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INTRODUCTION 
 

In 2050, there will be 84.7 million people ≥ 65 years of 

age in the U.S., almost double its estimated population 

of 43.1 million in 2012 [1]. The aging process reduces 

physiological capacity, which can result in functional 

impairment (e.g., lower lung function), chronic disease, 

and mortality. Chronological age is undoubtedly a 

major risk factor for aging-related diseases and death  

 

[2]. However, there is still great heterogeneity in the 

health outcomes of older individuals who have the same 

chronological age [3], especially for lung function, 

which has substantial heterogeneity among elderly 

individuals who are never smokers but have the same 

height and chronological age. These different 

vulnerabilities to age-related diseases and death are 

likely reflective of differences in their underlying bio-

logical aging processes [4]. The prevalence of 
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ABSTRACT 
 

Elderly individuals who are never smokers but have the same height and chronological age can have 
substantial differences in lung function. The underlying biological mechanisms are unclear. To evaluate the 
associations of different biomarkers of aging (BoA) and lung function, we performed a repeated-measures 
analysis in the Normative Aging Study using linear mixed-effect models. We generated GrimAgeAccel, 
PhenoAgeAccel, extrinsic and intrinsic epigenetic age acceleration using a publically available online 
calculator. We calculated Zhang’s DNAmRiskScore based on 10 CpGs. We measured telomere length (TL) and 
mitochondrial DNA copy number (mtDNA-CN) using quantitative real-time polymerase chain reaction. A 
pulmonary function test was performed measuring forced expiratory volume in 1 second / forced vital 
capacity (FEV1/FVC), FEV1, and maximum mid-expiratory flow (MMEF). Epigenetic-based BoA were 
associated with lower lung function. For example, a one-year increase in GrimAgeAccel was associated with 
a 13.64 mL [95% confidence interval (CI), 5.11 to 22.16] decline in FEV1; a 0.2 increase in Zhang’s 
DNAmRiskScore was associated with a 0.009 L/s (0.005 to 0.013) reduction in MMEF. No association was 
found between TL/mtDNA-CN and lung function. Overall, this paper shows that epigenetics might be a 
potential mechanism underlying pulmonary dysfunction in the elderly. 
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pulmonary dysfunction increases sharply with age 

among elderly people. Moreover, poor lung function is 

related to impaired cognition [5, 6], adverse findings on 

brain imaging [7], and increased mortality [8–11]. 

However, the underlying mechanisms of lung function 

decline with aging are not fully characterized. 

 

In the past decade, a number of biomarkers of aging 

(BoA) have emerged. For example, telomere length 

(TL) [12–14] and mitochondrial DNA copy number 

(mtDNA-CN) [15, 16] are well-known BoA and are 

related to aging-related diseases. As increasing body of 

evidence has suggested associations between aging and 

the epigenome [17], with DNA methylation (DNAm) 

levels being used to generate composite BoA [18–21]. 

The first generation of epigenetic BoA was calculated 

from DNAm levels alone, such as the Hannum 

epigenetic clock based on 71 5'-C-phosphate-G-3' sites 

(CpGs) in leukocytes [18], and the Horvath epigenetic 

clock based on 353 CpGs in multiple tissues [19]. 

Recently, the second generation of epigenetic BoA has 

been developed incorporating additional markers. For 

example, Levine et al. [4] created DNAm PhenoAge, 

based on 513 CpGs selected by predicting phenotypic 

age that were constructed using 9 clinical biomarkers 

(e.g., albumin). Lu et al. [20] generated DNAm 

GrimAge from 1,030 CpG sites that were highly 

predictable of 7 plasma proteins (e.g., DNA leptin) and 

smoking pack-years. Further, refined measures of BoA-

epigenetic age acceleration were shown to be associated 

with age-related diseases and mortality [4, 20, 22]. The 

widely used BoA on epigenetic age accelerations 

include intrinsic and extrinsic epigenetic age 

acceleration (IEAA, EEAA) [22], PhenoAgeAccel [4], 

and GrimAgeAccel [20]. Additionally, Zhang’s 

DNAmRiskScore, which was calculated based on 10 

CpG sites [21], was shown to be strongly associated 

with all-cause mortality [21]. The relationship between 

TL and lung function has been reported to be positive or 

null [23, 24]. Meanwhile, mtDNA-CN reduction is 

associated with chronic obstructive pulmonary disease 

[25]. Even epigenetic modifications have been shown to 

be associated with lung function in the elderly [26–28], 

however, no studies have investigated the associations 

between epigenetic aging biomarkers and lung function.  

 

In this present study, we hypothesized that some of 

these BoA are associated with lower lung function. To 

examine this hypothesis, we tested for associations 

between each of seven BoA and three measures of lung 

function [forced expiratory volume in 1 second (FEV1), 

forced expiratory volume in 1 second / forced vital 

capacity (FEV1/FVC), maximum mid-expiratory flow 

(MMEF)] in the Normative Aging Study. Lower lung 

function in this paper is defined as a decrease in any of 

these three studied pulmonary function parameters. 

