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ABSTRACT 
 

Age-related declines in physical performance predict cognitive impairment, disability, chronic disease 
exacerbation, and mortality. We conducted a metabolome-wide association study of physical performance 
among Bogalusa Heart Study participants. Bonferroni corrected multivariate-adjusted linear regression was 
employed to examine cross-sectional associations between single metabolites and baseline gait speed 
(N=1,227) and grip strength (N=1,164). In a sub-sample of participants with repeated assessments of gait speed 
(N=282) and grip strength (N=201), significant metabolites from the cross-sectional analyses were tested for 
association with change in physical performance over 2.9 years of follow-up. Thirty-five and seven metabolites 
associated with baseline gait speed and grip strength respectively, including six metabolites that associated 
with both phenotypes. Three metabolites associated with preservation or improvement in gait speed over 
follow-up, including: sphingomyelin (40:2) (P=2.6×10-4) and behenoyl sphingomyelin (d18:1/22:0) and 
ergothioneine (both P<0.05). Seven metabolites associated with declines in gait speed, including: 1-
carboxyethylphenylalanine (P=8.8×10-5), and N-acetylaspartate, N-formylmethionine, S-adenosylhomocysteine, 
N-acetylneuraminate, N2, N2-dimethylguanosine, and gamma-glutamylphenylalanine (all P<0.05). Two 
metabolite modules reflecting sphingolipid and bile acid metabolism associated with physical performance 
(minimum P=7.6×10-4). These results add to the accumulating evidence suggesting an important role of the 
human metabolome in physical performance and specifically implicate lipid, nucleotide, and amino acid 
metabolism in early physical performance decline. 
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INTRODUCTION 
 

Age related declines in physical performance are 

common among older adults [1] and robustly predict 

frailty, sarcopenia, disability, fracture, falls, cognitive 

impairment, reduced quality of life, comorbid chronic 

health conditions, and all-cause mortality [1–3]. Gait 

speed and hand grip strength are simple and non-

invasive measures of physical performance in aging 

adults. Although reduced gait speed and grip strength 

have been established as risk factors for adverse health 

outcomes, their underlying biological pathways remain 

largely unknown. Examination of the human 

metabolome, which reflects endogenous and exogenous 

processes and their interactions [4], provides a unique 

opportunity to identify small molecule biomarkers of 

physical performance. Identified metabolites may serve 

as clinically relevant biomarkers and prognostic 

indicators of future physical performance decline. 

 

Metabolomics has previously been used to examine 

aging and frailty. A previous study that compared 

centenarians to elderly individuals identified phospho/ 

sphingolipids as markers of healthy aging [5]. A 

longitudinal analysis conducted among Framingham 

Heart Study participants found that some longevity 

related metabolomic pathways associate with risk of 

common causes of death [6]. Findings from patients  

with breast cancer included frailty-associated changes  

in amino acid and phospholipid metabolism [7]. 

Additionally, research in elderly participants identified 

15 markers associated with frailty and suggested that 

oxidative stress could be implicated in the development 

of frailty [8]. 

 

Physical performance metabolomics studies have also 

been conducted. Previous research has identified 

metabolites associated with gait speed [9–12], other gait 

parameters [10], grip strength [11], combined muscle 

mass and strength outcomes [13, 14], and Short 

Physical Performance Battery (SPPB) score [11]. 

Although these findings are promising, limitations of 

past work include the sole use of cross sectional 

examination without longitudinal follow up [10, 11, 13–

16], sole use of targeted metabolomics approaches 

which are restricted to pathways of presumed biological 

relevance [10–12, 14–16], small numbers of metabolites 

tested [10–16], small sample sizes [13–16], and lack of 

adjustment for multiple comparisons [10, 11, 14, 16]. 

Thus, there is a compelling need for research on the 

relationship between serum metabolites and physical 

performance that takes advantage of longitudinal data 

and utilizes agnostic metabolomic methods. 

 

Our study was designed to fill this gap in knowledge by 

first examining the cross sectional relationships between 

serum metabolites identified through untargeted 

metabolomics and physical performance measures 

while utilizing stringent control for multiple testing. We 

next examined the relationships between identified 

metabolites and prospective declines in physical 

performance observed at a subsequent study visit. The 

Bogalusa Heart Study (BHS) was selected as the  

study population to increase generalizability and 

reproducibility of study findings through the use of a 

large, ethnically diverse, community-based sample and 

to identify metabolites that are relevant in middle age, 

prior to onset of age related sarcopenia or mobility 

disability. 

 

RESULTS 
 

Participant characteristics 
 

The BHS is a community-based long-term study 

investigating the natural history of CVD among a multi-

ancestry sample (35% black and 65% white) of 

residents from Bogalusa, Louisiana [17]. The current 

BHS population includes 1,298 participants born 

between 1959 and 1979 who were screened at least two 

times during childhood and two times during adulthood. 

Participant characteristics are presented in Table 1. 

Participants were mostly middle aged adults (mean age: 

48.2) and obese [mean body mass index (BMI)>30]. 

Over 60% were hypertensive, while fewer than 20% 

had diabetes. Approximately 3% had chronic kidney 

disease. As was expected for the age and health status 

of the study participants, the cohort overall had high 

physical function at baseline, with a mean SPPB score 

of over 11 out of 12. Baseline gait speed and grip 

strength were modestly correlated (ρ=0.3, P<0.0001). 

The distributions of baseline gait speed and grip 

strength presented in Supplementary Figures 1, 2. 

Participants of the longitudinal study were similar to the 

entire cohort with respect to important prognostic 

indicators (Supplementary Table 1). 

 

Metabolomics 

 

Untargeted metabolomics resulted in the detection  

and relative quantification of 1,466 metabolites.  

These included 1,073 known biochemical compounds 

(Metabolomics Standards Initiative [MSI] levels 1 or 2) 

in pathways related to amino acids (n=201), 

carbohydrates (n=25), cofactors and vitamins (n=35), 

energy (n=9), lipids (n=435), nucleotides (n=42), 

peptides (n=52), and xenobiotics (n=256). An additional 

18 partially characterized molecules (MSI level 3) and 

393 unnamed compounds (MSI level 4) were also 

detected. The unnamed compounds may be identified 

upon the eventual acquisition of a matching purified 

standard (or via classical structural analysis). Of the 
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Table 1. Characteristics of BHS participants. 

 
Overall 

(N=1,239) 

 Female  Male 

 
Black  

(n=267) 
 

White  

(n=463) 
 

Black 

(n=160) 
 

White 

(n=349) 

Age, years, mean (SD) 48.2 (5.3)  47.6 (5.4)  48.2 (5.1)  47.2 (6.0)  49 (5.0) 

Post-high school education, n (%) 609 (49.2)  106 (39.7)  278 (60.0)  45 (28.1)  180 (51.6) 

Smoking, n (%)          

 
Never 633 (51.1)  156 (58.4)  249 (53.8)  55 (34.4)  173 (49.6) 

 
Former 362 (29.2)  67 (25.1)  138 (29.8)  48 (30.0)  109 (31.2) 

 
Current 244 (19.7)  44 (16.5)  76 (16.4)  57 (35.6)  67 (19.2) 

Drinking, n (%)          

 
Never 153 (12.4)  59 (22.1)  60 (13.0)  19 (11.9)  15 (4.3) 

 
Former 395 (31.9)  81 (30.3)  149 (32.2)  49 (30.6)  116 (33.2) 

 
Current 691 (55.8)  127 (47.6)  254 (54.9)  92 (57.5)  218 (62.5) 

BMI, kg/m2, mean (SD) 31.5 (7.8)  34.9 (8.8)  30.2 (7.4)  31.2 (8.7)  30.5 (6.0) 

SBP, mmHg, mean (SD) 123.3 (16.8)  125.6 (20.9)  117.3 (14.4)  131.2 (15.7)  125.8 (13.9) 

Hypertension*, n (%) 771 (62.3)  196 (73.4)  225 (48.6)  127 (79.4)  223 (64.1) 

Glucose, mg/dL, mean (SD) 107.6 (38.3)  108.3 (42.5)  105.2 (38.3)  110.5 (45.1)  109 (30.7) 

Diabetes†, n (%) 207 (16.8)  47 (17.6)  73 (15.9)  29 (18.4)  58 (16.8) 

eGFR, mL/min/1.73 m², mean (SD) 93.7 (17.0)  101.1 (18.4)  92 (14.2)  95.3 (20.3)  89.5 (15.7) 

CKD (GFR‡<60 mL/min/1.73 m²), n (%) 39 (3.2)  7 (2.6)  14 (3.0)  6 (3.8)  12 (3.4) 

SPPB score 11.1 (1.4)  10.7 (1.6)  11.2 (1.3)  10.8 (1.6)  11.2 (1.3) 

Six-minute walk distance (m) 424.7 (86.1)  383.7 (72.6)  431.4 (81.7)  411.4 (81.5)  451.8 (90.8) 

Gait speed (m/s) 1.2 (0.2)  1.1 (0.2)  1.2 (0.2)  1.1 (0.2)  1.3 (0.3) 

Grip strength (kg) 35.1 (11.9)  28.6 (7.1)  27.2 (5.8)  44.9 (9.7)  46.1 (9.6) 

Note. BHS=Bogalusa Heart Study, BMI=body mass index, CKD=chronic kidney disease, DBP=diastolic blood pressure, 
eGFR=glomerular filtration rate, SBP=systolic blood pressure, SD=standard deviation, SPPB=short physical performance 
battery. 
* Hypertension was defined as SBP≥130 mmHg, DBP≥80 mmHg, or use of antihypertensive medication. 
† Diabetes was defined as fasting plasma glucose≥126 mg/dL or use of diabetes medication. 
 

metabolites examined, 1,202 metabolites passed rigorous 

quality control standards. 

 

Baseline overall analyses 
 

Multivariable linear regression models were used to 

analyze associations between each metabolite and each 

baseline physical performance measure, after adjustment 

for age, gender, race, BMI, estimated glomerular 

filtration rate (eGFR), education, cigarette smoking, and 

alcohol drinking. Results of baseline multivariate 

adjusted linear regression models for gait speed and  

grip strength respectively are presented graphically  

as the magnitudes of P-values versus effect sizes 

(Supplementary Figure 3). Significant direct and inverse 

associations of metabolites with gait speed were 

identified, while significant metabolite associations with 

grip strength were all in the inverse direction. 

