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INTRODUCTION 
 

Aging is accompanied by dysregulated immune responses 

that result in high susceptibility to various diseases  

[1–3]. It is characterized as immunosenescence, which 

involves a gradual deterioration of immunity as well as 

enhanced inflammatory responses [4, 5]. In particular, T 

cell aging is considered to be a prominent contributor to 

age-associated-immune dysregulation [6, 7]. 

 

Co-stimulatory and co-inhibitory molecules are crucial 

for regulating T cell activation, differentiation, effector 

function and survival [8]. Loss of some co-stimulatory 

receptors, such as CD28 and CD27, is one of the  

most consistent immunological markers of T cell aging  

 

[9, 10]. Co-inhibitory molecules also play important 

roles in T cell aging. In murine models as well  

as in humans, programmed death-1 (PD-1), T-cell 

immunoglobulin domain and mucin domain 3 (TIM-3), 

lymphocyte-activation gene 3 (LAG-3), cytotoxic  

T-lymphocyte-associated protein 4 (CTLA-4), and 

tyrosine-based inhibitory motif (ITIM) domain (TIGIT) 

were found to be upregulated during aging [11–14]. 

These findings suggest that suppressive pathways 

contribute to immunosenescence. However, the 

mechanism that regulates enhanced inflammatory 

responses of T cells has not been established. 

Additionally, the effects of newly identified co-

signaling molecules during aging needs to be 

investigated. 
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ABSTRACT 
 

Aging is associated with immune dysregulation, especially T cell disorders, which result in increased susceptibility to 
various diseases. Previous studies have shown that loss of co-stimulatory receptors or accumulation of co-inhibitory 
molecules play important roles in T cell aging. In the present study, CD70, which was generally regarded as a 
costimulatory molecule, was found to be upregulated on CD4+ and CD8+ T cells of elderly individuals. Aged CD70+ T 
cells displayed a phenotype of over-activation, and expressed enhanced levels of numerous inhibitory receptors 
including PD-1, 2B4 and LAG-3. CD70+ T cells from elderly individuals exhibited increased susceptibility to apoptosis 
and high levels of inflammatory cytokines. Importantly, the functional dysregulation of CD70+ T cells associated with 
aging was reversed by blocking CD70. Collectively, this study demonstrated CD70 as a prominent regulator involved 
in immunosenescence, which led to defects and overwhelming inflammatory responses of T cells during aging. These 
findings provide a strong rationale for targeting CD70 to prevent dysregulation related to immunosenescence. 
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CD70 is the sole ligand for co-stimulatory receptor CD27 

[15]. Thus, it was generally considered as a stimulatory 

molecule. It is expressed on antigen presenting cells 

(APCs), epithelial cells, mature dendritic cells, and many 

types of tumor cells [16–20]. However, recent studies 

indicated T cell-derived CD70 as an inhibitory molecule in 

patients with B-cell non-Hodgkin’s lymphoma and murine 

models of inflammatory bowel disease or allogeneic graft-

versus-host disease [21, 22]. Herein, we assessed the role 

of CD70 in T cell immunosenescence using blood samples 

from healthy individuals. Overall, this study suggests that 

CD70 upregulation is an important process associated with 

T cell aging, which leads to defects and overwhelming 

inflammatory responses of T cells. 

 

RESULTS 
 

Age-related CD70 accumulation in CD4+ and CD8+ 

T cells 

 

To investigate the potential role of CD70 signaling in 

T-cell aging, we examined the expression of CD70 on 

T cells from 217 healthy adults using flow cytometry 

(Table 1). The results showed that CD70-expressing 

CD4+ and CD8+ T cells accumulated with aging. The 

frequencies of CD70+ fractions among CD4+ and 

CD8+ T cells from the elderly (61-80 years) were 

significantly higher than those from young (21-30 and 

31-40 years) and middle-aged individuals (41-50 and 

51-60 years; Figure 1A–1C). Additionally, middle-

aged individuals showed higher expression of CD70 

as compared to young individuals. Correlation 

analysis showed a strong correlation of CD70 

expression on CD4+ and CD8+ T cells with age (CD4: 

r = 0.5118, p < 0.0001; CD8: r = 0.6244, p < 0.0001; 

Figure 1D–1E). 