RESULTS  
 

Descriptive results  

 

The present study included 696 elderly men with 1,070 

visits during years of 1999-2013. Of the 696 subjects, 

345 (50%) had two follow-up visits, and 29 (4%) 

completed three follow-up visits. Table 1 shows the 

personal characteristics of the participants across visits. 

The mean chronological age was 72.5, 75.2, and 76.3 in 

the first, second, and third visit, respectively. The cohort 

was well educated and made up of one third never 

smokers. Summary statistics of seven different BoA are 

presented in Table 2. The means of four age 

accelerations were close to zero, with GrimAgeAccel 

had the smallest standard deviation (4 years)  

(see Table 2).  

 

The trends of lung function and methylation based 

BoA among 29 men who had three visits are 

presented in supplementary material (Supplementary 

Figures 1 and 2). The supplementary material also 

contains trends of four DNAm ages (i.e. DNAm 

GrimAge, DNAm PhenoAge, the Horvath’s Clock, 

and the Hannum’s Clock), which increased 

consistently across visits (Supplementary Figure 3). 

We also generated four DNAm ages (i.e., DNAm 

GrimAge, DNAm PhenoAge, the Horvath’s clock, 

and the Hannum’s clock) on the Age Calculator 

website. Summary statistics of chronological age and 

four epigenetic ages are presented in Supplementary 

Table 1. Supplementary Figure 4 shows the 

distribution of chronological age and four DNAm 

ages, among which the distribution of DNAm 

GrimAge was closest to the one of chronological age 

(Supplementary Figure 4).  
 

We calculated pairwise correlations between 

chronological age and the seven BoA (Figure 1). 

According to Hung et al. [29], only correlation 

coefficient > 0.30 should be considered as "clinically 

significant" when P < 0.05. In this study, chronological 

age was not clinically associated with seven BoAs, 

while it was statistically significantly correlated with 

Zhang’s DNAmRiskScore (correlation coefficient (r) = 

0.23; P ≤ 0.001), TL (r = -0.09; P ≤ 0.01), and mtDNA-

CN (r = -0.13; P ≤ 0.01). GrimAgeAccel was clinically 

associated with PhenoAgeAccel (r = 0.33; P ≤ 0.001) 

and Zhang’s DNAmRiskScore (r = 0.54; P ≤ 0.001). 

IEAA and EEAA were also highly correlated with each 

other (r = 0.45; P ≤ 0.001). TL and MtDNA-CN was not 

clinically associated with other BoAs. We also 

computed pairwise correlations between chronological 

age and four types of epigenetic ages. All of them were 

highly correlated with each other (Supplementary 

Figure 5). For epidemiologic purposes, non-clinically
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Table 1. Personal characteristics of 696 (N=1,070) elderly white men from the Normative Aging Study, 1999-2013. 

Variable 
First visit  

(N=696) 

Second visit 

(N=345) 

Third visit 

(N=29) 
 

All visits 

(N=1,070) 

Chronological age (years)      

     Mean ± SD 72.51 ± 6.74 75.20 ± 6.39 76.34 ± 5.94  73.48 ± 6.74 

     Range  55-100 57-94 64-86  55-100 

BMI (kg/m2), mean ± SD 28.09 ± 4.10 27.81 ± 4.13 27.96 ± 4.32  28.00 ± 4.11 

Height (m), mean ± SD 1.74 ± 0.07 1.74 ± 0.07 1.74 ± 0.07  1.74 ± 0.07 

Smoking status, n (%)      

Never smokers 216 (31.03) 112 (32.46) 13 (44.83)  341 (31.87) 

Current or former smokers 480 (68.97) 233 (67.54) 16 (55.17)  729 (68.13) 

Pack-year smoked (years), mean ± 

SD 
21.33 ± 25.33 19.07 ± 23.60 14.88 ± 20.18  20.43 ± 24.68 

Years of education, mean ± SD 14.98 ± 2.97  15.17 ± 3.18 15.24 ± 3.45  15.05 ± 3.05 

Corticosteroids, n (%)  51 (7.33) 30 (8.70) 1 (3.45)  82 (7.66) 

Estimated cell types (%) [14]      

Monocytes  10.7 (1.7-25.1) 10.1 (4.0-18.7) 9.5 (6.4-12.6)  10.5 (1.7-25.1) 

B cells 1.5 (0.0-31.4) 1.2 (0.0-17.5) 0.6 (0.0-5.3)  1.4 (0.0-31.4) 

CD4+ T lymphocytes  8.7 (0.0-22.6) 8.3 (0.0-24.1) 8.5 (0.9-20.1)  8.6 (0.0-24.1) 

CD8+ T lymphocytes 8.7 (0.0-20.2) 8.5 (0.0-15.5) 8.0 (3.0-13.8)  8.6 (0.0-20.2) 

Natural killer cells 7.3 (0.0-22.1) 7.5 (0.0-25.6) 7.8 (1.6-21.6)  7.4 (0.0-25.6) 

FEV1 (mL 1st sec), mean ± SD 2500 ± 580 2540 ± 610 2680 ± 440  2520 ± 586 

FEV1/FVC, mean ± SD 0.75 ± 0.08 0.74 ± 0.07 0.73 ± 0.08  0.75 ± 0.08 

MMEF (L/s), mean ± SD 0.24 ± 0.11 0.23 ± 0.10 0.22 ± 0.08  0.24 ± 0.11 

Abbreviations: SD = standard deviation; BMI = body mass index; FEV1 = forced expiratory volume in 1 second; FVC = forced 
vital capacity; MMEF = maximum mid-expiratory flow. 
 

