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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is a very deadly and 

aggressive disease and represents the second leading 

cause of cancer-related mortality worldwide [1]. Although 

the treatment of HCC has greatly improved over the last 

decade, the disease remains a major health concern due to 

its resistance to chemotherapy, its high rate of recurrence,  

 

and our limited understanding of the mechanisms 

underlying the initiation and progression of the disease. 

 

Cancer stem cells (CSCs) are considered to represent a 

small population of cancer cells that are responsible for 

tumor relapse, metastasis, drug resistance and evasion 

of the immune system [2, 3]. CD133 has been shown to 

be a marker of a liver CSC subset, and CD133+ HCC 
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ABSTRACT 
 

The existence of cancer stem cells (CSCs), marked by CD133, is the primary cause of death in hepatocellular 
carcinoma (HCC). Here, we generated a new risk model comprising the signatures of four genes highly 
correlated with CD133 (CD133(hi)) that help improve survival in HCC. Three datasets were used to identify the 
differential CD133(hi) genes by comparing sorted CD133+ liver CSCs and CD133- differentiated counterparts. 
Univariate analysis was used to screen significantly differential CD133(hi) genes associated with overall survival 
in the training dataset, which were used for risk model construction. High-risk patients were strongly 
associated with poor survival by Kaplan-Meier survival analysis in both the training and validation datasets. 
Clinical stratification analyses further demonstrated that the risk factors acted as independent factors and that 
high-risk patients were characterized by more aggressive cancer features. Functional enrichment analyses 
performed by gene set enrichment analysis (GSEA) and the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) revealed that high-risk patients showed the disturbance of immune hepatic 
homeostasis involving aberrant immune cells, including macrophages and T and B cells, and an abnormal 
inflammatory response including the IL6/Jak/STAT3 pathway and TNF signaling pathway. In conclusion, our 
constructed CD133(hi) gene risk model provides a resource for understanding the role of CD133+ CSCs in the 
progression of HCC in terms of tumor-immune interactions. 
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cells are well known for their role in frequent relapse, 

drug resistance, tumor initiation, sustained self-renewal, 

differentiation and phenocopying of the original tumor 

[4–6]. Moreover, compelling evidence has emerged in 

support of the intimate relationship between the 

tumorigenicity of CD133+ liver tumor-initiating cells 

and generally worse overall survival [5]. 

 

The HCC microenvironment is characterized by the 

presence of endothelial cells, hepatic stellate cells, 

tumor-associated macrophages (TAMs), regulatory T 

cells, cancer-associated fibroblasts, and CSCs mixed 

within an excessive accumulation of extracellular matrix 

(ECM). This microenvironment acts as a fertile 

environment to grow cancer seeds [7]. The disturbance 

of immune homeostasis among tumor cells, CSCs 

(CSCs) and the associated stroma is frequently 

associated with prolonged and sustained tumor 

dissemination in HCC [8]. The development of effective 

treatments for HCC has been hindered by the enhanced 

expression of the CSCs marker CD133, which has been 

reported to be aberrantly regulated by abnormal 

inflammatory factors, such as IL-6/STAT3, and effector 

immune cells. Moreover, a previous report demonstrated 

that therapeutic components that target TME by 

downregulating the expression of CSC markers, 

including CD133, showed evident antitumor effects [9]. 

 

It is of paramount significance to construct a robust and 

reliable prognostic molecular model that can provide 

more knowledge about the infiltrative nature of CD133+ 

liver CSC cells in HCC to find a new method of 

achieving early diagnosis and improving the overall 

survival of HCC patients. However, few of the 

biomarkers correlated with CD133 have been applied in 

clinical practice. Since CD133-positive cells, unlike 

CD133-negative cells, display more aggressiveness in 

HCC, our present study aims to generate a new genetic 

risk model comprised of genes highly correlated with 

CD133 (CD133(hi)) to gain better insights into the 

relationship between CD133(hi) molecular markers and 

the prognosis of patients with HCC. We hope to find 

promising strategies for HCC treatment related to 

changing the tumor microenvironment (TME), 

especially the TME of CD133+ CSCs, which may 

provide a synergistic effect. This work is hence of 

clinical importance for identifying ways to advance 

immunotherapy research. 