 

CD70 was up-regulated on each subset of circulating 

T cells during aging 
 

Since previous studies including ours reported an 

expansion of antigen-experienced T cells in the elderly 

population [14, 23], we investigated whether 

heterogeneous T cell subsets expressed different levels 

of CD70 in this study. Based on the expression of 

CD45RA and CCR7, the T cells were divided into four 

subsets: naïve T cells (TN, CCR7+CD45RA+), central 

memory T cells (TCM, CCR7+CD45RA-), effector 

memory T cells (TEM, CCR7-CD45RA-) and terminally 

differentiated effector cells (TEMRA, CCR7-CD45RA+). 

Consist with previous studies, the frequencies of CD4+ 

and CD8+ TN cells were remarkably decreased with age, 

along with a dramatic increase in the frequencies of 

CD4+ TCM cells or CD8+ TCM, TEM and TEMRA cells 

(Supplementary Figure 1). The TCM, TEM, and TEMRA 

subsets of both CD4+ and CD8+ T cells, known as 

antigen-experienced T cells, expressed higher levels of 

CD70 than TN cells regardless of age (Figure 2). Also, 

CD70 expression was substantially increased in each T 

cell subset of CD4+ and CD8+ cells from older subjects 

as compared to young and middle-aged subjects (Figure 

2). Thus, an elevated proportion of CD70+ fractions 

among CD4+ and CD8+ cells in elderly individuals was 

not only a result of the higher number of antigen-

encountered T cells, but also the age-related increase of 

CD70 expression. Collectively, these results showed 

that CD70 up-regulation is a common characteristic of 

T cell immunosenescence. 

 

Aged CD70+ T cells displayed a phenotype of over-

activation and exhaustion 

 

In order to characterize the phenotype of CD70+ T cells 

in elderly individuals, we examined the expression 

levels of multiple activation markers, co-stimulatory 

and co-inhibitory molecules on the CD70+ and CD70- 

fractions of T cells. 

 

First, we assessed the frequency of activated T cells by 

detecting the co-expression of HLA-DR and CD38. The 

data showed a higher percentage of HLA-DR+ CD38hi T 

cells in the CD70+ fraction than in CD70- T cells 

regardless of age (Figure 3A, 3B and Supplementary 

Figure 2A). Analysis of the entire cohort demonstrated 

a close correlation between CD70 expression and the 

frequencies of activated CD4+ and CD8+ T-cells 

(Supplementary Figure 2D). Next, CD70+ T cells of all 

ages showed lower expression of co-stimulatory 

molecules CD28 and CD27 as compared to CD70- 

fractions, indicating immune incompetence (Figure 3C–

3F, Supplementary Figure 2B–2C), and expression of 

CD28 and CD27 on CD4+ T cells was negatively 

correlated with CD70 expression (Supplementary 

Figure 2E–2F). Finally, we observed significantly 

increased expressions of co-inhibitory molecules 

including PD-1, 2B4, and LAG-3 on CD70+ CD4+ and 

CD8+ T cells as compared to CD70- T cells in elderly 

individuals (Figure 4A–4F). Moreover, higher level of 

CD160 expression was only found on CD70+ CD4+ T 

cells as compared to CD70- subsets in elderly 

individuals (Figure 4G–4H). Similar results were 

observed in CD70+ T cells from the young and middle-

aged individuals (Supplementary Figure 3A–3D). 

Additionally, expression of CD70 was strongly 

correlated with 2B4, CD160 or LAG-3 frequencies, but 

not with PD-1 frequencies (Supplementary Figure 3E–

3H). In contrast, CD70+ T cells from elderly individuals 

expressed comparable levels of TIGIT and TIM-3 with 

CD70- T cells (Supplementary Figure 4). 

 

Overall, these results indicated an over-activated and 

consequently exhausted status of aged CD70+ T cells. 
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Table 1. Characteristics of subjects in this study. 

parameters 
Total 20~30 31~40 41~50 51~60 61~80 

P Value 
(n=217) (n=39) (n=56) (n=36) (n=34) (n=52) 

Gender       
 

Male 94 18 29 14 14 19 0.5433 

Female 123 21 27 22 20 33  

Age, years       
 

Median 47 27 36 45 55 70 0.2071 

IQR 34-60 25-29 34-37 43-48 53-59 64-74  

A total of 217 healthy adults were recruited, including 94 males and 123 females. Their median age was 45, and 34-60 adults 
were in every group. The Chi-square test demonstrated that the gender was balanced among all the groups (P = 0.5433). Age 
was described by median and interquartile rage (IQR) and analyzed using Kruskal-Wallis test. 