Baseline gait speed metabolite associations 
 

In the cross-sectional analysis, 35 metabolites were 

robustly associated with gait speed, including 30 from the 

amino acid, carbohydrate, cofactor and vitamin, lipid, 

nucleotide, peptide, and xenobiotic pathways, and 5 

unnamed compounds (Figure 1). Metabolites associated 

with gait speed, that internally replicated across sex or 

race are shown in Supplementary Figures 4–7. Results of 

a sensitivity analysis with additional adjustment for 

clinical covariates were generally consistent with our 

main findings for gait speed (Supplementary Table 2). 

 

There were notable correlations between groups of 

metabolites associated with gait speed (Figure 2). Most 

of the metabolites in the lipid pathway had positive 

associations with gait speed. The 3 metabolite signals in 

the sphingolipid pathway were modestly to highly 
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correlated (pairwise ρ ranging from 0.4 to 0.7). 

Additionally, oxalate from the cofactors and vitamins 

pathway and tartronate from the xenobiotics pathway 

were highly correlated (ρ=0.89). Most of the other pairs 

of metabolites positively associated with gait speed had 

lower correlations (ρ<0.3). Among the metabolites 

negatively associate with gait speed, a group of 10 were 

highly correlated [pairwise ρ ranging from 0.68 to 0.93, 

N-formylmethionine, N-acetylalanine, Pseudouridine, 

5,6-dihydrouridine, S-adenosylhomocysteine, N6-

carbamoylthreonyladenosine, C-glycosyltryptophan,  

N-acetylneuraminate, N2,N2-dimethylguanosine, and X - 

24513 (m/z=149.05558, RI=1148)]. With some 

exceptions, lipid and xenobiotic metabolites tended to 

display modest negative correlations with the amino 

acid, carbohydrate, nucleotide, and peptide metabolites. 

 

 
 

Figure 1. Metabolites significantly associated with gait speed. This forest plot depicts the beta estimate and 95% confidence interval 
for significant metabolites from both sex- and race-stratified analyses. 6 unknown metabolites are not shown. * indicates compounds with 
Metabolomics Standards Initiative confidence level 2. 
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Baseline grip strength metabolite associations 
 

Cross-sectional study also identified 7 metabolites that 

were robustly associated with grip strength and included 

those from the amino acid, carbohydrate, and nucleotide 

(Figure 3). Six of these metabolites were also associated 

with baseline gait speed (C-glycosyltryptophan,  

N-acetylneuraminate, N1-methyladenosine, N4-acetyl-

cytidine, 5,6-dihydrouridine, and Pseudouridine) and six 

had pairwise ρ>0.6 (C-glycosyltryptophan,  

N-acetylneuraminate, N1-methylinosine, N6-succinyl-

adenosine, 5,6-dihydrouridine, and Pseudouridine) (Figure 

2). Metabolites associated with grip strength, that 

internally replicated across sex or race are shown in 

Supplementary Figures 9–11. A sensitivity analysis with 

additional adjustment for clinical covariates generally 

produced results consistent with our main findings for 

grip strength (Supplementary Table 3). 

 

 
 

Figure 2. Pairwise Pearson correlations between metabolites significantly associated with either gait speed or grip strength 
in cross sectional analysis. Metabolites are ordered according to correlation coefficient. Correlations between each pair of metabolites 
are displayed in the cells of the heatmap. Cells are color coded with colors ranging from blue to red to depict correlations ranging from -1 to 
1. RI=retention index. * indicates compounds with Metabolomics Standards Initiative confidence level 2. 
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Longitudinal metabolite associations 
 

After a mean (SD) follow up time of 2.9 (0.5) years, 

mean (SD) gait speed declined by 0.04 (0.20) meters per 

second. Mean (SD) grip strength declined by 0.6 (4.9) 

kg. Changes in gait speed and grip strength were not 

correlated (ρ=0.1, P=0.13). We found that 2 metabolites 

(out of the 35 from the baseline analysis) were asso-

ciated with longitudinal change in gait speed at the Bon-

ferroni corrected significance level (0.05/35=1.7×10-3). 

Despite the limited follow up time, 8 additional 

metabolites were nominally associated with change in 

gait speed (P<0.05) (Table 2), and 9 of the metabolites 

identified longitudinally had effect directions that were 

consistent with the baseline analysis (Supplementary 

Table 4). None of the 7 metabolites tested for association 

with longitudinal change in grip strength met nominal 

statistical significance thresholds. Even among null 

findings, effect directions for longitudinal change in gait 

speed and grip strength were generally consistent with 

effect directions identified in the cross-sectional analysis 

(Supplementary Table 5). 

 

Overlap with kidney function metabolites 
 

The metabolites inversely associated with physical 

performance were all also associated with kidney 

function in our previous study in the BHS, with 

consistent effect direction [18]. These metabolites are 

presented in Supplementary Table 6, along with lookups 

of their associations with aging, inflammation, and 

mortality in previous research. 

 

Metabolite module associations 
 

The 9 metabolite modules identified among BHS 

participants are shown in Figure 4. A module, with 

sphingolipids as top metabolites, was positively 

associated with gait speed (p=7.6×10-4). Another 

module, with top metabolites in the primary and 

secondary bile metabolism pathways (top metabolite: 

glycochenodeoxycholate), was negatively associated 

with both gait speed (p=1.4×10-3) and grip strength 

(p=1.9×10-3). 

 

DISCUSSION 
 

This study examined cross-sectional and longitudinal 

associations of untargeted serum metabolites with two 

measures of physical performance, gait speed and grip 

strength. Thirty-five and 7 metabolites robustly 

associated with gait speed and grip strength, 

respectively. Six of these metabolites associated with 

both phenotypes, suggesting both common and 

disparate biological mechanisms underlying these 

physical performance phenotypes. Effect directions in 

longitudinal analyses were generally consistent with 

those of the cross-sectional study, with 2 metabolites 

achieving significant associations with change in gait 

speed after adjusting for baseline measures. No 

metabolites achieved significant longitudinal 

associations with grip strength. We additionally 

identified two metabolite modules associated with 

physical performance measures. Many of the identified 

metabolites represent novel findings in physical 

performance metabolomics literature, and implicate 

lipids, amino acids, and nucleotides in the physiologic 

processes related to this complex phenotype. 
 

Lipid metabolites 
 

Sphingolipids, and a metabolite module with top 

metabolites in the sphingolipids pathway, were 

positively associated with gait speed in the current 

 

 
 

Figure 3. Metabolites significantly associated with grip strength. This forest plot depicts the beta estimate and 95% confidence 
interval for significant metabolites from both sex- and race-stratified analyses. 
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Table 2. Associations with longitudinal change in gait speed between baseline and follow up. 

Pathway Metabolite Beta (SE) P-Value 

Positive in Cross-Sectional Analysis   

Lipid    

 Sphingolipid Metabolism Behenoyl sphingomyelin (d18:1/22:0)* 0.15 (0.06) 0.02 

  Sphingomyelin (40:2)* 0.26 (0.07) 2.6×10-4 

Xenobiotics    

 Food Component/Plant Ergothioneine -0.05 (0.02) 9.6×10-3 

Negative in Cross-Sectional Analysis   

Amino Acid    

 Alanine and Aspartate Metabolism N-acetylaspartate (NAA) -0.13 (0.06) 0.04 

 Methionine, Cysteine, SAM and Taurine Metabolism N-formylmethionine -0.12 (0.05) 0.01 

  S-adenosylhomocysteine (SAH) -0.03 (0.01) 0.02 

 Phenylalanine Metabolism 1-carboxyethylphenylalanine -0.09 (0.02) 8.8×10-5 

Carbohydrate    

 Aminosugar Metabolism N-acetylneuraminate -0.05 (0.03) 0.04 

Nucleotide    

 Purine Metabolism, Guanine containing N2,N2-dimethylguanosine -0.05 (0.03) 0.05 

Peptide    

 Gamma-glutamyl Amino Acid Gamma-glutamylphenylalanine -0.12 (0.05) 0.03 

* Indicates compounds with Metabolomics Standards Initiative confidence level 2. 
2 unnamed metabolites are not shown. 
 

study. The three metabolite signals in this pathway 

identified in our study, behenoyl sphingomyelin 

(d18:1/22:0), sphingomyelin (40:2) and sphingomyelin 

(43:1), represent novel findings. Other sphingolipids, 

however, have previously been shown to associate with 

gait speed [10, 11] and other physical performance 

measures [11], adding credence to the robustness of our 

findings. Sphingolipids levels have also been shown to 

be decreased in multiple sclerosis [19], a disease 

characterized by demyelination, leading to axonal and 

neuronal loss [20] reductions in gait speed [21], and 

other gait abnormalities [21]. Previous research in  

older adults posits that sphingolipid metabolism may 

relate to physical performance similarly, through the 

insulation of nerve cell axons by myelin sheaths, thus 

influencing nerve conduction signals [11]. Additionally, 

sphingolipids have been previously associated with 

aging [22], neurodegeneration [23], and cognitive 

decline [24]. Further research is needed to elucidate 

whether decreased serum sphingolipid levels represent a 

potential novel clinical biomarker of demyelination in 

the general population that can be used to predict 

incident reductions in physical performance. 

 

Nucleotide metabolites 
 

We identified several modified nucleosides with known 

relationships to whole body RNA degradation, including 

N2,N2-dimethylguanosine [25], 5,6-dihydrouridine [26], 

7-methylguanine [25], N4-acetylcytidine [27], and 

pseudouridine [25]. The higher levels of these 

metabolites found in participants in our study with lower 

physical performance mirror the elevated levels of these 

metabolites in serum from human patients with 

pulmonary arterial hypertension [28] and end stage renal 

disease [27], urine from those with cancer [29], AIDS 

[29], and recent surgical stress [30], as well as urine 

from tree shrews with increased social stress [31]. 

Modified nucleosides enter circulation during stress 

[32], accelerated cell proliferation [29], and rapid tissue 

breakdown [29]. One potential hypothesis explaining the 

elevated levels of these metabolites in serum of 

participants with lower and declining physical 

performance is that the metabolites and lower physical 

performance measures are both markers of increased 

stress and tissue breakdown. While the modified 

nucleoside, pseudouridine, was inversely associated with 

gait speed (at baseline and longitudinally) and grip 

strength, its nucleoside precursor, uridine was directly 

associated baseline gait speed. Similarly to a 

metabolomics study of esophageal adenocarcinoma that 

found higher levels of pseudouridine and lower levels of 

uridine in cases compared to controls [33], one potential 

explanation is that participants with slower gait speed 

could have a higher rate of conversion of uridine to 

pseudouridine than those with faster gait speed. Further 
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study is needed to examine whether these metabolites, 

along with reductions in physical performance, represent 

early biomarkers of future declines in health status. 