Table 2. Summary statistics of different biomarkers of aging in 1,070 visits among 696 elderly white men from the 
Normative Aging Study, 1999-2013. 

Variables mean ± SD 
 Percentile  

5th 50th 95th 

Epigenetic BoA 
 

   

GrimAgeAccel (years) 0.01 ± 4.07 -5.52 -0.63 7.82 

PhenoAgeAccel (years) -0.17 ± 5.99 -9.31 -0.56 10.09 

IEAA (years) -0.16 ± 5.08 -7.87 -0.62 8.26 

EEAA (years) -0.10 ± 5.81 -9.41 -0.24 9.61 

Zhang’s DNAmRiskScore -1.87 ± 0.44 -2.54 -1.90 -1.07 

Non-epigenetic BoA     

TL   1.25 ± 0.49  0.58 1.19 2.15 

mtDNA-CN  1.03 ± 0.22  0.73 1.01 1.38 

Abbreviations: SD = standard deviation; IEAA = intrinsic epigenetic age acceleration; EEAA = extrinsic epigenetic age 
acceleration; TL = Telomere length; mtDNA-CN = mitochondrial DNA copy number. 
 

significant associations may still represent important 

associations.  

 

BoA and lung function 

 

Figure 2 shows the results of the primary analyses. 

FEV1, FEV1/FVC and MMEF was significantly 

negatively associated with each of GrimAgeAccel and 

Zhang’s DNAmRiskScore. For example, each 

increment of one year in GrimAgeAccel was associated 

with a decrease in FEV1 of 13.64 mL (95% CI: -22.16 

to -5.11; FDRB-H = 0.006), in FEV1/FVC of 0.002 (95% 

CI: -0.003 to -0.001; FDRB-H = 0.022), and in MMEF of 

0.004 L/s (95% CI: -0.005 to -0.002; FDRB-H < 0.001). 

In addition, a 0.2 increase in Zhang’s DNAmRiskScore 

was associated with a decrease in FEV1 of 32.01 mL 

(95% CI: -51.26 to -12.75; FDRB-H = 0.006), in 

FEV1/FVC of 0.004 (95% CI: -0.007 to -0.001; FDRB-H 
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= 0.037), and in MMEF of 0.009 L/s (95% CI: -0.013 to 

-0.005; FDRB-H < 0.001). IEAA was related to lower 

FEV1/FVC. No association was found between lung 

function and non-epigenetic BoA.  

 

Sensitivity analyses 

 

Sensitivity analyses further validated the reliability of 

our primary findings. Results were remarkably 

consistent after excluding visits at which corticosteroid 

use was reported (N=82) (Supplementary Figure 6) or 

adjusting for coronary heart disease (31% of visits), 

stroke (8%), and diabetes (15%) (Supplementary Figure 

7). When we used inverse probability weighting to 

account for potential selection bias, the associations 

were similar to those from the primary analysis 

(Supplementary Figure 8). Subset analyses suggested 

strong negative associations of lung function and BoA 

(e.g., GrimAgeAccel, and Zhang’s DNAmRiskScore) 

among smokers, whereas almost no associations 

between BoA and lung function among never smokers 

were present (Supplementary Figure 9A and 9B). 

 

DISCUSSION  
 

In this longitudinal cohort of 696 elderly males, we 

found that GrimAgeAccel and Zhang’s 

DNAmRiskScore were associated with lower lung 

function, including FEV1, FEV1/FVC, and MMEF. 

These effects were stable in three sensitivity analyses. 

These results suggest that epigenomic variation might 

shed new insights into the pathogenesis of lower lung

 

 
 

Figure 1. Pairwise correlations between chronological age and seven biomarkers of aging. # P ≤ 0.05; ## P ≤ 0.01; ### P ≤ 0.001; * 
Clinically significant; Corr = correlation coefficient. 
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Figure 2. Associations between Seven BoAs and lung function for 696 men (1,070 visits), the NAS, 1999-2013. For 
GrimAgeAccel, PhenoAgeAccel, TL, and mtDNA-CN, we adjusted for chronological age, BMI, height, smoking status, cigarette pack-years, 
years of education, corticosteroid use, estimated cell types, and batch effects. For EEAA and IEAA, we adjusted for chronological age, BMI, 
height, smoking status, cigarette pack-years, years of education, corticosteroid use, and batch effects. For Zhang’s DNAmRiskScore, we 
adjusted for chronological age, BMI, height, smoking status, cigarette pack-years, years of education, corticosteroid use, estimated cell types, 
batch effects, and technical covariates: Non polymorphic Red, Specificity I Red, Bisulfite Conversion I Red, Bisulfite Conversion II, Extension 
Red. Abbreviations: IEAA = intrinsic epigenetic age acceleration; EEAA = extrinsic epigenetic age acceleration; TL = Telomere length; mtDNA-
CN = mitochondrial DNA copy number; BoA = biomarkers of aging; BMI = body mass index; FDRB-H = Benjamin-Hochberg false discovery rate. 
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function with age. To the best of our knowledge, this is 