 

 
 

Figure 1. CD70-expressing T cells accumulate with age. Flow cytometry analysis of CD70 expression on PBMCs from healthy controls of 
different ages. (A) Representative flow cytometric plots show the expression of CD70 gated on CD4+ and CD8+ T cells from five healthy donors in 
different age groups. (B–C) Box plots of the frequencies of CD70+ cells among CD4+ and CD8+ T cells from healthy donors in different age groups 
(n = 34-56 in each group). Values given are the median frequencies ± the interquartile range and 10 and 90 percentile whiskers. The p-values 
were obtained by Kruskal-Wallis test followed by Dunn’s multiple comparisons test. (D–E) Correlation analysis of age and surface CD70 
expression on CD4+ T cells (D) and CD8+ T cells (E) from all healthy individuals. Spearman’s non-parametric test was used to test for correlations. 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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CD70+ T cells in elderly individuals displayed 

increased sensitivity to apoptosis, which could be 

reversed by blocking CD70 
 

To assess the functional status of CD70+ T cells from 

the elderly, we detected susceptibility of these cells to 

apoptosis by measuring percentage of apoptotic cells 

(Annexin V+ 7AAD-) and expression of CD95 (Fas). 

Percentage of apoptotic cells and CD95 expression were 

significantly elevated on CD70+ CD4+ and CD8+ T cells 

(Figure 5A–5D and Supplementary Figure 5A, 5B), 

suggesting a high susceptibility to apoptosis. These 

results were confirmed by the close correlation between 

CD70 and percentage of Annexin V+ 7AAD- cells in 

CD4+ T cells (r = 0.63982, p = 0.0006; Supplementary 

Figure 5C), as well as CD95 expression in both CD4+ (r 

= 0.6026, p < 0.0001) and CD8+ T cells (r = 0.4535, p < 

0.0001; Supplementary Figure 5D). Of note, percentage  

 

 
 

Figure 2. CD70 is preferentially expressed on memory CD4+ and CD8+ T cells. Expression of CD70 on each subset (TN, TCM, TEM, and 
TEMRA) of CD4+ and CD8+ T cells. Representative flow data (A, C) and box plots (B, D) of the percentage of CD70 expression on each subset of 
CD4+ (A–B) and CD8+ (C–D) T cells from five different age groups (n = 34-56 in each group). Data are shown as the median ± 95% confidence 
interval (CI). The p-values were obtained by Kruskal-Wallis test followed by Dunn’s multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 
0.001. 
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of Annexin V+ 7AAD- cells and CD95 expression in T 

cells were strongly correlated with the percentage of 

activated HLA-DR+ CD38hi T cells, implying the role of 

activation-induced cell death (AICD) in CD70 

associated T cell aging (Figure 5E and 5F). 

 

The specific role of CD70 in the induction of T-cell 

apoptosis was examined by blocking CD70 using an 

anti-CD70 neutralizing antibody. In the presence of the 

neutralizing antibody, percentage of Annexin V+ 7AAD- 

cells and CD95 expression were decreased in aged 

CD4+ T cells (Figure 5G–5J). This data indicated the 

important suppressive role of CD70 in the regulation of 

T-cell function in elderly individuals. 

 

Aged CD70+ T cells showed increased levels of 

inflammatory cytokines and intracellular proteins 
 

Senescent cells can secrete numerous inflammatory 

cytokines and chemokines, which act together to 

generate a proinflammatory environment [7, 24]. To 

determine whether CD70 is involved in senescence-

associated inflammatory responses in T cells, we tested 

cytokine release after in vitro stimulation with anti-CD3 

and anti-CD28. The results showed significantly 

increased levels of TNF-α, IFN-γ, and IL-2 in CD70+ 

CD4+ T cells as compared to CD70- CD4+ T cells 

(Figure 6A, 6C, 6E). Slight elevations of these 

cytokines were observed in CD70+ CD8+ T cells from 

elderly individuals (Figure 6B, 6D, 6F). Similar results 

were observed in CD70+ CD4+ and CD8+ T cells from 

the young and middle-aged groups (Supplementary 

Figure 6A–6C). Importantly, TNF- α and IL-2 secretion 

was significantly decreased in aged CD4+ T cells after 

CD70 blocking (Figure 6G–6L). Moreover, CD70+ 

CD8+ T cells from all age groups showed elevated 

expression of perforin and Granzyme B, suggesting a 

greater non-specific killing potential. Interestingly, 

increased levels of perforin and Granzyme B were also 

observed in CD70+ CD4+ T cells (Supplementary Figure  

 