 

Kidney function and aging 

 

Interestingly, all of the metabolites with inverse 

associations with physical performance measures were 

also inversely associated with kidney function in the BHS 

[18]. Many of these metabolites were also associated 

with kidney function in other populations [27, 34–37]. In 

prior study of a population with chronic kidney disease 

(CKD), CKD severity was associated with poor physical 

performance and frailty in a graded fashion [38]; 

however, the biological mechanisms leading to reduced 

physical function in CKD patients remain unknown. It is 

 

 
 

Figure 4. Correlations of metabolite modules with physical performance. Colors represent correlation strength, ranging from blue  

(-1) to red (1). * indicates compounds with Metabolomics Standards Initiative confidence level 2. 
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well known that small molecules accumulate in serum as 

kidney function declines [39]. One theory on the relation 

between kidney function and physical performance is that 

this accumulation of small molecules has a detrimental 

effect on other systems in the body [40], including those 

that govern physical performance – that declines in 

kidney function lead to declines in physical performance 

through serum metabolites. In support of this theory, two 

recent papers posit a relation between declines in kidney 

function and sarcopenia through serum metabolites  

[41, 42]; however, the extent to which these findings 

apply to other physical performance measures is unclear. 

An alternative theory is that declines in kidney function 

and declines in physical performance are both governed 

by a common ‘accelerated aging’ phenotype [38], and 

that identified common metabolites may be markers of 

accelerated aging. In our study, this theory is supported 

by the very low prevalence of CKD among the BHS 

population and the significance of the identified 

metabolites after adjustment for eGFR. This theory is 

additionally supported by shared risk factors between 

physical performance decline and CKD, such as lower 

socioeconomic status, lower physical activity, and 

increased rates of cardiovascular disease and cerebro-

vascular disease, chronic low-grade inflammation, and 

hyperglycemia [9]. In further support of this theory, 

several of our findings, that associated with both physical 

performance and kidney function, are also associated 

with aging [43–48], inflammation [49, 50], and mortality 

[51–55]. Additional research is warranted to examine the 

role of the identified metabolites in the relationship 

between reduced kidney function and declines in physical 

performance. 

 

Strengths and limitations 

 

This study has several important strengths. The 

longitudinal design allowed us to identify metabolites 

that associated with future changes in physical 

performance, while adjusting for baseline performance 

variables. Metabolites identified longitudinally are more 

likely to be relevant to the development of physical 

performance declines than metabolites identified solely 

through cross sectional analysis. To our knowledge, this 

study had a larger baseline sample size than prior 

physical performance metabolomics research, increasing 

the power to detect metabolite-phenotype associations. 

Additionally, metabolites were detected using an 

untargeted approach, thus increasing the likelihood of 

finding novel signals. To reduce the likelihood of false 

positive associations and increase the generalizability of 

the findings, only signals that achieved significance in 

the overall sample and one gender or race group, with 

consistency in effect direction and nominal significance 

in the other gender or race group, were reported here. 

While this method should minimize spurious signals, it 

also prohibits the identification of gender- or race-

specific findings. One notable limitation is that 

metabolites measured in middle-age could reflect the 

result of early life influences rather than directly 

influencing the aging process. Our study lacked external 

replication, however, we replicated our findings 

internally across gender or race. Other limitations 

include the relatively short mean follow up time of less 

than three years, use of a subset of the baseline sample 

for the longitudinal analysis, and the unknown clinical 

significance of the unnamed metabolites identified. 

Although these limitations reduced our power to detect 

longitudinal associations, several compelling temporal 

relationships were detected. Due to the age and overall 

high functioning status of the study participants, we 

were unable to examine physical performance using the 

SPPB, however, baseline SPPB information has been 

collected on these participants and changes in scores 

may be available for future studies in this population. 
 

CONCLUSIONS 
 

In summary, we identified 36 metabolites cross-

sectionally associated with physical performance 

measures, including 35 for gait speed and 7 for grip 

strength. Of these metabolites, 2 were longitudinally 

associated with declines in gait speed. These findings 

suggest important roles for sphingolipid metabolism and 

whole body RNA breakdown in declining physical 

performance in a middle-aged population. 
 

MATERIALS AND METHODS 
 

Participants 
 

The BHS is a long-term study investigating 

cardiovascular health over the life-course. From 1973 to 

2016, 7 surveys were conducted in children and 

adolescents aged 4 to 17 years, and 10 surveys were 

conducted among adults aged 18 to 51 years who had 

been examined previously as children. The BHS has 

been described in detail elsewhere [17]. Data and 

specimens collected in the recent 2013 to 2016 visit 

cycle were leveraged in our cross-sectional analysis and 

served as the baseline measures for longitudinal study 

of physical performance decline. Those missing 

baseline metabolomics (n=37), grip strength (n=17), 

gait speed (n=80) or covariable (n=17) data were 

excluded from all analyses. A total of 1,227 and  

1,164 participants remained for the cross-sectional 

metabolomics study of grip strength and gait speed, 

respectively. The longitudinal study included 282 and 

201 of these participants with repeated measures of grip 

strength and gait speed, respectively, which were 

collected an average of 2.9 years following the baseline 

examination. 
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Informed consent was obtained from all study 

participants after detailed explanation of the study. This 

study was conducted according to the principles 

expressed in the Declaration of Helsinki and was 

approved by the Tulane University Institutional Review 

Board. 

 

Metabolomics 
 

Untargeted, ultrahigh performance liquid 

chromatography-tandem mass spectroscopy (UPLC-

MS/MS) of BHS serum samples was conducted by 

Metabolon Inc. (Durham, NC) [56] using samples that 

were stored at -80°C since the 2013 to 2016 visit. 

Rigorous quality assurance was conducted, which 

included the use of blanks, blind duplicates (5% of 

samples), and standard biochemical compounds which 

were integrated into every run. Batch effects were 

assessed using principal components analysis, which 

revealed no evidence of clustering of metabolite data 

by run-days. A complete list of the metabolites 

examined and their properties is presented as 

Supplementary Data. 

 

Similar to previous analyses [57], data filtering 

excluded 213 metabolites that were below the 

detection threshold in more than 80% of samples and 

51 metabolites with a reliability coefficient <0.3 based 

on blind duplicate analysis. Among the 1,202 

metabolites passing quality control, 167 metabolites 

were below the detection threshold in 50% to 80% of 

the samples, and were analyzed as ordinal variables 

after categorization into one of three mutually 

exclusive groups: 1) below-the-detection-limit; 2) 

below the median of measured values; or 3) greater 

than or equal to the median. The remaining 1,035 

metabolites, which were above the detection threshold 

in more than 50% of samples, were analyzed as 

continuous variables, scaled to set the median of 

detected values for each metabolite equal to 1, where 

the minimum observed value was imputed for 

metabolites with below-the-detection-limit values. 

 

Outcomes and covariables 

 

Among BHS participants, phenotype and covariable 

data were collected following stringent protocols [58]. 

Gait speed, in meters per second, was determined by 

dividing six-minute walking distance by 360 seconds. 

Grip strength was measured using a Jamar hand held 

dynamometer and was averaged across both hands. 

Questionnaires were administered to obtain information 

on demographic characteristics, lifestyle risk factors, 

and personal medical history. Anthropometric measures 

were obtained by trained staff with participants in light 

clothing without shoes. During each visit, body weight 

and height were measured twice to the nearest 0.1 kg 

and 0.1 cm, respectively. The mean values of height and 

weight were used to estimate BMI, which was 

calculated as weight in kilograms divided by height in 

meters squared. BHS participants were instructed to fast 

for 12 hours prior to blood sample collection. Serum 

creatinine level was measured by Laboratory 

Corporation of America (LabCorp, Burlington, NC) 

using the kinetic Jaffe method. Estimated glomerular 

filtration rate (eGFR) was calculated using the 2009 

CKD-EPI equation [59]. 

 

Statistical analysis 
 

Characteristics of BHS participants were presented as 

means and standard deviations (SDs) for continuous 

variables and as percentages for categorical variables. 

 

Association of single metabolites with physical 

performance phenotypes 

The two physical performance measures studied were 

gait speed and grip strength. Multivariable linear 

regression models (using SAS [version 9.4; SAS 

Institute, Cary, NC] function PROC GLM) were 

employed to analyze associations between each 

metabolite and each untransformed baseline physical 

performance measure, after adjustment for age, BMI, 

eGFR, education, cigarette smoking, and alcohol 

drinking. Analyses were performed according to gender 

and race, and in an overall analysis after additional 

adjustment for gender and race. All analyses accounted 

for multiple testing using the Bonferroni method. To 

further reduce false positive findings, we relied on 

internal replication across gender or race. Metabolites 

were considered robustly significant if they were 

significant in the overall analysis, and significant in 

either gender or race with a consistent effect direction 

and nominal significance (p<0.05) in the other gender 

or race. Pairwise Pearson correlations were calculated 

between significant metabolites for each physical 

performance measure, and heatmaps were created using 

the ggplot2 and reshape R (version 3.4.3) packages. To 

account for potential confounding by clinical factors, 

we conducted a sensitivity analysis with adjustment for 

fasting glucose, systolic blood pressure, and low-density 

lipoprotein, in addition to the covariates from the main 

analysis. We additionally examined the overlap in 

significant findings between this study and the findings 

of our previous kidney function metabolomics 

publication in the BHS [18]. 

 

Longitudinal changes in gait speed and grip strength 

were calculated by subtracting baseline measures from 

follow up measures. Multivariable linear regression 

models (using SAS function PROC GLM) were also 

employed to analyze the associations between each 
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metabolite that was robustly significant in overall cross-

sectional analysis and change in each physical 

performance measure, after adjustment for the 

appropriate baseline physical performance measure, 

follow up time, age, gender, race BMI, eGFR, 

education, cigarette smoking, and alcohol drinking. Due 

to the small sample size and criteria of consistency of 

associations across race or gender groups in cross-

sectional analyses, longitudinal analyses were not 

stratified by gender or race. 