the first study to examine the associations between 

epigenetic BoA and lung function. Non-epigenetic 

aging biomarkers, including TL and mtDNA-CN were 

not related to pulmonary function.  

 

According to the American Lung Association, the lung 

matures by age 20-25 years, and its function declines 

gradually after the age of 35 [30]. Poor lung function is 

often indicative of risk of diseases [5–7] and mortality 

[8–11], and hence a public health priority. In this study, 

we focused on three spirometric indices that provide 

slightly different information on lung function. FEV1 is a 

measure of overall lung function. FEV1/FVC often 

decreases due to changes in elasticity, airspace 

enlargement, and other physiologic change that occur 

with age [31]. In this study, we found that mean 

FEV1/FVC was high at 0.75 in the first visit and 

decreased slightly in the next two visits, which was 

consistent with our previous study [26]. The potential 

reasons were: 1). the subjects in NAS were free of known 

chronic medical conditions at enrollment; 2). they have 

high educational attainment and relative healthy lifestyle. 

MMEF, expressed as forced expiratory flow between 25-

75% of FVC, is determined by the size of the mid-

airways. A low flow of rate of MMEF reflects airway 

narrowing or obstruction. In the present study, TL and 

mtDNA-CN were not related to lung function, whereas 

GrimAgeAccel and Zhang’s DNAmRiskScore were 

significantly and stably associated with lower lung 

function, including FEV1, FEV1/FVC, and MMEF. IEAA 

was significantly related to lower FEV1/FVC. 

 

In keeping with the unprecedented growth rate of the 

world’s aging population, there is a clear need to better 

understand the biological aging process. TL shortens 

with each cell division [32], and thus serves as a 

measure of biological aging. Although a number of 

studies showed TL was associated with several aging-

related diseases [14, 15], we didn’t find the relationship 

between TL and lower lung function in the main 

analyses. Consistent with our finding, Andujar et al. 

[33] found no association between TL at baseline and 

FEV1 decline among 448 middle-aged adults after 11 

years of follow-up in Europe. It could be because 

telomere attrition does not have marked effects on cell 

physiology until a critical TL is reached [32], at which 

point the cell becomes senescent [34], or this result may 

be specific to lung function.  

 

Mitochondria are double-membrane-bound organelles, 

present in almost all mammalian cells. Although most 

of a cell’s DNA is contained in the cell nucleus, the 

mitochondrion has its own independent genome, which 

is more susceptible to oxidative attack due to lack of 

introns and protective histone proteins as well as limited 

capacity to repair [35]. The most important roles of 

mitochondria are the generation of adenosine 

triphosphate and regulation of oxidative stress [36]. 

Decrease in mtDNA-CN, which serves as a surrogate 

marker of mitochondrial function, has been linked with 

diseases [15, 16]. However, there are differences among 

tissues in mitochondrial number, function, protein 

composition [37], which might partly explain why the 

present study did not find an association between 

leucocyte mtDNA-CN and lung function. 

 

Several studies have suggested that epigenetic 

mechanisms like DNAm may provide explanation for 

lower lung function [26–28]. For example, Carmona et 

al. [28] found a positive association between DNAm of 

aryl-hydrocarbon receptor repressor (AHRR) gene and 

FEV1, and MMEF in the NAS and the Cooperative 

Health Research in the Region of Augsburg cohort. 

Lepeule et al. [26] showed that decreased methylation 

of genes carnitine O-acetyltransferase, coagulation 

factor-3, and toll-like receptor 2 was associated with 

lower lung function in the NAS.  

 

Over the last six years, several epigenetic BoA have 

been shown associated with health [35, 36, 38, 39]. The 

first generation of epigenetic BoA was developed to 

predict chronological age (correlation coefficients > 

0.9), such as the Hannum’s clock, which was based on 

71 CpG sites from adults’ blood DNA [18]. Instead of a 

single-tissue DNAm aging biomarker, Horvath et al. 

[19] created the Horvath’s clock based on 353 CpGs 

using over 30 different tissue and cell types collected 

from children and adults. Nevertheless, there are two 

main limitations of the first generation of BoA. First, 

while they exhibit statistically significant associations 

with many age-related diseases [38, 39], the effect sizes 

are typically small or moderate [4]. Second, only weak 

associations with clinical measures of physiological 

dysregulation were observed [35, 36].  
 