 
 

Figure 3. Aged CD70+ T cells show a phenotype of over activation. Flow cytometry analysis of percentage of HLA-DR+ CD38hi cells 
(A–B), and expression of CD28 (C–D) and CD27 (E–F) on CD70- vs. CD70+ CD4+ and CD8+ T cells from elderly individuals (61-80 years, n = 17). 
Representative flow data or histograms (left) and plots (right) display the expression of the above receptors on CD70- vs. CD70+ cells (gated 
with CD4+ or CD8+ T cells). The p-values were obtained by paired t-test (HLA-DR+CD38hi [CD4+ T cells], CD28, CD27) or Wilcoxon matched-
pairs signed rank test (HLA-DR+CD38hi [CD8+ T cells]). ***p < 0.001. 
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6D and 6E). Additionally, CD70+ T cells exhibited 

significantly higher levels of Ki-67 than CD70- T cells 

regardless of age (Supplementary Figure 6F). 

 

Taken together, these results indicated that aged CD70+ 

T cells produced high levels of inflammatory cytokines 

and intracellular Granzyme B and perforin. 

 

DISCUSSION 
 

It has been demonstrated that down-regulation of some 

co-stimulatory molecules and up-regulation of some co-

inhibitory molecules are key features of T cell aging. 

However, this study showed a significant age-related 

accumulation of CD70, which was generally regarded as 

a co-stimulatory molecule, on both CD4+ and CD8+ T 

cells. Consistent with its contradictory role in T cell 

activation, which was reported by recent studies, the 

findings of this study highlighted an important role of 

CD70 in T cell aging. CD70+ T cells from elderly 

individuals displayed phenotypic features of exhaustion 

and high susceptibility to apoptosis. In contrast, aged 

CD70+ T cells also produced higher levels of pro-

inflammatory cytokines and expressed more intracellular 

Granzyme B and perforin, which was consistent with an 

important feature of senescent cells known as the 

 

 
 

Figure 4. CD70 expression is associated with the phenotypic profile of exhaustion. Flow cytometry analysis of expression of 
PD-1 (A–B), 2B4 (C–D), LAG-3 (E–F) and CD160 (G–H) on CD70- vs. CD70+ CD4+ and CD8+ T cells from elderly individuals (61-80 years, n 
= 17 [2B4, CD160], n = 34 [PD-1, LAG-3]). Representative histograms (left) and plots (right) display the expression of the above 
receptors on CD70- vs. CD70+ cells (gated with CD4+ or CD8+ T cells). The p-values were obtained by paired t-test (PD-1 [CD4+ T cells], 
2B4, CD160 [CD8+ T cells]) or Wilcoxon matched-pairs signed rank test (PD-1 [CD8+ T cells], LAG-3, CD160 [CD4+ T cells]). ***p < 0.001. 
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Figure 5. Aged CD70+ T cells exhibit high susceptibility to apoptosis that can be reversed by blocking CD70. (A–D) Percentage 
of apoptotic cells (Annexin V+ 7AAD-) (A–B) and expression of CD95 (C–D) in CD70- and CD70+ T cells from elderly individuals (61-80 years, n 
= 17). Representative histograms (left) and plots (right) of the percentage of apoptotic cells are shown. The p-values were obtained by 
paired t-test (Annexin V) or Wilcoxon matched-pairs signed rank test (CD95). (E–F) Correlation analysis of percentage of HLA-DR+CD38hi 
cells and percentage of Annexin V+ 7AAD- cells (E) or CD95 expression (F) on CD4+ T cells (left) and CD8+ T cells (right) from all healthy 
donors. Spearman’s non-parametric test was used for correlation analysis. (G–J) Purified CD4+ and CD8+ T cells from elderly individuals (n = 
8) were cultured in vitro with anti-human CD70 antibody or isotype IgG at a concentration of 10 µg/mL. After culturing for 24 h, the 
susceptibility to apoptosis was evaluated by flow cytometry. Representative histogram (left) and plot (right) of percentage of Annexin V+ 
7AAD- (G–H) and Annexin V+ CD95+ cells (I–J) in CD4+ and CD8+ T cells. The p-values were obtained by paired t-test (Annexin V+ 7AAD- [CD8+ 
T cells], Annexin V+ CD95+ [CD8+ T cells]) or Wilcoxon matched-pairs signed rank test (Annexin V+ 7AAD- [CD4+ T cells], Annexin V+ CD95+ 
[CD4+ T cells]). *p < 0.05, **p < 0.01, ***p < 0.001. 
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senescence-associated secretory phenotype (SASP) [24, 