 

Association of metabolite modules with physical 

performance phenotypes 
We used weighted correlation network analysis 

(WGCNA) [60] to identify networks of highly 

correlated metabolites. WGCNA is an unsupervised 

data reduction technique that allows for dependency 

between components, which may represent the 

biological pathways of identified metabolites more 

accurately than principal components analysis [60, 61]. 

The use of WGCNA and its application to 

metabolomics studies has been previously reported [62]. 

In brief, the metabolite network was constructed as an 

adjacency matrix based on the weighted pairwise 

correlations of all metabolites [63]. Modules, defined as 

densely interconnected metabolites, were then identified 

from the network using an unsupervised hierarchical 

clustering approach [64]. For each module, an 

eigenmetabolite was generated. This measure represents 

the module’s first principal component and can be 

interpreted as its weighted average metabolite value. 

Metabolite modules were constructed using metabolite 

data for the 1,202 metabolites passing quality control 

among all study participants. 

 

Adjusted physical performance measures were created 

using the residual values generated by regressing each 

raw physical performance phenotype on gender, race, 

age, BMI, eGFR, education, cigarette smoking, and 

alcohol drinking. The correlations between each 

module (eigenmetabolite) and the adjusted physical 

performance phenotypes were then estimated. We 

employed a Bonferroni corrected alpha threshold of 

5.56×10-3 (0.05/9) to account for testing 9 metabolite 

modules. WGCNA analysis was performed using the 

WGCNA R package. The figure depicting the 

WGCNA results was created using the ggplot2 R 

package. 

 

ACKNOWLEDGMENTS 
 

We are grateful for the contribution of all staff members 

who were involved in conducting the BHS. We extend 

our sincerest gratitude to the participants of the BHS, 

many of whom have diligently participated since they 

were children. 

CONFLICTS OF INTEREST 
 

JMK is employed by Metabolon, Inc. He contributed to 

the logistics, optimization, and interpretation of the 

untargeted metabolomics. Metabolon, Inc. was not 

involved in the study design, statistical analysis, or 

interpretation of the results. 

 

FUNDING 
 

This work was supported by the National Institute on 

Aging at the National Institutes of Health under (grant 

numbers R01AG041200, R21AG051914); and partially 

supported by the National Institute of General Medical 

Sciences at the National Institutes of Health (grant 

number P20GM109036). 

 

REFERENCES 
 

1. Marcell TJ. Sarcopenia: causes, consequences, and 
preventions. J Gerontol A Biol Sci Med Sci. 2003; 
58:M911–16. 

 https://doi.org/10.1093/gerona/58.10.m911 
 PMID:14570858 

2. Abellan van Kan G, Rolland Y, Andrieu S, Bauer J, 
Beauchet O, Bonnefoy M, Cesari M, Donini LM, Gillette 
Guyonnet S, Inzitari M, Nourhashemi F, Onder G, Ritz P, 
et al. Gait speed at usual pace as a predictor of adverse 
outcomes in community-dwelling older people an 
international academy on nutrition and aging (IANA) 
task force. J Nutr Health Aging. 2009; 13:881–89. 

 https://doi.org/10.1007/s12603-009-0246-z 
 PMID:19924348 

3. Groessl EJ, Kaplan RM, Rejeski WJ, Katula JA, King AC, 
Frierson G, Glynn NW, Hsu FC, Walkup M, Pahor M. 
Health-related quality of life in older adults at risk for 
disability. Am J Prev Med. 2007; 33:214–18. 

 https://doi.org/10.1016/j.amepre.2007.04.031 
 PMID:17826582 

4. Nicholson JK, Lindon JC. Systems biology: 
metabonomics. Nature. 2008; 455:1054–56. 

 https://doi.org/10.1038/4551054a 
 PMID:18948945 

5. Montoliu I, Scherer M, Beguelin F, DaSilva L, Mari D, 
Salvioli S, Martin FP, Capri M, Bucci L, Ostan R, 
Garagnani P, Monti D, Biagi E, et al. Serum profiling of 
healthy aging identifies phospho- and sphingolipid 
species as markers of human longevity. Aging (Albany 
NY). 2014; 6:9–25. 

 https://doi.org/10.18632/aging.100630 
 PMID:24457528 

6. Cheng S, Larson MG, McCabe EL, Murabito JM, Rhee 
EP, Ho JE, Jacques PF, Ghorbani A, Magnusson M, 

https://doi.org/10.1093/gerona/58.10.m911
https://pubmed.ncbi.nlm.nih.gov/14570858
https://doi.org/10.1007/s12603-009-0246-z
https://pubmed.ncbi.nlm.nih.gov/19924348
https://doi.org/10.1016/j.amepre.2007.04.031
https://pubmed.ncbi.nlm.nih.gov/17826582
https://doi.org/10.1038/4551054a
https://pubmed.ncbi.nlm.nih.gov/18948945
https://doi.org/10.18632/aging.100630
https://pubmed.ncbi.nlm.nih.gov/24457528


 

www.aging-us.com 11925 AGING 

Souza AL, Deik AA, Pierce KA, Bullock K, et al. Distinct 
metabolomic signatures are associated with longevity 
in humans. Nat Commun. 2015; 6:6791. 

 https://doi.org/10.1038/ncomms7791 
 PMID:25864806 

7. Corona G, Polesel J, Fratino L, Miolo G, Rizzolio F, 
Crivellari D, Addobbati R, Cervo S, Toffoli G. 
Metabolomics biomarkers of frailty in elderly breast 
cancer patients. J Cell Physiol. 2014; 229:898–902. 

 https://doi.org/10.1002/jcp.24520 
 PMID:24659054 

8. Kameda M, Teruya T, Yanagida M, Kondoh H. Frailty 
markers comprise blood metabolites involved in 
antioxidation, cognition, and mobility. Proc Natl Acad 
Sci USA. 2020; 117:9483–89. 

 https://doi.org/10.1073/pnas.1920795117 
 PMID:32295884 

9. Murphy RA, Moore S, Playdon M, Kritchevsky S, 
Newman AB, Satterfield S, Ayonayon H, Clish C, 
Gerszten R, Harris TB. Metabolites associated with risk 
of developing mobility disability in the health, aging 
and body composition study. J Gerontol A Biol Sci Med 
Sci. 2019; 74:73–80. 

 https://doi.org/10.1093/gerona/glx233 
 PMID:29186400 

10. Wennberg AM, Schafer MJ, LeBrasseur NK, Savica R, 
Bui HH, Hagen CE, Hollman JH, Petersen RC, Mielke 
MM. Plasma sphingolipids are associated with gait 
parameters in the mayo clinic study of aging. J 
Gerontol A Biol Sci Med Sci. 2018; 73:960–65. 

 https://doi.org/10.1093/gerona/glx139 
 PMID:28977376 

11. Li D, Misialek JR, Huang F, Windham GB, Yu F, Alonso 
A. Independent association of plasma 
hydroxysphingomyelins with physical function in the 
atherosclerosis risk in communities (ARIC) study. J 
Gerontol A Biol Sci Med Sci. 2018; 73:1103–10. 

 https://doi.org/10.1093/gerona/glx201 
 PMID:29053806 

12. Gonzalez-Freire M, Moaddel R, Sun K, Fabbri E, Zhang 
P, Khadeer M, Salem N Jr, Ferrucci L, Semba RD. 
Targeted metabolomics shows low plasma 
lysophosphatidylcholine 18:2 predicts greater decline 
of gait speed in older adults: the baltimore longitudinal 
study of aging. J Gerontol A Biol Sci Med Sci. 2019; 
74:62–67. 

 https://doi.org/10.1093/gerona/gly100 
 PMID:29788121 

13. Zhao Q, Shen H, Su KJ, Tian Q, Zhao LJ, Qiu C, Garrett 
TJ, Liu J, Kakhniashvili D, Deng HW. A joint analysis of 
metabolomic profiles associated with muscle mass and 
strength in caucasian women. Aging (Albany NY). 2018; 
10:2624–35. 

 https://doi.org/10.18632/aging.101574 
 PMID:30318485 

14. Lu Y, Karagounis LG, Ng TP, Carre C, Narang V, Wong G, 
Tan CT, Zin Nyunt MS, Gao Q, Abel B, Poidinger M, 
Fulop T, Bosco N, Larbi A. Systemic and metabolic 
signature of sarcopenia in community-dwelling older 
adults. J Gerontol A Biol Sci Med Sci. 2020; 75:309–17. 

 https://doi.org/10.1093/gerona/glz001 
 PMID:30624690 

15. Lum H, Sloane R, Huffman KM, Kraus VB, Thompson 
DK, Kraus WE, Bain JR, Stevens R, Pieper CF, Taylor GA, 
Newgard CB, Cohen HJ, Morey MC. Plasma 
acylcarnitines are associated with physical 
performance in elderly men. J Gerontol A Biol Sci Med 
Sci. 2011; 66:548–53. 

 https://doi.org/10.1093/gerona/glr006 
 PMID:21367961 

16. Calvani R, Picca A, Marini F, Biancolillo A, Gervasoni J, 
Persichilli S, Primiano A, Coelho-Junior HJ, Bossola M, 
Urbani A, Landi F, Bernabei R, Marzetti E. A distinct 
pattern of circulating amino acids characterizes older 
persons with physical frailty and sarcopenia: results 
from the BIOSPHERE study. Nutrients. 2018; 10:1691. 

 https://doi.org/10.3390/nu10111691 PMID:30404172 

17. Berenson GS, Wattigney WA, Bao W, Srinivasan SR, 
Radhakrishnamurthy B. Rationale to study the early 
natural history of heart disease: the bogalusa heart 
study. Am J Med Sci. 1995 (Suppl 1); 310:S22–28. 

 https://doi.org/10.1097/00000441-199512000-00005 
 PMID:7503119 

18. Nierenberg JL, He J, Li C, Gu X, Shi M, Razavi AC, Mi X, Li 
S, Bazzano LA, Anderson AH, He H, Chen W, Kinchen 
JM, et al. Novel associations between blood 
metabolites and kidney function among bogalusa heart 
study and multi-ethnic study of atherosclerosis 
participants. Metabolomics. 2019; 15:149. 

 https://doi.org/10.1007/s11306-019-1613-3 
 PMID:31720858 

19. Jacob S, Al-Kandari A, Alroughani R, Al-Temaimi R. 
Assessment of plasma biomarkers for their association 
with multiple sclerosis progression. J Neuroimmunol. 
2017; 305:5–8. 