 

RESULTS 
 

Enrichment pattern of individual liver CD133 

markers 
 

We downloaded three RNA sequencing datasets in 

GEO (GSE23450, GSE23451, and GSE56771) that 

compare the differential gene expression between 

CD133+ liver CSCs and CD133- differentiated 

counterparts. To systematically evaluate the differences, 

we combined all the cohorts together for analysis. PCA 

was performed by the “FactoMineR” and “Factoextra” 

packages in R software. As shown in Figure 1A, neither 

the CD133-negative group nor the CD133-positive 

group clustered together, revealing the presence of 

batch effects. Thus, we employed the 

“removeBatchEffect” program in the LIMMA package 

and finally obtained clean data by removing batch 

effects (Figure 1B). PCA also demonstrated a highly 

consistent trend in the CD133+ group and CD133- 

counterpart obtained after combining both GEO 

datasets, in which the groups were separated into two 

major populations; PCA2 efficiently explained 31.1% 

of the variance (Figure 1B). These interesting results 

were consistent with previous reports of certain crucial 

factors at the genomic level in CD133+ liver CSCs that 

differed from those in CD133- counterparts, which 

could explain the enhanced aggressive role of CD133+ 

cells in HCC [4]. 

 

CD133+ liver CSCs showed different expression 

patterns compared with their CD133- counterparts 

 

To better understand the molecular changes underlying 

CD133+ liver CSC-driven HCC tumor progression, we 

further performed gene expression profiling by 

comparing the transcriptome profiles between the 

CD133+ liver CSC group and CD133- counterpart. We 

next analyzed the differentially expressed genes with 

the criteria adj. P value < 0.05 and log2 |FC| >1. 

Differential expression patterns between the CD133+ 

liver CSC group and CD133- counterpart were 

visualized using a hierarchical clustering heatmap 

(Figure 1C), which showed tremendously different gene 

expression patterns. Most of the deregulated genes (22 

out of 24) were elevated. 

 

Pathway analysis revealed disturbance of the hepatic 

stroma in CD133+ liver CSCs 
 

We performed pathway analysis using DAVID. As 

expected, the enriched KEGG pathways have been shown 

to be highly and significantly involved in transcriptional 

misregulation in cancer, suggesting that transcriptional 

modulation stimulating invasion and metastasis might be 

involved in the aggressive performance of CD133+ liver 

CSCs (Figure 1D). Moreover, we found that CD133+ liver 

CSCs caused multiple notable changes in the hepatic 

immune microenvironment. Of note, pathways involved in 

the immune response were dramatically enriched and 

revealed the evident infiltration of inflammatory cytokine 

genes, such as neutrophil chemotaxis and chemokine-

mediated signaling pathways. Secreted proteins in the 
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extracellular matrix were also deregulated significantly 

(Figure 1D), suggesting the disturbance of the hepatic 

stroma in HCC guided by CD133+ liver CSCs. 

 

Construction of a new prognostic scoring system 

based on the differentially expressed genes of 

tumorigenic liver CSCs 
 

Because CD133+ CSCs have aggressive capabilities 

they serve as the primary cause of metastasis, therapy 

resistance and generally poor prognosis in HCC 

patients. In this study, we aimed to provide a practical 

tool by constructing a new risk model comprising 

CD133(hi) that could predict patient prognosis. Thus, 

we conducted univariate survival analysis by applying 

Cox proportional hazard models of each gene to 

confirm the relevance between overall survival and 

the expression of CD133(hi) genes in the training 

dataset (TCGA-LIHC). All the genes with significant 

P value (P value <0.05) were screened for the next 

step of model construction. Eventually, we identified 

4 optimal genes (LGALS3, RFX6, ADH6, and 

UCHL1) significantly related to OS time in HCC 

patients (Supplementary Table 1). We then calculated 

the risk score of every patient (details are provided in 

the Methods section). The formula was as follows: 

risk score = 0.1376*(expression value of LGALS3) 

+0.1089*(expression value of RFX6) +(-0.0895)* 

(expression value of ADH6) +0.0742*(expression 

value of UCHL1). Patients with expression levels 

higher than the mean of all patients’ scores were 

divided into the high-risk group, while those with 

lower expression levels were separated into the low-

risk group. Every patient with a new risk score is 

plotted in the upper portion of Figure 2A. 

Specifically, in the training dataset, a total of 201 

patients whose risk scores were greater than the cutoff 

point were divided into the high-risk group, while the 

other 164 patients were assigned to the low-risk 

group, with risk scores below the cutoff value. 