25]. These data indicated that CD70 is a biomarker of T 

cell aging and elucidated a potential mechanism of aging. 

To the best of our knowledge, this is the first evidence for 

the involvement of CD70 in immunosenescence. 

Since aged CD70+ T cells expressed numerous co-

inhibitory molecules, suggesting a phenotype of 

exhaustion, we compared senescent and exhausted T 

cells. Both cells were dysfunctional in some aspects. 

However, they differed from each other in inflammatory  

 

 
 

Figure 6. Aged CD70+ T cells secrete increased levels of inflammatory cytokines that can be reversed by blocking CD70. (A–F) 
Intracellular staining for TNF-α, IFN-γ, and IL-2 in CD70- and CD70+ T cells from elderly individuals (61-80 years, n = 17) after in vitro anti-
CD3/anti-CD28 stimulation. Representative flow data (left) and plots (right) for TNF-α, IFN-γ, and IL-2, respectively. The p-values were 
obtained by paired t-test (TNF-α, IFN-γ [CD8+ T cells], IL-2 [CD4+ T cells]) or Wilcoxon matched-pairs signed rank test (IFN-γ [CD4+ T cells], IL-2 
[CD8+ T cells]). (G–L) Purified CD4+ and CD8+ T cells from healthy individuals (n = 6) were cultured with antagonist anti-CD70 antibody or IgG 
at a concentration of 10 µg/mL as indicated. After culturing in vitro for 24 h and stimulating with anti-CD3/anti-CD28, the cytokine production 
was measured by flow cytometry. Representative histogram (left) and plot (right) of TNF-α, IFN-γ, and IL-2 expression in CD4+ and CD8+ T 
cells. The p-values were obtained by paired t-test. *p < 0.05, **p < 0.01, ***p < 0.001. 
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cytokine and intracellular protein expression. Recent 

studies indicated that senescent cells are metabolically 

active rather than dormant. They expressed numerous 

cytokines, chemokines, growth factors, and proteases, 

which was characterized as SASP [24, 26]. However, 

previous studies including ours indicated that up-

regulation of co-inhibitory molecules such as PD-1, TIM-

3, or TIGIT on aged T cells induced defective cytokine 

production, suggesting exhaustion rather than senescence 

[10, 14, 27]. In the present study, CD70+ T cells from 

elderly individuals showed increased pro-inflammatory 

cytokines such as TNF- α and IFN- γ, and higher levels of 

intracellular Granzyme B and perforin. These findings 

supported the notion that senescence was associated with 

enhanced chronic inflammation. Notably, once chronic 

inflammation was established, it often induced the 

immune system to produce more cytokines through 

positive feedback loops [25]. Thus, it was thought to 

underlie the increased incidence of autoimmune diseases 

in the elderly. Previous studies reported that CD70 was 

overexpressed on human proinflammatory Th1 and Th17 

cells, which contributed to pathogenesis of multiple 

sclerosis [28]. Increased CD70+ CD4+ T lymphocytes 

were also observed in systemic lupus erythematosus 

(SLE) and rheumatoid arthritis (RA) patients [29–31], 

further confirming the hypothesis.  

 

More importantly, increased inflammatory cytokines from 

aged CD70+ T cells induced a persistent over-activated 

status that finally led to apoptosis. It was characterized as 

AICD, which might account for CD70-associated 

immunosenescence. AICD is a critical pre-programmed 

death pathway that plays a central role in the aging 

process [32, 33]. Higher AICD rate was observed during 

replicative senescence in vitro, and was more pronounced 

in T cells from the elderly than young individuals [34]. A 

previous study showed that chronic immune stimulation 

induced overexpression of death receptors on aged T 

cells, leading to up-regulation of AICD [35, 36]. Cultured 

PBMCs from elderly individuals expressed higher CD95 

levels than those from young individuals upon activation 

[34, 37, 38]. Consistently, the present study showed an 

increased activated HLA-DR+ CD38hi population as well 

as up-regulation of percentage of apoptotic cells and 

CD95 expression on aged CD70+ T cells. Moreover, 

blocking CD70 decreased apoptosis levels in aged CD4+ 

T cells. These results were further confirmed by close 

correlation between percentage of apoptotic cells and 

CD95 expression, and percentage of activated HLA-DR+ 

CD38hi T cells. 