 https://doi.org/10.1016/j.jneuroim.2017.01.008 
 PMID:28284345 

20. Nafee T, Watanabe R, Fregni F. Multiple sclerosis. 
Neuromethods. Elsevier Ltd; 2018; 138:263–95. 

 https://doi.org/10.1007/978-1-4939-7880-9_8 

21. Comber L, Galvin R, Coote S. Gait deficits in people 
with multiple sclerosis: a systematic review and meta-
analysis. Gait Posture. 2017; 51:25–35. 

 https://doi.org/10.1016/j.gaitpost.2016.09.026 
 PMID:27693958 

https://doi.org/10.1038/ncomms7791
https://pubmed.ncbi.nlm.nih.gov/25864806
https://doi.org/10.1002/jcp.24520
https://pubmed.ncbi.nlm.nih.gov/24659054
https://doi.org/10.1073/pnas.1920795117
https://pubmed.ncbi.nlm.nih.gov/32295884
https://doi.org/10.1093/gerona/glx233
https://pubmed.ncbi.nlm.nih.gov/29186400
https://doi.org/10.1093/gerona/glx139
https://pubmed.ncbi.nlm.nih.gov/28977376
https://doi.org/10.1093/gerona/glx201
https://pubmed.ncbi.nlm.nih.gov/29053806
https://doi.org/10.1093/gerona/gly100
https://pubmed.ncbi.nlm.nih.gov/29788121
https://doi.org/10.18632/aging.101574
https://pubmed.ncbi.nlm.nih.gov/30318485
https://doi.org/10.1093/gerona/glz001
https://pubmed.ncbi.nlm.nih.gov/30624690
https://doi.org/10.1093/gerona/glr006
https://pubmed.ncbi.nlm.nih.gov/21367961
https://doi.org/10.3390/nu10111691
https://pubmed.ncbi.nlm.nih.gov/30404172
https://doi.org/10.1097/00000441-199512000-00005
https://pubmed.ncbi.nlm.nih.gov/7503119
https://doi.org/10.1007/s11306-019-1613-3
https://pubmed.ncbi.nlm.nih.gov/31720858
https://doi.org/10.1016/j.jneuroim.2017.01.008
https://pubmed.ncbi.nlm.nih.gov/28284345
https://doi.org/10.1007/978-1-4939-7880-9_8
https://doi.org/10.1016/j.gaitpost.2016.09.026
https://pubmed.ncbi.nlm.nih.gov/27693958


 

www.aging-us.com 11926 AGING 

22. Gonzalez-Covarrubias V, Beekman M, Uh HW, Dane A, 
Troost J, Paliukhovich I, van der Kloet FM, Houwing-
Duistermaat J, Vreeken RJ, Hankemeier T, Slagboom 
EP. Lipidomics of familial longevity. Aging Cell. 2013; 
12:426–34. 

 https://doi.org/10.1111/acel.12064 
 PMID:23451766 

23. Savica R, Murray ME, Persson XM, Kantarci K, Parisi JE, 
Dickson DW, Petersen RC, Ferman TJ, Boeve BF, Mielke 
MM. Plasma sphingolipid changes with autopsy-
confirmed lewy body or alzheimer’s pathology. 
Alzheimers Dement (Amst). 2016; 3:43–50. 

 https://doi.org/10.1016/j.dadm.2016.02.005 
 PMID:27152320 

24. Mielke MM, Bandaru VV, Haughey NJ, Rabins PV, 
Lyketsos CG, Carlson MC. Serum sphingomyelins and 
ceramides are early predictors of memory impairment. 
Neurobiol Aging. 2010; 31:17–24. 

 https://doi.org/10.1016/j.neurobiolaging.2008.03.011 
 PMID:18455839 

25. Topp H, Sander G, Heller-Schöch G, Schöch G. 
Determination of 7-methylguanine, N2,N2-
dimethylguanosine, and pseudouridine in ultrafiltrated 
serum of healthy adults by high-performance liquid 
chromatography. Anal Biochem. 1987; 161:49–56. 

 https://doi.org/10.1016/0003-2697(87)90650-6 
 PMID:2437827 

26. Topp H, Duden R, Schöch G. 5,6-dihydrouridine: a 
marker ribonucleoside for determining whole body 
degradation rates of transfer RNA in man and rats. Clin 
Chim Acta. 1993; 218:73–82. 

 https://doi.org/10.1016/0009-8981(93)90223-q 
 PMID:8299222 

27. Niwa T, Takeda N, Yoshizumi H. RNA metabolism in 
uremic patients: accumulation of modified 
ribonucleosides in uremic serum. Technical note. 
Kidney Int. 1998; 53:1801–06. 

 https://doi.org/10.1046/j.1523-1755.1998.00944.x 
 PMID:9607216 

28. Rhodes CJ, Ghataorhe P, Wharton J, Rue-Albrecht KC, 
Hadinnapola C, Watson G, Bleda M, Haimel M, Coghlan 
G, Corris PA, Howard LS, Kiely DG, Peacock AJ, et al. 
Plasma metabolomics implicates modified transfer 
RNAs and altered bioenergetics in the outcomes of 
pulmonary arterial hypertension. Circulation. 2017; 
135:460–75. 

 https://doi.org/10.1161/CIRCULATIONAHA.116.024602 
 PMID:27881557 

29. Nakano K, Nakao T, Schram KH, Hammargren WM, 
McClure TD, Katz M, Petersen E. Urinary excretion of 
modified nucleosides as biological marker of RNA 
turnover in patients with cancer and AIDS. Clin Chim 
Acta. 1993; 218:169–83. 

 https://doi.org/10.1016/0009-8981(93)90181-3 
 PMID:7508341 

30. Marway JS, Anderson GJ, Miell JP, Ross R, Grimble GK, 
Bonner AB, Gibbons WA, Peters TJ, Preedy VR. 
Application of proton NMR spectroscopy to 
measurement of whole-body RNA degradation rates: 
effects of surgical stress in human patients. Clin Chim 
Acta. 1996; 252:123–35. 

 https://doi.org/10.1016/0009-8981(96)06300-0 
 PMID:8853560 

31. Jöhren O, Topp H, Sander G, Schöch G, Fuchs E. Social 
stress in tree shrews increases the whole-body  
RNA degradation rates. Naturwissenschaften. 1991; 
78:36–38. 

 https://doi.org/10.1007/BF01134043 
 PMID:1708853 

32. Kirchner S, Ignatova Z. Emerging roles of tRNA in 
adaptive translation, signalling dynamics and disease. 
Nat Rev Genet. 2015; 16:98–112. 

 https://doi.org/10.1038/nrg3861 
 PMID:25534324 

33. Djukovic D, Baniasadi HR, Kc R, Hammoud Z, Raftery D. 
Targeted serum metabolite profiling of nucleosides in 
esophageal adenocarcinoma. Rapid Commun Mass 
Spectrom. 2010; 24:3057–62. 

 https://doi.org/10.1002/rcm.4739 
 PMID:20872639 

34. Niewczas MA, Sirich TL, Mathew AV, Skupien J, 
Mohney RP, Warram JH, Smiles A, Huang X, Walker W, 
Byun J, Karoly ED, Kensicki EM, Berry GT, et al. Uremic 
solutes and risk of end-stage renal disease in type 2 
diabetes: metabolomic study. Kidney Int. 2014; 
85:1214–24. 

 https://doi.org/10.1038/ki.2013.497 
 PMID:24429397 

35. Kimura T, Yasuda K, Yamamoto R, Soga T, Rakugi H, 
Hayashi T, Isaka Y. Identification of biomarkers for 
development of end-stage kidney disease in chronic 
kidney disease by metabolomic profiling. Sci Rep. 2016; 
6:26138. 

 https://doi.org/10.1038/srep26138 
 PMID:27188985 

36. Sekula P, Goek ON, Quaye L, Barrios C, Levey AS, 
Römisch-Margl W, Menni C, Yet I, Gieger C, Inker LA, 
Adamski J, Gronwald W, Illig T, et al. A metabolome-
wide association study of kidney function and disease 
in the general population. J Am Soc Nephrol. 2016; 
27:1175–88. 

 https://doi.org/10.1681/ASN.2014111099 
 PMID:26449609 

37. Solini A, Manca ML, Penno G, Pugliese G, Cobb JE, 
Ferrannini E. Prediction of declining renal function and 

https://doi.org/10.1111/acel.12064
https://pubmed.ncbi.nlm.nih.gov/23451766
https://doi.org/10.1016/j.dadm.2016.02.005
https://pubmed.ncbi.nlm.nih.gov/27152320
https://doi.org/10.1016/j.neurobiolaging.2008.03.011
https://pubmed.ncbi.nlm.nih.gov/18455839
https://doi.org/10.1016/0003-2697(87)90650-6
https://pubmed.ncbi.nlm.nih.gov/2437827
https://doi.org/10.1016/0009-8981(93)90223-q
https://pubmed.ncbi.nlm.nih.gov/8299222
https://doi.org/10.1046/j.1523-1755.1998.00944.x
https://pubmed.ncbi.nlm.nih.gov/9607216
https://doi.org/10.1161/CIRCULATIONAHA.116.024602
https://pubmed.ncbi.nlm.nih.gov/27881557
https://doi.org/10.1016/0009-8981(93)90181-3
https://pubmed.ncbi.nlm.nih.gov/7508341
https://doi.org/10.1016/0009-8981(96)06300-0
https://pubmed.ncbi.nlm.nih.gov/8853560
https://doi.org/10.1007/BF01134043
https://pubmed.ncbi.nlm.nih.gov/1708853
https://doi.org/10.1038/nrg3861
https://pubmed.ncbi.nlm.nih.gov/25534324
https://doi.org/10.1002/rcm.4739
https://pubmed.ncbi.nlm.nih.gov/20872639
https://doi.org/10.1038/ki.2013.497
https://pubmed.ncbi.nlm.nih.gov/24429397
https://doi.org/10.1038/srep26138
https://pubmed.ncbi.nlm.nih.gov/27188985
https://doi.org/10.1681/ASN.2014111099
https://pubmed.ncbi.nlm.nih.gov/26449609


 

www.aging-us.com 11927 AGING 

albuminuria in patients with type 2 diabetes by 
metabolomics. J Clin Endocrinol Metab. 2016; 
101:696–704. 