In the interest of obtaining more powerful DNAm-based 

estimators of epigenetic BoA, Levine et al. [4] developed 

DNAm PhenoAge based on 513 CpGs, which derived 

from clinical biomarkers. While the first generation 

selects CpGs to optimize prediction of chronological age, 

the CpGs in DNAm PhenoAge is optimized to predict a 

multi-system proxy of physiological dysregulation (i.e., 

phenotypic aging). In doing so, the investigators were able 

to not only capture CpGs that exhibited strong 

correlations with chronological age, but those that capture 

variations in the risk of death and diseases among same 

aged individuals [4].  

 

Recently, Lu et al. [20] employed a novel two-stage 

procedures and calculated DNAm GrimAge, which is a 

linear combination of chronological age, sex, DNAm-
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based surrogate biomarkers, and smoking pack-years. 

Compared with DNAm PhenoAge, DNAm GrimAge 

includes more clinical biomarkers, such as cardiovascular 

disease related plasma proteins (e.g. C-reactive protein, 

and growth differentiation factor-15). Hence, DNAm 

GrimAge outperforms all other DNAm-based bio-

markers, on a variety of health-related metrics [20].  

 

Since chronological age was highly correlated with 

epigenetic ages (Supplementary Figure 5 in the 

supplementary material), we used the corresponding age 

accelerations, which are new indices of accelerated 

biological aging and display a high risk of various 

health conditions (e.g., lung cancer, all-cause mortality, 

Parkinson’s disease, and Alzheimer’s disease) [22, 36, 

39, 40] to investigate the relationship between 

epigenetic BoA and lung function in this study. IEAA is 

defined as the residual resulting from regressing the 

Horvath’s clock on chronological age and blood cell 

count estimates. By definition, IEAA does not depend 

on chronological age or on blood cell counts [22]. 

EEAA is calculated in three steps: i) calculation of the 

Hannum’s clock; ii) inclusion the blood cell types to 

generate the age estimate (called BioAge4 in epigenetic 

clock software); iii) calculation the residual from a 

univariate model regressing BioAge4 on chronological 

age [22]. EEAA captures age-related changes in blood 

cell types. Moreover, IEAA and EEAA, by definition, 

are not correlated (r<0.01) with chronological age. 

 

GrimAgeAccel is the corresponding raw residual in the 

linear regression model with DNAm GrimAge 

regressed on chronological age (i.e. the difference 

between the observed value of DNAm GrimAge minus 

its expected value) [20]. Similarly, PhenoAgeAccel is 

the residual calculated by a linear regression model in 

which DNAm PhenoAge is the outcome, and 

chronological age is the independent variable [4]. A 

positive value of GrimAgeAccel/PhenoAgeAccel 

indicates that the biological age of the observation is 

higher than expected based on chronological age. 

GrimAgeAccel and PhenoAgeAccel, which by 

definition, are not correlated (r<0.01) with chrono-

logical age. To date, only limited studies have 

investigated the relationship between epigenetic age 

acceleration and pulmonary health. For instance, Levine 

et al. [36] found that IEAA was significantly associated 

with lung cancer incidence (hazard ratio: 1.5, P = 0.003) 

among 2,029 females in the Women’s Health Initiative. 

 

Unlike the above epigenetic BoA, which are in units of 

years, Zhang’s DNAmRiskScore is a continuous risk 

score ranging from -4 to 0. Zhang et al. [21] developed 

this risk score based on ten CpG sites. The 

DNAmRiskScore is a predictor of all-cause mortality. 

Even though it includes only 10 CpGs, Zhang’s 

DNAmRiskScore had significantly and stable negative 

associations with lung function in our analyses. To 

understand this, we investigated the common CpG sites 

among different epigenetic BoA. Since DNAm GrimAge 

has been patented, Liu et al. could not release the 1,030 

CpG identifiers. We found that DNAm PhonoAge had 41 

CpGs in common with the Horvath’s clock, and 6 CpGs 

in common with the Hannum’s clock. The Horvath’s 

clock shared 6 CpG sites with the Hannum’s clock. 

However, Zhang’s DNAmRiskScore didn’t share any 

CpGs with the other three BoA [4, 18, 19, 21]. 

 

To further explore Zhang’s DNAmRiskScore, we 

investigated the genes where these CpG sites are located. 

Interestingly, one of the 10 CpGs (cg05575921) maps to 

the AHRR gene. Recently, studies have shown that hypo-

methylation in AHRR at cg05575921 not only strongly 

reflects smoking history, but relates to lower lung function 

[41], Additionally, it predicts future smoking-related 

mortality [42]. Another CpG site (cg19572487) maps to 

the retinoic acid receptor alpha gene, which plays an 

important role in various human cancers such as lung 

cancer [35, 39]. Moreover, both cg05575921 and 

cg19572487 are not contained in the other three 

epigenetic BoA in the present study (We were not able to 

investigate the 1,030 CpGs involved in DNAm GrimAge 

due to the patent issue as mentioned above). 