 

Several surface markers were reported to track the “age” 

of human circulating T cells, such as loss of CD27 and 

CD28, or gain of CD57 and killer cell lectin-like receptor 

sub family G (KLRG-1) [10, 39–41]. CD4+ and CD8+ T 

cells share some phenotypic changes during aging, 

however, age-related changes occur more frequently in 

CD8+ T cells than in CD4+ T cells. For instance, CD8+ T 

cells lost CD28 more rapidly than CD4+ cells during 

aging [42]. CD57+ CD8+ T cells and KLRG1+ CD8+ T 

cells were recruited with age [43, 44]. Our previous study 

showed that TIGIT contributed to CD8+ T cell aging. 

However, CD4+ T cells were less sensitive to age, with a 

greater homeostatic stability when compared to CD8+ T 

cells [40, 45]. The present study showed that CD70 was 

involved in aging of both CD4+ and CD8+ T cells. Of 

note, CD4+ T cells exhibited more significant up-

regulation of CD70 during aging than CD8+ T cells. 

Collectively, these data suggested CD70 as a biomarker 

associated with T cell aging, especially for CD4+ T cells. 

 

In summary, the present study demonstrated CD70 as a 

prominent regulator involved in immunosenescence, 

which led to defects and overwhelming inflammatory 

responses of T cells during aging. These findings may be 

beneficial in the treatment of age-related comorbidities. 

 

MATERIALS AND METHODS 
 

Participants 
 

This study was approved by the Committee of Ethics 

at Beijing Ditan Hospital, Capital Medical University, 

Beijing, China. All participants were healthy 

volunteers aged 18-80 years (94 men and 123 women) 

who were recruited between February 2016 and 

October 2017. Gender was evenly distributed in each 

group. Participants who tested positive to human 

immunodeficiency virus (HIV) infection, hepatitis 

viral infections, systemic infection, connective tissue 

disease, cancer or abnormal tumor markers, including 

alpha fetoprotein (AFP), carcinoembryonic antigen 

(CEA), carbohydrate antigen (CA-199), CA-153, and 

CA-125, were excluded. 

 

Isolation of peripheral blood mononuclear cells 

(PBMCs) 
 

Peripheral blood samples were collected from healthy 

donors and PBMCs were purified using standard 

Ficoll-Paque gradient centrifugation according to the 

manufacturer’s instructions (Amersham Pharmacia 

Biotech, Sweden). Cells were cryopreserved in fetal 

bovine serum (GIBCO, Grand Island, NY, USA) 

supplemented with 10% DMSO, and stored in liquid 

nitrogen. 

 

Immunofluorescence staining and flow cytometry 

analysis 
 

PBMCs were incubated with directly conjugated 

antibodies for 30 min at 4°C. The cells were washed 
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before flow cytometry analysis. Antibodies used 

included anti-human CD3-BV786, CD4-APC-Fire750, 

CD8-BV510, CD45RA-AF700, CD70-PE, PD-1-

BV711, 2B4-FITC, CD160-AF488, TIM-3-BV650, 

CD95-PE-CY7 (BD Biosciences, San Diego, CA, 

USA), CCR7-BV421, HLA-DR-AF700, CD38-BV421, 

CD28-BV711, CD27-BV650 (BioLegend, San Diego, 

CA, USA), TIGIT-PE-Cy7, LAG-3-APC (Ebioscience, 

San Diego, CA, USA) and the corresponding isotype 

controls. Data acquisition was performed on an LSR 

Fortessa flow cytometer (BD Biosciences), and data 

was analyzed with FlowJo software (Tree Star, 

Ashland, OR, USA). 