Kaplan-Meier survival analysis was performed to 

compare the overall survival of the two groups of 

patients. The high-risk group was shown to be 

positively and significantly associated with poorer 

clinical outcomes than the low-risk group (p<0.0001) 

(Figure 2A; lower). Specifically, the five-year 

survival rate in the high-risk group of patients was 

36.1% (95% CI, 28.3-48.6%), and that in the low-risk 

group of patients was 64.2% (95% CI, 54.1-74.2%), 

with a significant P value (P=0.00025). 
 

 
 

Figure 1. PCA analysis of three RNA sequencing datasets compared to the differential gene expression between CD133+ 
liver CSCs and CD133- differentiated counterparts. (A) Data representing the clustering information of independent samples. The 
analysis was based on the expression of all genes for each individual sample. (B) Data representing the clustering information of 
independent samples after removing batch effects. The ellipses indicate group dispersion/variability from the centroid. CD133-positive 
groups are shown in the red ellipse, and CD133-negative groups are displayed in the blue ellipse. Two main components (PCA1/PCA2) of 
PCA were applied to the normalized differences to find the largest correlated variables. (C) Hierarchical cluster heatmap analysis of gene 
expression profiles in CD133+ liver CSCs vs. CD133- liver CSCs. Each cell in the matrix represents a particular expression level, where the 
colors (white/green to pink/red) indicate lower to higher gene expression levels. The bars at the top of each column indicate the following: 
Yellow=CD133-positive group; green = CD133-negative group. At the bottom, from left to right, each column represents the sample name 
of the GEO dataset. (D) Pathway enrichment analysis of CD133+ liver CSCs. P values (–log2 transformed) are plotted for each enriched 
functional category. Abbreviations: PCA: principal component analysis; CD133+, CD133-positive groups; CD133-, CD133-negative groups. 



 

www.aging-us.com 12237 AGING 

Validation of the prognostic model in an 

independent GEO dataset 

 

To determine whether the effectiveness and predictive 

value of the prognostic model in predicting OS for 

patients with HCC was a common event, we extended 

our analysis to the other two datasets, GSE14520 and 

GSE54236. The same strategies were performed by 

separating the HCC patients into a low-risk group and a 

high-risk group according to the mean risk score 

(Figure 2B and 2C, upper). Consistent with the results 

in the training dataset, the high-risk patients had 

significantly shorter survival (Figure 2B and 2C, 

lower). Of note, in the GSE54236 dataset, after 18 

months, more than half of the patients in the high-risk 

group were dead, while 75% of the patients in the low-

risk group were alive. 

 

Independent prognostic factor analysis and clinical 

parameter stratification analysis 

 

To determine whether the high-risk group was 

correlated with aggressive clinical parameters, we 

performed clinical parameter stratification analysis. We 

stratified the patients into high- and low-risk groups 

according to the forecast model and correlated the 

signature with a series of clinical parameters in the two 

groups. Univariate and multivariate Cox regression 

analyses in both the training and validation groups 

indicated that our prognostic model was an independent 

prognostic factor for OS (Figure 3A and 3B). In 

addition, analysis of clinical parameters showed that 

high-risk patients were significantly associated with 

males (chi-square test, p=0.003), the late stage of HCC 

(stage III/IV, chi-square test, p=0.008) and lymph 

metastasis (chi-square test, p=0.032) in TCGA datasets 

(Table 1). In addition, we carried out GSEA analysis 

comparing the high-risk group and low-risk group to 

investigate key biological and cellular processes linked 

with poor prognosis. In the c2/curated gene set 

collection of the Molecular Signatures Database 

(MSigDB) of GSEA, the high-risk group displayed a 

certain number of deregulated pathways that have been 

reported to promote cancer aggressiveness. As shown, 

invasiveness signatures and genes related to tumor 

vasculature were among the leading enrichment gene 

sets of the high-risk groups (Figure 4A and 4B). The 

results also revealed notable enrichment in the 

recurrence of hepatitis B-related (HBV) hepatocellular 

carcinoma (HCC) (Figure 4C), suggesting that high-risk 

group patients were positively correlated with 

recurrence-free survival (Figure 4C, Supplementary 

Table 2). Moreover, multiple genes in the ‘proliferation’ 

subclass of HCC were evidently upregulated (Figure 

4D). All of these genes are well-known deadly factors 

related to poor cancer prognosis. 