 

For smoking-stratified analysis, some epigenetic BoA 

were associated with lower lung function in ever smokers 

(current and former). The subgroup analyses indicate that 

the significant associations between lower lung function 

and BoA were evident only among smokers. With aging, 

lung function experiences a progressive decrease due to 

changes in physiology and structure in the lung. In the 

present study, among never smokers, the lung function 

decline was mainly associated with chronological age, 

BMI, and height; whereas among smokers, the impaired 

pulmonary function was related to pack-years and 

epigenetic BoA. These findings indicate that smoking 

status may result in significant abnormal alteration in age-

related genes. Epigenomic variation may help to explain 

features of lower lung function and related 

pathophysiology in smokers. Additionally, the findings 

support the importance of smoking cessation, especially 

for elderly people. 

 

Several study limitations should be noted. First, our 

findings are based on an elderly cohort of white males. 

Hence, additional studies involving diverse demo-

graphic groups (younger or women) will be helpful to 

complement our conclusions. Second, we used an old 

spirometer to measure pulmonary health (it was not 

replaced to ensure continuity of the measurements). 

However, the acceptability of spiro-grams was judged 

according to American Thoracic Society/European 
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Respiratory Society criteria [43] and the spirometric 

values were adjusted by body temperature and pressure 

[44]. Third, we cannot rule out unmeasured 

confounding. However, we used existing literature and 

a priori knowledge of clinical relevance to adjust for 

potential confounders.  

 

The major strengths in the study are the following: First, 

we investigated different types of BoA, including non-

epigenetic- and epigenetic-based measures. Therefore, 

our work is based on multifaceted analyses of the 

associations between age estimators and lung function. 

Second, this evidence not only sheds new light into 

pathogenesis and susceptibility to lower lung function, 

but since DNAm changes are reversible, epigenetic 

BoA might be useful for identifying anti-aging 

interventions in the lung, especially for elderly smokers. 

 

In conclusion, DNAm GrimAge, and Zhang’s 

DNAmRiskScore were associated with lower lung 

function. TL and mtDNA-CN were not related to 

pulmonary impairment. Epigenetic mechanisms such as 

DNAm may provide further explanation for decreases 

in lung function as individual age.  

 

MATERIALS AND METHODS  
 

Study population  
 

The Normative Aging Study is a closed cohort 

established by the U.S. Veterans Administration in 1963 

[45]. It enrolled 2,280 men volunteers living in the 

Boston area, aged between 21-80 years, who were free 

of known chronic medical conditions at enrollment. The 

study population had undergone clinical examinations 

every 3 to 5 years. These examinations took place in the 

morning after an overnight fast. Data on demography, 

health status, mediation use, and blood sample were 

collected at each visit.  

 

We narrowed down our analyses to visits with DNA 

samples, which were collected from 1999 to 2013 

[46]. To reduce study heterogeneity, those who were 

non-white (3%) were excluded. Subjects with a 

diagnosis of leukemia (n=11) were also be removed, 

due to its potential influence on DNAm [19]. This 

study was approved by the Institutional Review 

boards of the Department of Veterans Affairs and the 

Harvard TH Chan School of Public Health. All 

participants provided their written informed consent. 

The flowchart of our study participants is shown in 

Figure 3. 

 

Pulmonary health measures 
 

Spirometry was assessed in the standing position with a 

nose clip using a Collins Survey Spirometer with Eagle 

II Microprocessor (Warren E. Collins, Braintree, 

Massachusetts), and a protocol that adhere to American 

Thoracic Society standards [44]. Acceptability of 

spirograms was judged according to American Thoracic 

Society/European Respiratory Society criteria [43]. 

 

 
 

Figure 3. Flowchart of study participants. 
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A minimum of three acceptable spirograms was 

obtained, of which at least two were reproducible within 

5% for FVC, and FEV1. Spirometric values were 

adjusted by body temperature and pressure [44]. 

 

BoA measures 

 

Epigenetic BoA 
DNA samples were extracted from the buffy coat of 

whole blood collected from each visit using the QIAamp 

DNA Blood Kit (Qiagen, CA, USA) between 1999 and 

2013. To ensure a similar age distribution and avoid 

confounding across plates, we randomized samples 

based on a two-stage age stratified algorithm [47]. We 

measured DNAm using the Illumina Infinium 

HumanMethylation450 BeadChip (Infinium HD 

Methylation protocol, Illumina, San Diego, CA, USA), 

which includes ~ 485, 000 CpGs at a single nucleotide 

resolution. In the quality control step, we removed 

samples with a detection p-value < 0.01 based on an 

estimation of the background distribution using  

non-specific fluorescence [48], and corrected for dye-

bias [49].  

 

In the website of New Methylation Age Calculator 

(https://dnamage.genetics.ucla.edu/new), we uploaded 

our methylation data file and sample annotation file. We 

selected “Normalize Data”, and “Advanced Analysis” 

before submitting our data. We acquired four measures 

of BoA - epigenetic age accelerations (i.e. 