 

In vitro stimulation and intracellular staining 

 

PBMCs were cultured in RPMI-1640 medium 

(GIBCO, Grand Island, NY, USA) containing 10% 

FBS, and stimulated with anti-CD3/CD28 (2 µg/mL 

and 5 µg/mL, Ebioscience) plus Golgiplug (BD 

Biosciences) for 5 h. The cells were surface-stained 

with CD3-BV786, CD4-APC-Fire750, CD8-BV421, 

CD70-PE, and intracellularly stained with TNF-α-

BV711 (BD Biosciences), IFN-γ-AF700 (Ebioscience), 

or IL-2-BV650 (BioLegend) antibodies. For Ki67, 

perforin or Granzyme B staining, PBMCs were 

surface-stained with CD3-BV786, CD4-APC-Fire750, 

CD8-BV421, CD70-PE, and intracellularly stained 

with Granzyme B-AF700 (BD Biosciences), Ki67-

BV711, or perforin-APC (BioLegend) antibodies. A 

fixable viability dye eFluor® 506 (Ebioscience) was 

used to assess cell viability. 

 

Analysis of T-cell apoptosis 
 

Apoptosis rates were measured using an APC Annexin V 

apoptosis detection kit (BioLegend) as per the 

manufacturer’s instructions, in combination with markers 

for T cells. Samples were analyzed by flow cytometry. 

 

Cell separation and CD70 blockage 

 

CD4+ and CD8+ T cells were isolated from PBMCs by 

positive selection using EasySep™ human CD4 and CD8 

positive selection kit (StemCell Technologies, Vancouver, 

Canada). Purified cells were cultured at a concentration of 

1 × 106 cells/mL in a 96 well tissue culture plate and 10 

µg/ml anti-human CD70 antibody (clone 113-16; 

BioLegend) or isotype control was added to the culture 

medium. After 24 h of culture, Annexin V staining and 

cytokine production were measured by flow cytometry. 

 

Statistical analysis 
 

The data are expressed as the mean ± standard deviation 

(SD). GraphPad7 (GraphPad Software, La Jolla, CA, 

USA) or SPSS (IBM Corporation, New York, NY, USA) 

were used for statistical analyses. The normality of each 

variable was evaluated using the Kolmogorov-Smirnov 

test. For normally distributed data, the comparison of two 

variables was performed using unpaired, or paired where 

specified, two-tailed Student’s t-tests for unpaired and 

paired data, respectively. One-way ANOVA followed by 

Tukey’s multiple comparisons test was used for 

comparing two or more independent samples. When the 

data were not normally distributed, the comparison of 

variables was performed with a Mann-Whitney U test or 

a Wilcoxon matched-pairs signed rank test for unpaired 

and paired data, respectively. For comparing two or more 

independent samples, a Kruskal-Wallis test followed by 

Dunn’s multiple comparisons test was used. Participant 

characteristics were compared using Chi-square test 

(categorical variables) or Kruskal-Wallis test (continuous 

variables). Pearson’s or Spearman’s correlation 

coefficients were used to evaluate correlations for 

normally or non-normally distributed data, respectively. 