 https://doi.org/10.1210/jc.2015-3345 
 PMID:26684276 

38. Reese PP, Cappola AR, Shults J, Townsend RR, 
Gadegbeku CA, Anderson C, Baker JF, Carlow D, Sulik 
MJ, Lo JC, Go AS, Ky B, Mariani L, et al, and CRIC Study 
Investigators. Physical performance and frailty in 
chronic kidney disease. Am J Nephrol. 2013; 38:307–15. 

 https://doi.org/10.1159/000355568 
 PMID:24107579 

39. Sato E, Kohno M, Yamamoto M, Fujisawa T, Fujiwara K, 
Tanaka N. Metabolomic analysis of human plasma 
from haemodialysis patients. Eur J Clin Invest. 2011; 
41:241–55. 

 https://doi.org/10.1111/j.1365-2362.2010.02398.x 
 PMID:20955218 

40. Lisowska-Myjak B. Uremic toxins and their effects on 
multiple organ systems. Nephron Clin Pract. 2014; 
128:303–11. 

 https://doi.org/10.1159/000369817 
 PMID:25531673 

41. Lustgarten MS, Fielding RA. Metabolites related to 
renal function, immune activation, and carbamylation 
are associated with muscle composition in older 
adults. Exp Gerontol. 2017; 100:1–10. 

 https://doi.org/10.1016/j.exger.2017.10.003 
 PMID:29030163 

42. Sato E, Mori T, Mishima E, Suzuki A, Sugawara S, 
Kurasawa N, Saigusa D, Miura D, Morikawa-Ichinose T, 
Saito R, Oba-Yabana I, Oe Y, Kisu K, et al. Metabolic 
alterations by indoxyl sulfate in skeletal muscle induce 
uremic sarcopenia in chronic kidney disease. Sci Rep. 
2016; 6:36618. 

 https://doi.org/10.1038/srep36618 
 PMID:27830716 

43. Ruggieri M, Tortorella C, Ceci E, Paolicelli D, Solfrizzi V, 
Di Bitonto G, Pica C, Mastrapasqua M, Livrea P, Trojano 
M. Age-related changes of serum n-acetyl-aspartate in 
healthy controls. Age Ageing. 2011; 40:391–95. 

 https://doi.org/10.1093/ageing/afr021 
 PMID:21422012 

44. Zierer J, Kastenmüller G, Suhre K, Gieger C, Codd V, 
Tsai PC, Bell J, Peters A, Strauch K, Schulz H, Weidinger 
S, Mohney RP, Samani NJ, et al. Metabolomics profiling 
reveals novel markers for leukocyte telomere length. 
Aging (Albany NY). 2016; 8:77–94. 

 https://doi.org/10.18632/aging.100874 
 PMID:26797767 

45. Menni C, Kastenmüller G, Petersen AK, Bell JT, Psatha 
M, Tsai PC, Gieger C, Schulz H, Erte I, John S, Brosnan 

MJ, Wilson SG, Tsaprouni L, et al. Metabolomic 
markers reveal novel pathways of ageing and early 
development in human populations. Int J Epidemiol. 
2013; 42:1111–19. 

 https://doi.org/10.1093/ije/dyt094 
 PMID:23838602 

46. Tritsch GL, Luch JM, Evans JT, Mittelman A. Age 
dependence of human urinary pseudouridine 
excretion. Biochem Med. 1979; 22:387–90. 

 https://doi.org/10.1016/0006-2944(79)90027-9 
 PMID:533544 

47. Collino S, Montoliu I, Martin FP, Scherer M, Mari D, 
Salvioli S, Bucci L, Ostan R, Monti D, Biagi E, Brigidi P, 
Franceschi C, Rezzi S. Metabolic signatures of extreme 
longevity in northern italian centenarians reveal a 
complex remodeling of lipids, amino acids, and gut 
microbiota metabolism. PLoS One. 2013; 8:e56564. 

 https://doi.org/10.1371/journal.pone.0056564 
 PMID:23483888 

48. Tan BH, Bencsath FA, Gaubatz JW. Steady-state levels 
of 7-methylguanine increase in nuclear DNA of 
postmitotic mouse tissues during aging. Mutat Res. 
1990; 237:229–38. 

 https://doi.org/10.1016/0921-8734(90)90004-b 
 PMID:2079962 

49. Lustgarten MS, Fielding RA. Metabolites associated 
with circulating interleukin-6 in older adults. J Gerontol 
A Biol Sci Med Sci. 2017; 72:1277–83. 

 https://doi.org/10.1093/gerona/glw039 
 PMID:26975982 

50. Cerri MA, Beltrán-Nuñez A, Bernasconi S, Dejana E, 
Bassi L, Bazzoni G. Inhibition of cytokine production 
and endothelial expression of adhesion antigens by 
5’-methylthioadenosine. Eur J Pharmacol. 1993; 
232:291–94. 

 https://doi.org/10.1016/0014-2999(93)90787-i 
 PMID:8467864 

51. Mindikoglu AL, Opekun AR, Putluri N, Devaraj S, 
Sheikh-Hamad D, Vierling JM, Goss JA, Rana A, Sood 
GK, Jalal PK, Inker LA, Mohney RP, Tighiouart H, et al. 
Unique metabolomic signature associated with 
hepatorenal dysfunction and mortality in cirrhosis. 
Transl Res. 2018; 195:25–47. 

 https://doi.org/10.1016/j.trsl.2017.12.002 
 PMID:29291380 

52. Huang J, Weinstein SJ, Moore SC, Derkach A, Hua X, 
Liao LM, Gu F, Mondul AM, Sampson JN, Albanes D. 
Serum metabolomic profiling of all-cause mortality: a 
prospective analysis in the alpha-tocopherol, beta-
carotene cancer prevention (ATBC) study cohort. Am J 
Epidemiol. 2018; 187:1721–32. 

 https://doi.org/10.1093/aje/kwy017 
 PMID:29390044 

https://doi.org/10.1210/jc.2015-3345
https://pubmed.ncbi.nlm.nih.gov/26684276
https://doi.org/10.1159/000355568
https://pubmed.ncbi.nlm.nih.gov/24107579
https://doi.org/10.1111/j.1365-2362.2010.02398.x
https://pubmed.ncbi.nlm.nih.gov/20955218
https://doi.org/10.1159/000369817
https://pubmed.ncbi.nlm.nih.gov/25531673
https://doi.org/10.1016/j.exger.2017.10.003
https://pubmed.ncbi.nlm.nih.gov/29030163
https://doi.org/10.1038/srep36618
https://pubmed.ncbi.nlm.nih.gov/27830716
https://doi.org/10.1093/ageing/afr021
https://pubmed.ncbi.nlm.nih.gov/21422012
https://doi.org/10.18632/aging.100874
https://pubmed.ncbi.nlm.nih.gov/26797767
https://doi.org/10.1093/ije/dyt094
https://pubmed.ncbi.nlm.nih.gov/23838602
https://doi.org/10.1016/0006-2944(79)90027-9
https://pubmed.ncbi.nlm.nih.gov/533544
https://doi.org/10.1371/journal.pone.0056564
https://pubmed.ncbi.nlm.nih.gov/23483888
https://doi.org/10.1016/0921-8734(90)90004-b
https://pubmed.ncbi.nlm.nih.gov/2079962
https://doi.org/10.1093/gerona/glw039
https://pubmed.ncbi.nlm.nih.gov/26975982
https://doi.org/10.1016/0014-2999(93)90787-i
https://pubmed.ncbi.nlm.nih.gov/8467864
https://doi.org/10.1016/j.trsl.2017.12.002
https://pubmed.ncbi.nlm.nih.gov/29291380
https://doi.org/10.1093/aje/kwy017
https://pubmed.ncbi.nlm.nih.gov/29390044


 

www.aging-us.com 11928 AGING 

53. Rogers AJ, McGeachie M, Baron RM, Gazourian L, 
Haspel JA, Nakahira K, Fredenburgh LE, Hunninghake 
GM, Raby BA, Matthay MA, Otero RM, Fowler VG, 
Rivers EP, et al. Metabolomic derangements are 
associated with mortality in critically ill adult patients. 
PLoS One. 2014; 9:e87538. 

 https://doi.org/10.1371/journal.pone.0087538 
 PMID:24498130 

54. Hu JR, Coresh J, Inker LA, Levey AS, Zheng Z, Rebholz 
CM, Tin A, Appel LJ, Chen J, Sarnak MJ, Grams ME. 
Serum metabolites are associated with all-cause 
mortality in chronic kidney disease. Kidney Int. 2018; 
94:381–89. 

 https://doi.org/10.1016/j.kint.2018.03.008 
 PMID:29871777 

55. Yu B, Heiss G, Alexander D, Grams ME, Boerwinkle E. 
Associations between the serum metabolome and all-
cause mortality among african americans in the 
atherosclerosis risk in communities (ARIC) study. Am J 
Epidemiol. 2016; 183:650–56. 

 https://doi.org/10.1093/aje/kwv213 
 PMID:26956554 

56. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram 
E. Integrated, nontargeted ultrahigh performance 
liquid chromatography/electrospray ionization tandem 
mass spectrometry platform for the identification and 
relative quantification of the small-molecule 
complement of biological systems. Anal Chem. 2009; 
81:6656–67. 

 https://doi.org/10.1021/ac901536h 
 PMID:19624122 

57. Zheng Y, Yu B, Alexander D, Mosley TH, Heiss G, 
Nettleton JA, Boerwinkle E. Metabolomics and incident 
hypertension among blacks: the atherosclerosis risk in 
communities study. Hypertension. 2013; 62:398–403. 

 https://doi.org/10.1161/HYPERTENSIONAHA.113.01166 
 PMID:23774226 

58. Foster TA, Berenson GS. Measurement error and 
reliability in four pediatric cross-sectional surveys of 
cardiovascular disease risk factor variables—the 
bogalusa heart study. J Chronic Dis. 1987; 40:13–21. 

 https://doi.org/10.1016/0021-9681(87)90092-0 
 PMID:3492509 

59. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 
3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, 
Greene T, Coresh J, and CKD-EPI (Chronic Kidney 
Disease Epidemiology Collaboration). A new equation 
to estimate glomerular filtration rate. Ann Intern Med. 
2009; 150:604–12. 

 https://doi.org/10.7326/0003-4819-150-9-200905050-
00006 PMID:19414839 

60. Langfelder P, Horvath S. WGCNA: an R package for 
weighted correlation network analysis. BMC 
Bioinformatics. 2008; 9:559. 