GrimAgeAccel,  PhenoAgeAccel, EEAA, IEAA), and 

four DNAm ages (i.e. DNAm GrimAge, DNAm 

PhenoAge, the Hannum’s clock, the Horvath’s clock) 

via email, which was used to register in the website.  

 
Zhang’s DNAm RiskScore was calculated based on 10 

selected CpGs. The formula [21] is: cg01612140*(-

0.38253) + cg05575921*(-0.92224) + cg06126421*(-

1.70129) + cg08362785*(2.71749) + cg10321156*(-

0.02073) + cg14975410*(-0.04156) + cg19572487*(-

0.28069) + cg23665802*(-0.89440) + cg24704287*(-

2.98637) + cg25983901*(-1.80325). 

 
Non-epigenetic BoA 
We measured leukocyte TL by quantitative real-time 

polymerase chain reaction [50]. Relative leukocyte TL 

was calculated using a method previously described [12, 

13]. Briefly, it is calculated as the ratio of the telomere 

(T) repeat copy number to a single-copy gene (S) copy 

number (T:S ratio) in a given sample, and reported as 

relative units expressing the ratio between TL in the test 

DNA and TL in a DNA pool used to generate a stand 

curve in each PCR run. We ran all samples in 

triplicates, and the average of the three T measurements 

was divided by the average of the three S measurements 

to calculate the average T:S ratio.  

For mitochondrial DNA copy number (mtDNA-CN), 

we also adapted a real-time polymerase chain reaction 

and quantified it using mtDNA 12S ribosomal RNA 

TaqMan probe, as described in detail previously [51]. 

We adapted a multiplex RT-PCR to measure mtDNA 

content [52]. The mtDNA 12 S ribosomal ribonucleic 

acid TaqMan (Applied Biosystems, Waltham, 

Massachusetts) probe (6FAM-5′ TGCCAGCCAC 

CGCG 3′-MGB) was used to measure mtDNA-CN. The 

sequences of primers used for amplification in mtDNA 

were mtF805 (5′CCACGGGAAACAGCAGTGATT3′) 

and mtR927 (5′CTATTGACTTGGGTTAAT 

CGTGTGA3′). All samples were run in triplicate. The 

mean of the three measurements was used for statistical 

analyses.  

 

Statistical analysis 
 

Separate linear mixed-effect models were applied to 

estimate the associations between each BoA and lung 

function, with subject-specific intercept to account for 

repeated estimation of lung function. For outcome Y  ij 

representing either FEV1, FEV1/FVC or MMEF for 

subject i on occasion j, the model is  
 

0 1 2 2Y BoA X ,ij i ij ij p pij ijX             (1) 

 

where β0 is the intercept, µi is the random intercept for 

participant i; β1 is the association between a chosen 

BoA measure and lung function for that subject on that 

occasion; X2ij to Xpij represent the p-1 covariates, the 

selection of which differed slightly depending on the 

measure of BoA used in the analysis (see below). Effect 

estimates are expressed per one year increase in 

GrimAgeAccel / PhenoAgeAccel / IEAA / EEAA, or 

0.2 increase in Zhang DNAmRiskScore / mtDNA-CN, 

or 1 increase in TL. 

 

We selected the fundamental covariates a priori: 

chronological age, body mass index (BMI), height, 

smoking status [never smokers who never smoked 

before versus former or current smokers)], cigarette 

pack-years, years of education, corticosteroid use, 

estimated cell types (CD4+ T lymphocytes, CD8+ T 

lymphocytes, natural killer cells, B cells, and 

monocytes) derived by the method of Houseman et al. 

[53], batch effects for all BoA except for IEAA which 

measures “pure” epigenetic aging effects that are not 

confounded by differences in blood cell counts, and 

EEAA which is accounted for cell types in the 

calculation steps [22]. 

 

For Zhang’s DNAmRiskScore, which was calculated 

from the formula (1), we additionally adjusted for 

important technical covariates because normalization on 

the methylation data might diminish biologic signals. 

https://dnamage.genetics.ucla.edu/new
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Therefore, we included important technical covariates 

from the control metrics monitoring the performance of 

various experimental steps [54]. The potential technical 

covariates included time when DNA methylation 

measures were performed and experimental parameters 

including Staining Green, Staining Red, Extension 

Green, Extension Red, Hybridization High Medium, 

Hybridization Medium Low, Target Removal 1, Target 

Removal 2, Bisulfite Conversion I Green, Bisulfite 

Conversion I Red, Bisulfite Conversion II, Specificity I 

Green, Specificity I Red, Specificity II, Non 

Polymorphic Green, and Non Polymorphic Red. We 

used elastic-net regularized generalized linear model 

and selected five important technical covariates: Non 

polymorphic Red, Specificity I Red, Bisulfite 

Conversion I Red, Bisulfite Conversion II, Extension 

Red. 

 

Statistical analysis were performed using R (3.5.1) with 

“lme4” package (linear mixed-effect model) and 

“glmnet” package (lasso and elastic-net regularized 

generalized linear model). To adjust for multiple 

comparisons, we applied Benjamin-Hochberg false 

discovery rate (FDRB-H) and set the false positive 

threshold as 0.05 [55].  