For all analyses, p-values <0.05 were considered 

statistically significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Distribution of CD4+ and CD8+ T cell subsets from different age groups. Distribution of TN, TCM, TEM, and 
TEMRA in CD4+ and CD8+ T cells from different age groups. Representative flow data (A, C) and box plots (B, D) of the percentage of each subset 
in different age groups are shown (n = 34-56 each group). Data are shown as the median ± 95% confidence interval (CI). The p-values were 
obtained by Kruskal-Wallis test followed by Dunn’s multiple comparisons test [TCM, TEM (CD4+ T cells), TEMRA] or one-way ANOVA test followed 
by Tukey’s multiple comparisons test [TN, TEM (CD8+ T cells)]. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Supplementary Figure 2. Elevated immune activation and decreased co-stimulatory signaling on CD4+ and CD8+CD70+ T cells. 
(A–C) Flow cytometry analysis of the percentage of HLA-DR+CD38hi cells (A), expression of CD28 (B) and CD27 (C) on CD70- vs. CD70+CD4+ and 
CD8+ T cells from young and middle-aged adults (21-40 years old for young, n = 31; 41-60 years old for middle-aged, n = 24). Each bar 
represents median ± 95% confidence interval, CI. The p-values were obtained by Kruskal–Wallis test followed by Dunn’s multiple comparisons 
test. (D–F) Correlation analysis of CD70 and percentage of HLA-DR+CD38hi cells (D), expression of CD28 (E) and CD27 (F) on CD4+ T cells (left) 
and CD8+ T cells (right). Spearman’s non-parametric test was used for correlation analysis. ***p < 0.001. 
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Supplementary Figure 3. CD70 expression is associated with certain inhibitory receptors on CD4+ and CD8+ T cells. (A–D) Flow 
cytometry analysis of the expression of PD-1 (A), 2B4 (B), CD160 (C) and LAG-3 (D) on CD70- vs. CD70+ CD4+ and CD8+ T cells from young and 
middle-aged groups (n = 24-63 each group). Data are represented as median ± 95%CI [PD-1, 2B4, CD160 (CD4+ T cells), LAG-3] or mean ± SEM 
[CD160 (CD8+ T cells)]. The p-values were obtained by Kruskal–Wallis test followed by Dunn’s multiple comparisons test [PD-1, 2B4, CD160 
(CD4+ T cells), LAG-3] or one-way ANOVA test followed by Tukey’s multiple comparisons test [CD160 (CD8+ T cells)]. (E–H) Correlation analysis 
of CD70 and expression of PD-1 (E), 2B4 (F), CD160 (G) and LAG-3 (H). Spearman’s non-parametric test was used to test for correlations. * p 
<0.05, *** p < 0.001. 
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Supplementary Figure 4. Expression levels of TIGIT and TIM-3 on CD70- and CD70+ T cells from elderly individuals. Flow 
cytometry analysis of the expression of TIGIT (A–B) and TIM-3 (C–D) on CD70- vs. CD70+CD4+ and CD8+ T cells from the elderly (61–80 years 
old, n = 34 [TIGIT], n = 17 [TIM-3]). Representative histograms (left) and plots (right) display the expression of the above receptors on CD70- 
vs. CD70+ cells. The p-values were obtained by Wilcoxon matched-pairs signed rank test. 
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Supplementary Figure 5. CD70+ T cells from different age groups exhibit high susceptibility to apoptosis. (A–B) Flow cytometry 
analysis of percentage of apoptotic cells (Annexin V+ 7AAD-) (A) and expression of CD95 (B) in CD70- and CD70+ T cells from young and middle-
aged adults ((21-40 years old for young, n = 31; 41-60 years old for middle-aged, n = 24). Data are represented as mean ± SEM (Annexin V+ 

7AAD-) or median ± 95%CI (CD95). The p-values were obtained by Kruskal–Wallis test followed by Dunn’s multiple comparisons test (CD95) or 
one-way ANOVA test followed by Tukey’s multiple comparisons test (Annexin V+ 7AAD-). (C–D) Correlation analysis of CD70 and percentage of 
Annexin V+ 7AAD- cells (C) or CD95 expression (D) on CD4+ T cells (left) and CD8+ T cells (right). Spearman’s non-parametric test was used for 
correlation analysis. *** p < 0.001. 
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Supplementary Figure 6. CD70+CD4+ T cells from different age groups exhibit increased levels of inflammatory cytokines, while CD70+CD4+ 
and CD8+ T cells show increased proliferation and cytotoxicity. (A–C) Intracellular staining for TNF-α (A), IFN-γ (B), and IL-2 (C) on CD70- vs. 
CD70+CD4+ and CD8+ T cells from young and middle-aged adults (21-40 years old for young, n = 24; 41-60 years old for middle-aged, n = 19) 
upon in vitro anti-CD3/anti-CD28 stimulation. (D–F) Expression of perforin (A), Granzyme B (B) and Ki-67 (F) in CD70- and CD70+ T cells from 
different age groups (n = 17-31 each group). Data are shown as mean ± SEM [IL-2 (CD4+ T cells), perforin (CD8+ T cells), Granzyme B (CD8+ T 
cells)] or median ± 95%CI [TNF-α, IFN-γ, IL-2 (CD8+ T cells), perforin (CD4+ T cells), Granzyme B (CD4+ T cells), Ki-67]. The p-values were 
obtained by Kruskal–Wallis test followed by Dunn’s multiple comparisons test [TNF-α, IFN-γ, IL-2 (CD8+ T cells), perforin (CD4+ T cells), 
Granzyme B (CD4+ T cells), Ki-67] or one-way ANOVA test followed by Tukey’s multiple comparisons test [IL-2 (CD4+ T cells), perforin (CD8+ T 
cells), Granzyme B (CD8+ T cells)]. * p < 0.05, *** p < 0.001. 

 


