 

highly expressed in cancer tissues and related to a poor 

prognosis [10]. By contrast, ADCY1 expression did not 

affect the prognosis of AML patients, suggesting the 

actions of group 2 adenylyl cyclases (ADCY2, ADCY4 

and ADCY7) in AML differ from those in other cancers. 

 

Functional analysis suggested that cAMP may affect 

extracellular signaling in several tumors [12]. In the 

present study, the 3D genome organization of the 

THP1 leukemic cell line was explored using Hi-C 

technology. A total of 58 FANGs that were the most 

frequently altered in hematopoietic malignances were 

selected for further cluster analysis. Our results 

suggest that the MAPK signaling pathway is central 

among the six pathways involved in the leukemo-

genesis of AML. Furthermore, construction of a 

protein-drug interaction map revealed possible 

therapeutic strategies for treatment of AML using 

ROCK, MEK and mTOR inhibition to alter signaling 

in the MAPK pathway. 

 

Smoking is thought to be a major risk factor for AML in 

older adults and childhood leukemia [21, 22]. We 
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Table 2. IC50 and combination index values in AML cell lines. 

Treatment Kasumi-1 MOLM13 OCI-AML2 OCI-AML3 

Fasudil (IC50)  37.8μM 53.1μM 47.9μM 52.2μM 

Sapanisertib (IC50) 2.1μM 1.3μM 0.4μM 0.6μM 

Trametinib (IC50) 3.8nM 8.5nM 19.7nM 14.2nM 

F-50μM + S-0.5μM 

(Combination index) 
0.65 0.81 0.71 0.68 

T-10nM + S-0.5μM 

(Combination index) 
0.86 0.93 1.06 1.03 

T-10nM + F-50μM 

(Combination index) 
0.48 0.34 0.27 0.22 

 

therefore sought to investigate the relationship between 

smoking and ADCY expression in AML [23]. However, 

information about smoking status is not available in 

either TCGA or the beatAML database [24]. We did 

find a case-control study that mentions the relationship 

between clonal hemopoiesis, therapy related myeloid 

malignancies, and smoking status [25]; unfortunately, 

those investigators did not perform RNA-seq or gene 

array analyses with these patients. Nonetheless, our 

findings are insufficient to shed light on the relationship 

between the ADCY expression profile and prognosis in 

patients with AML. 

 

CONCLUSIONS 
 

Our findings suggest dysregulation of ADCY 

expression leads to altered signaling in the MAPK 

pathway in AML, and that the ADCY expression profile 

may be predictive of prognosis in AML patients. 

 

MATERIALS AND METHODS 
 

Patient samples 
 

Between 2019 and 2020, a total of 5 AML patients 

newly diagnosed at the Sun Yat-sen University Cancer 

Center were enrolled in this study. All participants 

provided written informed consent in accordance with 

the regulations of the Institutional Review Boards of 

the Hospitals in agreement with the Declaration of 

Helsinki. 
 

Reagents 
 

Inhibitors fasudil (S1573), trametinib (S2673) and 

sapanisertib (S2811) were obtained from Selleck 

Chemicals LLC (Houston, TX). 
 

Cell viability and apoptosis assay 
 

AML cell lines (Kasumi-1, OCI-AML3, OCI-AML2 

and MOLM13) were obtained from Da-Wei Wang 

(Ruijin hospital) and Da-Jun Yang’s lab (Sun Yat-sen 

University Cancer Center) and cultured in RPMI-1640 

(Gibco, NY) supplemented with 10% fetal bovine 

serum (Biochrom AG, Berlin, Germany). Cells were 

seeded into 96-well plates at a density of 105 

cells/well. To determine the cytotoxicity of the 

inhibitors tested, cells were separately incubated with 

appropriate concentrations of each inhibitor. After 48 

h, 10 μL of reagent from a Cell Counting Kit-8 (CCK-

8, Dojindo Laboratories, Kumamoto, Japan) were 

added to each well. The samples were then incubated 

for an additional 4 to 6 h, at 37°C and the absorbance 

at 450 nm was measured using a spectrophotometer. 

An Annexin V FITC/PI staining kit (FA111-02, 

Transgen Biotech) was used to detect apoptotic cells 

induced by the inhibitors. 

 

Oncomine analysis 
 

The Oncomine website (https://www.oncomine.org/re-

source/login.html) was utilized to obtain ADCY gene 

expression data from cancer and control samples. 

ADCY expression was compared between clinical 

cancer specimens and paired normal controls using 

Student’s t test. 

 

GEPIA dataset 
 

Thousands of normal and tumor specimens collected 

from the GTEx and TCGA were enrolled in the GEPIA 

dataset. Functional analyses, such as survival analysis 

and gene correlation analysis, were also carried out 

using this dataset. 

 

The c-BioPortal analysis 
 

The cBioPortal (http://cbioportal.org) is an open-access 

website that contains over 225 tumor genomics 

datasets. ADCY alterations in the LAML samples were 

analyzed using this website. Genetic information, 

including mutations, gene splicing and copy number 

variations (CNVs), was also found in this dataset. The 

https://www.oncomine.org/re-source/login.html
https://www.oncomine.org/re-source/login.html
http://cbioportal.org/
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neighboring genes were excluded unless the 

frequencies were > 20%. 

 

Metascape analysis and the LinkeOmics dataset 
 

Metascape provides a comprehensive gene function 

analysis. In this dataset, the MCODE algorithm was 

applied to identify the interacting network components 

and densely-related complexes, while Cytoscape is used 

to generate visualizations of these networks. 

LinkedOmics is also a publicly available portal that 

includes TCGA Cancer types. The relevance of 

differentially expressed genes among ADCYs was 

investigated in this dataset. 

 

3D genome browser analysis 
 

The Hi-C data from THP1 cells were analyzed using the 

3D Genome Browser. In addition, TADs were identified 

to screen for potentially interacting genes in THP1 cells. 

 

The proteomicsDB dataset 

 

The potential drug network was analyzed using the 

ProteomicsDB dataset. Selected from this website were 

MAPK pathway inhibitors, which exhibited the 

networks between the FANGs of ADCYs factors and 

the potential MAPK signaling pathway inhibitors. 

 

Combination index analysis 
 

CompuSyn software (version 1.0; ComboSyn, 

Inc.Paramus, NJ, USA) were used to calculate the 

combination indexes according to the average fraction 

of viable cells in the cytotoxicity assays [26, 27]. The 

Combinatorial effects were classified into 4 parts: 

strong synergism for CI= 0.1–0.3; distinct synergism for 

CI = 0.3–0.7, mild synergism for CI = 0.7–0.9; additive 

for CI = 0.9–1.1. 
 

Abbreviations 
 

AML: Acute Myeloid Leukemia; ADCYs: Adenylyl 

Cyclases; FANGs: Frequently Altered Neighbor Genes; 

TADs: Topologically Associating Domains; CRC: 

Colorectal Cancer; HCC: Hepatocellular Carcinoma; 

TCGA: The Cancer Genome Atlas; GTEx: Genotype-

Tissue Expression; GEPIA: Gene Expression Profiling 

Interactive Analysis; OS: Overall Survival; DEGS: 

Differentially Expressed Genes; KEGG: Kyoto 

Encyclopedia of Genes and Genomes. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

Supplementary Table 1. The 58 most frequently altered neighbor genes (FANGs). 

 

Supplementary Table 2. ADCY expression levels between the wild type (WT) and mutation (MUT) groups in 

AML. 

 