 

Sensitivity analyses  
 

We repeated the models in several different ways to 

conduct sensitivity analyses. First, we excluded visits at 

which corticosteroid use was reported (N=82); second, 

we adjusted models for chronic diseases (coronary heart 

diseases, stroke, and diabetes) when their DNA samples 

were collected; third, to adjust for the possibility that 

healthier men are more likely to return for subsequent 

exams, we applied inverse probability weighting [12] 

using logistic regression to calculate the probability of 

having a subsequent visit given chronological age, 

education, BMI, blood pressure, smoking status, 

cigarette pack years, alcohol consumption, C-reactive 

protein, asthma, chronic bronchitis, and emphysema at 

previous visit. Finally, we divided the subjects into two 

groups based on their smoking status, and tested the 

BoA-lung function associations separately. One groups 

were subjects who never smoked before (never 

smokers), and the other one were subjects who were 

former or current smokers.  
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Supplementary Figure 1. The trend of methylation based BoAs over three visits among 29 men. 
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Supplementary Figure 2. The trend of lung function over three visits among 29 men. 
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Supplementary Figure 3. The trend of four biological ages over three visits among 29 men. 
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Supplementary Figure 4. Distribution of chronological age and four epigenetic ages. 
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Supplementary Figure 5. Pairwise correlations between chronological age and four epigenetic ages. ### P ≤ 0.001; * Clinically 
significant; Corr = correlation coefficient. 
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Supplementary Figure 6. Sensitivity analyses: Associations between seven BoAs and lung function after removing visits at 
which corticosteroid use was reported, the Normative Aging Study, 1999-2013. Abbreviations: IEAA = intrinsic epigenetic age 
acceleration; EEAA = extrinsic epigenetic age acceleration; TL = Telomere length; mtDNA-CN = mitochondrial DNA copy number; BoA = 
biomarkers of aging; BMI = body mass index; FDRB-H = Benjamin-Hochberg false discovery rate 
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Supplementary Figure 7. Sensitivity analyses: Associations between seven BoAs and lung function additionally adjusting for 
coronary heart disease, stroke, and diabetes, the Normative Aging Study, 1999-2013. Abbreviations: IEAA = intrinsic epigenetic 
age acceleration; EEAA = extrinsic epigenetic age acceleration; TL = Telomere length; mtDNA-CN = mitochondrial DNA copy number; BoA = 
biomarkers of aging; BMI = body mass index; FDRB-H = Benjamin-Hochberg false discovery rate. 
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Supplementary Figure 8. Sensitivity analyses: Associations between seven BoAs and lung function additionally accounting 
for potential selection bias due to follow-up loss, the Normative Aging Study, 1999-2013. Abbreviation: IEAA = intrinsic epigenetic 
age acceleration; EEAA = extrinsic epigenetic age acceleration; TL = Telomere length; mtDNA-CN = mitochondrial DNA copy number; BoA = 
biomarkers of aging; BMI = body mass index; FDRB-H = Benjamin-Hochberg false discovery rate. 
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Supplementary Figure 9A. Sensitivity analyses: Associations between seven BoAs and lung function for ever smokers (729 
visits, 481 men), the Normative Aging Study, 1999-2013. Abbreviations: IEAA = intrinsic epigenetic age acceleration; EEAA = extrinsic 
epigenetic age acceleration; TL = Telomere length; mtDNA-CN = mitochondrial DNA copy number; BoA = biomarkers of aging; BMI = body 
mass index; FDRB-H = Benjamin-Hochberg false discovery rate. 
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Supplementary Figure 9B. Sensitivity analyses: Associations between seven BoAs and lung function for never smokers (341 
visits, 215 men), the Normative Aging Study, 1999-2013. Abbreviations: IEAA = intrinsic epigenetic age acceleration; EEAA = extrinsic 
epigenetic age acceleration; TL = Telomere length; mtDNA-CN = mitochondrial DNA copy number; BoA = biomarkers of aging; BMI = body 
mass index; FDRB-H = Benjamin-Hochberg false discovery rate.  
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Supplementary Table 
 

 

Supplementary Table 1. Summary statistics of chronological age and different DNAm ages in 1, 070 visits among 696 elderly 
white men from the Normative Aging Study, 1999-2013. 

Variable mean ± SD 
 Percentile  

5th 50th 95th 

Chronological Age (years)  73.48 ± 6.74 63.00 73.00 85.00 

Epigenetic aging  
 

   

DNAm GrimAge (years) 72.72 ± 6.53 62.25 72.27 83.74 

DNAm PhenoAge (years) 65.45 ± 7.72 53.24 65.21 78.13 

Horvath’s clock (years) 73.57 ± 7.40 62.54 72.99 86.43 

Hannum’s clock (years) 77.47 ± 6.97 66.54 77.44 89.24 

Abbreviations: SD = standard deviation; TL = Telomere length; mtDNA-CN = mitochondrial DNA copy number. 
 