 https://doi.org/10.1186/1471-2105-9-559 
 PMID:19114008 

61. Worley B, Powers R. Multivariate analysis in 
metabolomics. Curr Metabolomics. 2013; 1:92–107. 

 https://doi.org/10.2174/2213235X11301010092 
 PMID:26078916 

62. Pedersen HK, Gudmundsdottir V, Nielsen HB, 
Hyotylainen T, Nielsen T, Jensen BA, Forslund K, 
Hildebrand F, Prifti E, Falony G, Le Chatelier E, Levenez 
F, Doré J, et al, and MetaHIT Consortium. Human gut 
microbes impact host serum metabolome and insulin 
sensitivity. Nature. 2016; 535:376–81. 

 https://doi.org/10.1038/nature18646 
 PMID:27409811 

63. Yip AM, Horvath S. Gene network interconnectedness 
and the generalized topological overlap measure. BMC 
Bioinformatics. 2007; 8:22. 

 https://doi.org/10.1186/1471-2105-8-22 
 PMID:17250769 

64. Langfelder P, Zhang B, Horvath S. Defining clusters 
from a hierarchical cluster tree: the dynamic tree cut 
package for R. Bioinformatics. 2008; 24:719–20. 

 https://doi.org/10.1093/bioinformatics/btm563 
 PMID:18024473 

 

  

https://doi.org/10.1371/journal.pone.0087538
https://pubmed.ncbi.nlm.nih.gov/24498130
https://doi.org/10.1016/j.kint.2018.03.008
https://pubmed.ncbi.nlm.nih.gov/29871777
https://doi.org/10.1093/aje/kwv213
https://pubmed.ncbi.nlm.nih.gov/26956554
https://doi.org/10.1021/ac901536h
https://pubmed.ncbi.nlm.nih.gov/19624122
https://doi.org/10.1161/HYPERTENSIONAHA.113.01166
https://pubmed.ncbi.nlm.nih.gov/23774226
https://doi.org/10.1016/0021-9681(87)90092-0
https://pubmed.ncbi.nlm.nih.gov/3492509
https://doi.org/10.7326/0003-4819-150-9-200905050-00006
https://doi.org/10.7326/0003-4819-150-9-200905050-00006
https://pubmed.ncbi.nlm.nih.gov/19414839
https://doi.org/10.1186/1471-2105-9-559
https://pubmed.ncbi.nlm.nih.gov/19114008
https://doi.org/10.2174/2213235X11301010092
https://pubmed.ncbi.nlm.nih.gov/26078916
https://doi.org/10.1038/nature18646
https://pubmed.ncbi.nlm.nih.gov/27409811
https://doi.org/10.1186/1471-2105-8-22
https://pubmed.ncbi.nlm.nih.gov/17250769
https://doi.org/10.1093/bioinformatics/btm563
https://pubmed.ncbi.nlm.nih.gov/18024473


 

www.aging-us.com 11929 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Distribution of Baseline Gait Speed. 
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Supplementary Figure 2. Distribution of Baseline Grip Strength. 

 

 

 
 

Supplementary Figure 3. P-values vs. effect sizes for grip strength and gait speed among BHS participants. 
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* Indicates compounds with Metabolomics Standards Initiative confidence level 2. 
 

Supplementary Figure 4. Metabolites Significantly Associated with Gait Speed in Sex Stratified Analysis, among Female 
Participants. 
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* Indicates compounds with Metabolomics Standards Initiative confidence level 2. 
 

Supplementary Figure 5. Metabolites Significantly Associated with Gait Speed in Sex Stratified Analysis, among Male 
Participants. 
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* Indicates compounds with Metabolomics Standards Initiative confidence level 2. 
 

Supplementary Figure 6. Metabolites Significantly Associated with Gait Speed in Race Stratified Analysis, among Black 
Participants. 
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* Indicates compounds with Metabolomics Standards Initiative confidence level 2. 
 

Supplementary Figure 7. Metabolites Significantly Associated with Gait Speed in Race Stratified Analysis, among White 
Participants. 
 

 
 

Supplementary Figure 8. Metabolites Significantly Associated with Grip Strength in Sex Stratified Analysis, among Female 
Participants. 
 

 
 

Supplementary Figure 9. Metabolites Significantly Associated with Grip Strength in Sex Stratified Analysis, among Male 
Participants. 
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Supplementary Figure 10. Metabolites Significantly Associated with Grip Strength in Race Stratified Analysis, among Black 
Participants. 
 

 
 

Supplementary Figure 11. Metabolites Significantly Associated with Grip Strength in Race Stratified Analysis, among White 
Participants. 
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Supplementary Tables 
 

Supplementary Table 1. Baseline characteristics of BHS Longitudinal Study Participants (N=288). 

 Overall (N=288) 
Female Male 

Black (n=87) White (n=109) Black (n=26) White (n=66) 

Age, years, mean (SD) 48.6 (5.2) 48.0 (5.4) 49.0 (4.9) 48.7 (5.6) 49.0 (5.1) 

Post-high school education, n 

(%) 
124 (43.1) 25 (28.7) 59 (54.1) 5 (19.2) 35 (53.0) 

Smoking, n (%) 

Never 164 (56.9) 52 (59.8) 66 (60.6) 11 (42.3) 35 (53.0) 

Former 88 (30.6) 23 (26.4) 33 (30.3) 8 (30.8) 24 (36.4) 

Current 36 (12.5) 12 (13.8) 10 (9.2) 7 (26.9) 7 (10.6) 

Drinking, n (%) 

Never 56 (19.4) 26 (29.9) 19 (17.4) 5 (19.2) 6 (9.1) 

Former 87 (30.2) 26 (29.9) 32 (29.4) 9 (34.6) 20 (30.3) 

Current 145 (50.4) 35 (40.2) 58 (53.2) 12 (46.2) 40 (60.6) 

BMI, kg/m2, mean (SD) 31.0 (7.7) 34.6 (9.8) 29.3 (6.5) 29.8 (7.3) 29.6 (4.3) 

SBP, mmHg, mean (SD) 121.7 (16.0) 123.4 (20.5) 116.3 (12.8) 129.0 (13.2) 125.6 (12.2) 

Hypertension*, n (%) 172 (59.7) 62 (71.3) 49 (45.0) 21 (80.8) 40 (60.6) 

Glucose, mg/dL, mean (SD) 104.9 (33.6) 105.8 (39.9) 103.6 (35.2) 105.7 (24.9) 105.4 (23.8) 

Diabetes†, n (%) 49 (17.2) 16 (18.4) 18 (16.8) 8 (30.8) 7 (10.8) 

eGFR, mL/min/1.73 m², mean 

(SD) 
95.5 (17.1) 100.6 (19.6) 92.8 (13.7) 100.6 (17.2) 91.4 (16.6) 

CKD (GFR‡<60 mL/min/1.73 

m²), n (%) 
8 (2.8) 2 (2.3) 3 (2.8) 0 (0.0) 3 (4.6) 

SPPB score 11.1 (1.4) 10.5 (1.8) 11.4 (1.0) 10.8 (2.0) 11.4 (0.9) 

Six-minute walk distance (m) 419.4 (91.1) 369.3 (77.1) 430.5 (91.7) 422.0 (85.7) 464.6 (79.8) 

Gait speed (m/s) 1.2 (0.3) 1.0 (0.2) 1.2 (0.3) 1.2 (0.2) 1.3 (0.2) 

Grip strength (kg) 32.8 (11.6) 27.1 (6.6) 26.3 (6.1) 42.6 (9.2) 46.8 (9.5) 

 

Supplementary Table 2. Gait Speed Metabolites from Main Findings in Sensitivity Analysis Additionally Adjusting for 
Fasting Glucose, Systolic Blood Pressure, and Low-Density Lipoprotein. 

Pathway  Metabolite Beta (SE) P 

Amino Acid     

Alanine and Aspartate Metabolism  N-acetylalanine -0.17 (0.03) 4.7×10-7 

Alanine and Aspartate Metabolism  N-acetylaspartate (NAA) -0.13 (0.02) 1.3×10-7 

Glutathione Metabolism  2-aminobutyrate 0.09 (0.02) 2.3×10-7 

Leucine, Isoleucine and Valine Metabolism  Isovalerate (i5:0) 0.08 (0.02) 1.1×10-7 

Methionine, Cysteine, SAM and Taurine Metabolism  N-formylmethionine -0.14 (0.03) 2.7×10-7 

Methionine, Cysteine, SAM and Taurine Metabolism  S-adenosylhomocysteine 

(SAH) 

-0.02 (0.01) 9.7×10-5 

Phenylalanine Metabolism  1-carboxyethylphenylalanine -0.04 (0.01) 2.0×10-6 

Polyamine Metabolism  N-acetyl-isoputreanine* -0.05 (0.01) 5.00E-06 

Tryptophan Metabolism  C-glycosyltryptophan -0.05 (0.01) 4.90E-05 

Carbohydrate     
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Aminosugar Metabolism  N-acetylneuraminate -0.06 (0.01) 7.6×10-7 

Cofactors and Vitamins     

Ascorbate and Aldarate Metabolism  Oxalate 0.06 (0.01) 6.9×10-9 

Lipid     

Fatty Acid Metabolism(Acyl Carnitine)  Suberoylcarnitine (C8-DC) -0.02 (0.00) 1.0×10-7 

Lysophospholipid  1-linoleoyl-GPC (18:2) 0.17 (0.03) 5.1×10-8 

Plasmalogen  1-(1-enyl-palmitoyl)-2-

arachidonoyl-GPE (P-

16:0/20:4)* 

0.07 (0.02) 4.4×10-6 

Sphingolipid Metabolism  Behenoyl sphingomyelin 

(d18:1/22:0)* 

0.21 (0.04) 4.2×10-9 

Sphingolipid Metabolism  Sphingomyelin (40:2)* 0.18 (0.04) 2.2×10-6 

Sphingolipid Metabolism  Sphingomyelin (43:1)* 0.08 (0.01) 1.1×10-9 

Nucleotide     

Purine Metabolism, Adenine containing  N1-methyladenosine -0.29 (0.04) 2.9×10-11 

Purine Metabolism, Adenine containing  N6-

carbamoylthreonyladenosine 

-0.05 (0.01) 1.0×10-4 

Purine Metabolism, Guanine containing  7-methylguanine -0.18 (0.03) 2.6×10-8 

Purine Metabolism, Guanine containing  N2,N2-dimethylguanosine -0.08 (0.02) 8.1×10-7 

Pyrimidine Metabolism, Cytidine containing  N4-acetylcytidine -0.06 (0.01) 7.9×10-10 

Pyrimidine Metabolism, Uracil containing  5,6-dihydrouridine -0.13 (0.02) 1.9×10-10 

Pyrimidine Metabolism, Uracil containing  Pseudouridine -0.09 (0.02) 4.3×10-8 

Pyrimidine Metabolism, Uracil containing  Uridine 0.14 (0.03) 2.4×10-6 

Peptide     

Gamma-glutamyl Amino Acid  Gamma-glutamyl-2-

aminobutyrate 

0.06 (0.01) 1.9×10-7 

Gamma-glutamyl Amino Acid  Gamma-

glutamylphenylalanine 

-0.11 (0.02) 8.8×10-6 

Xenobiotics     

Bacterial/Fungal  Tartronate 0.07 (0.01) 1.7×10-9 

Chemical  4-hydroxychlorothalonil 0.06 (0.01) 2.9×10-7 

Food Component/Plant  Ergothioneine 0.06 (0.01) 1.5×10-7 

Food Component/Plant  Phytanate 0.04 (0.01) 1.5×10-7 

Unnamed     

 X - 11315 (m/z=128.07154, 

RI=1157)  

0.09 (0.01) 6.8×10-10 

 X - 18914 (m/z=266.88894, 

RI=4503)  

0.08 (0.02) 1.4×10-7 

 X - 21471 (m/z=295.11196, 

RI=4039)  

-0.03 (0.01) 1.3×10-5 

 X - 24337 (m/z=239.07856, 

RI=1980)  

-0.04 (0.01) 2.0×10-6 

 X - 24513 (m/z=149.05558, 

RI=1148)  

-0.05 (0.01) 6.4×10-5 

SE=standard error. * Indicates compounds with Metabolomics Standards Initiative confidence level 2. 
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Supplementary Table 3. Grip Strength Metabolites from Main Findings in Sensitivity Analysis Additionally Adjusting 
for Fasting Glucose, Systolic Blood Pressure, and Low-Density Lipoprotein. 

Pathway  Metabolite  Beta (SE)  P  

Amino Acid  

Polyamine Metabolism  5-methylthioadenosine 

(MTA)  

-3.79 (0.75)  5.7×10-7  

Tryptophan Metabolism  C-glycosyltryptophan  -2.08 (0.46)  6.5×10-6  

Carbohydrate  

Aminosugar Metabolism  N-acetylneuraminate  -2.09 (0.47)  9.5×10-6  

Nucleotide  

Purine Metabolism, Adenine containing  N1-methyladenosine  -10.05 (1.53)  8.3×10-11  

Pyrimidine Metabolism, Cytidine containing  N4-acetylcytidine  -1.2 (0.32)  2.0×10-4  

Pyrimidine Metabolism, Uracil containing  5,6-dihydrouridine  -4.08 (0.73)  3.1×10-8  

Pyrimidine Metabolism, Uracil containing  Pseudouridine  -3.05 (0.57)  1.1×10-7  

 

Supplementary Table 4. All associations with longitudinal change in gait speed between baseline and follow up. 

Pathway  Metabolite  Beta (SE)  P-Value  

Positive in Cross-Sectional Analysis    

Amino Acid     

Glutathione Metabolism  2-aminobutyrate  0.04 (0.03)  0.20  

Leucine, Isoleucine and Valine 

Metabolism  

Isovalerate (i5:0)  -0.01 (0.03)  0.75  

Cofactors and Vitamins     

Ascorbate and Aldarate Metabolism  Oxalate  0.03 (0.02)  0.13  

Lipid     

Lysophospholipid  1-linoleoyl-GPC (18:2)  0.06 (0.06)  0.36  

Plasmalogen  1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-

16:0/20:4)a  

-0.02 (0.04)  0.55  

Sphingolipid Metabolism  Behenoyl sphingomyelin (d18:1/22:0)a  0.15 (0.06)  0.02 *  

 Sphingomyelin (40:2)a  0.26 (0.07)  2.6×10-4 **  

 Sphingomyelin (43:1)a  0.05 (0.03)  0.07  

Nucleotide     

Pyrimidine Metabolism, Uracil 

containing  

Uridine  0.07 (0.06)  0.28  

Xenobiotics     

Bacterial/Fungal  Tartronate  0.05 (0.03)  0.08  

Chemical  4-hydroxychlorothalonil  -0.02 (0.02)  0.38  

Food Component/Plant  Ergothioneine  -0.05 (0.02)  9.6×10-3  

 Phytanate  0.02 (0.02)  0.33  

Unnamed     

 X - 11315 (m/z=128.07154, RI=1157)  0.01 (0.03)  0.70  

 X - 18914 (m/z=266.88894, RI=4503)  0.05 (0.03)  0.16  

Negative in Cross-Sectional Analysis    

Amino Acid     

Alanine and Aspartate Metabolism  N-acetylalanine  -0.12 (0.07)  0.08  

 N-acetylaspartate (NAA)  -0.13 (0.06)  0.04 *  

Methionine, Cysteine, SAM and Taurine N-formylmethionine  -0.12 (0.05)  0.01 *  



 

www.aging-us.com 11939 AGING 

Metabolism 

 S-adenosylhomocysteine (SAH)  -0.03 (0.01)  0.02 *  

Phenylalanine Metabolism  1-carboxyethylphenylalanine  -0.09 (0.02)  8.8×10-5 **  

Polyamine Metabolism  N-acetyl-isoputreaninea  -0.03 (0.02)  0.15  

Tryptophan Metabolism  C-glycosyltryptophan  -0.04 (0.02)  0.09  

Carbohydrate     

Aminosugar Metabolism  N-acetylneuraminate  -0.05 (0.03)  0.04 *  

Lipid     

Fatty Acid Metabolism(Acyl Carnitine)  Suberoylcarnitine (C8-DC)  -0.01 (0.01)  0.21  

Nucleotide     

Purine Metabolism, Adenine containing  N1-methyladenosine  -0.08 (0.11)  0.44  

Purine Metabolism, Adenine containing  N6-carbamoylthreonyladenosine  -0.04 (0.02)  0.06  

Purine Metabolism, Guanine containing  7-methylguanine  -0.06 (0.08)  0.48  

Purine Metabolism, Guanine containing  N2,N2-dimethylguanosine  -0.05 (0.03)  0.05 *  

Pyrimidine Metabolism, Cytidine 

containing  

N4-acetylcytidine  -0.02 (0.02)  0.21  

Pyrimidine Metabolism, Uracil 

containing  

5,6-dihydrouridine  -0.08 (0.04)  0.05  

Pyrimidine Metabolism, Uracil 

containing  

Pseudouridine  -0.06 (0.04)  0.09  

Peptide     

Gamma-glutamyl Amino Acid  Gamma-glutamylphenylalanine  -0.12 (0.05)  0.03 *  

Unnamed     

 X - 21471 (m/z=295.11196, RI=4039)  -0.03 (0.02)  0.10  

 X - 24337 (m/z=239.07856, RI=1980)  -0.06 (0.02)  1.70E-03  

 X - 24513 (m/z=149.05558, RI=1148)  -0.05 (0.02)  0.04  

a Indicates compounds that have not been officially confirmed based on a standard.  
* P<0.05. 
** Significant at a Bonferroni corrected level for 33 tests (P<1.5×10-3). 
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Supplementary Table 5. All associations with longitudinal change in grip strength between baseline and follow up. 

Pathway  Metabolite  Beta (SE)  P-Value  

Negative in Cross-Sectional Analysis   

Amino Acid     

Polyamine Metabolism  5-methylthioadenosine (MTA)  0.97 (0.99)  0.33  

Tryptophan Metabolism  C-glycosyltryptophan  -0.06 (0.55)  0.91  

Carbohydrate     

Aminosugar Metabolism  N-acetylneuraminate  -0.13 (0.56)  0.82  

Nucleotide     

Purine Metabolism, Adenine containing  N1-methyladenosine  -0.58 (2.18)  0.79  

Pyrimidine Metabolism, Cytidine containing  N4-acetylcytidine  -0.07 (0.35)  0.84  

Pyrimidine Metabolism, Uracil containing  5,6-dihydrouridine  -0.83 (0.87)  0.34  

Pyrimidine Metabolism, Uracil containing  Pseudouridine  -0.90 (0.81)  0.27  

 

Supplementary Table 6. Metabolites associated with both physical performance and kidney function. 

Pathway Metabolite Phenotypes 
Previous associations (PMIDs) 

Aging Inflammation Mortality 

Amino Acid       

Alanine and Aspartate Metabolism  N-acetylalanine  Gait Speed  26956554    

N-acetylaspartate (NAA)  Gait Speed  21422012     

Methionine, Cysteine, SAM and 

Taurine Metabolism  

N-formylmethionine  Gait Speed  26975982  29390044   

S-adenosylhomocysteine (SAH)  Gait Speed  29291380     

Phenylalanine Metabolism  1-carboxyethylphenylalanine  Gait Speed     

Polyamine Metabolism  5-methylthioadenosine (MTA)  Grip Strength  8467864  29390044   

N-acetyl-isoputreanine*  Gait Speed      

Tryptophan Metabolism  C-glycosyltryptophan  Gait Speed and 

Grip Strength  

23838602  26975982  29390044  

Carbohydrate       

Aminosugar Metabolism  N-acetylneuraminate  Gait Speed and 

Grip Strength  

26975982    

Lipid       

Fatty Acid Metabolism(Acyl Carnitine)  Suberoylcarnitine (C8-DC)  Gait Speed     

Nucleotide       

Purine Metabolism, Adenine containing  N1-methyladenosine  Gait Speed and 

Grip Strength  

26975982    

N6-carbamoylthreonyladenosine  Gait Speed  26975982     

Purine Metabolism, Guanine containing  7-methylguanine  Gait Speed  2079962  29390044   

N2,N2-dimethylguanosine  Gait Speed  29390044     

Pyrimidine Metabolism, Cytidine 

containing  

N4-acetylcytidine  Gait Speed and 

Grip Strength  

   

Pyrimidine Metabolism, Uracil 

containing  

5,6-dihydrouridine  Gait Speed and 

Grip Strength  

   

Pseudouridine  Gait Speed and Grip Strength  533544  29390044    

Peptide       

Gamma-glutamyl Amino Acid  Gamma-glutamylphenylalanine  Gait Speed  26797767  24498130   
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