 

 
 

Figure 2. Evaluation and validation of the survival predictions of the risk scoring system. (A–C) Risk score distribution (upper) 
and Kaplan-Meier curves (lower) classifying patients into high- and low-risk groups by the new scoring system by comparing OS for patients 
in high- and low-risk groups in the training datasets and two test datasets. Patients with expression levels higher than the mean value are 
categorized into the high-risk group, while those with expression levels lower than the mean value are categorized into the low-risk group. 
P values were calculated by the log-rank test. 
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Aggressive tumorigenesis properties were 

characterized by the disturbance of immune hepatic 

homeostasis in the high-risk patient group 
 

Next, we interrogated changes in specific pathways 

based on TCGA to determine the risk factors behind the 

identified high-risk patients in our study. We performed 

GSEA analysis of the collection of Hallmark gene sets, 

Curated gene sets, Gene Ontology gene sets, and 

immunologic signature gene sets. The results of GSEA 

analysis also suggested a mechanism explaining why 

the high-risk group was related to poor prognosis. The 

top gene sets in each category according to NES, P 

value, and FDR are shown in Figure 5A. After 

interpreting our data, we found that epithelial-

mesenchymal transition (EMT) was highly enriched in 

the high-risk group, and the NES value was 1.86, with a 

significant P value [Figure 5B]. Moreover, several 

notably enriched pathways in the hepatic immune 

microenvironment drew our attention. Of note, the 

upregulation of inflammatory responses included path-

ways connected with the IL6/Jak/STAT3 pathway and 

TNF signaling pathway (Figure 5C). Moreover, we 

observed the disturbance of immune cells, including B 

cells, T cells and macrophages (Figure 5C). The results 

showed that genes were downregulated in B 

lymphocytes and T cells in the high-risk groups and 

were upregulated in bone marrow-derived macrophages. 

These results suggest that the aggressive tumorigenesis 

properties of CD133+ CSCs are characterized by the 

disturbance of immune hepatic homeostasis in high-risk 

patient groups. 

 

An aberrant immune tumor microenvironment 

impacts prognosis in patients in the high-risk group 

 

To evaluate whether tumor-extrinsic features can 

predict outcomes, we further focused on the immune 

response in patients in the high-risk group. We 

performed an extensive immunogenomic analysis by 

using the data generated by Thorsson et al. [10] to 

characterize the immune tumor microenvironment by 

comparing the patients in the high-risk and low-risk 

groups. Specifically, we found elevated leukocyte and 

immune cell fractions, including lymphocytes, dendritic 

cells, and macrophages (Figure 6A). Additionally, we 

measured the diversity of TCR and BCR through 

Shannon entropy and species richness (Figure 6B), 

which showed more diversity in high-risk patients than 

in lower-risk patients, indicating that high-risk patients 

might have more antigen-specific TCR and BCR 

repertoires to detect invading pathogens. In addition, 

patients in the high-risk group showed higher levels of 

aneuploidy, homologous recombination deficiency 

(HRD), and intratumor heterogeneity (Figure 6C), 

suggesting that the above substantial immune infiltrate 

might increase the probability of chromosomal in-

stability, defective DNA repair and spatially hetero-

 

 
 

Figure 3. Stratified analysis of overall survival in the TCGA and GSE14520 datasets by forestplot. (A) Univariate (left) and 
multivariate (right) Cox regression analysis of the training group (TCGA). (B) Univariate (left) and multivariate (right) Cox regression analysis 
of the validation group (GSE14520); TCGA: The Cancer Genome Atlas; HR, hazard ratio; 95% CI, 95% confidence interval; AFP, α-fetoprotein; 
ALT, alanine aminotransferase; HCC, hepatocellular carcinoma. 
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Table 1. Summary of patient demographics and clinicopathologic characteristics associated with HCC in our study. 

Clinical Features No. of cases Low risk High risk P value 

Gender     

Female 121 51 (42.1%) 70 (57.9%) 0.003** 

Male 250 147 (58.8%) 103 (41.2%)  

Age     

≤59 170 85 (50.0%) 85 (50.0%) 0.232 

>59 201 113 (56.2%) 88 (43.8%)  

Tumor size     

<5 cm 45 3 (6.7%) 42 (93.3%) 0.796 

≥5 cm 20 1 (5.0%) 19 (95.0%)  

AFP Elevation     

No 240 134 (55.8%) 106 (44.2%) 0.198 

Yes  131 64 (48.9%) 67 (51.1%)  

TNM      

Stage I/II 257 150 (58.4%) 107 (41.6%) 0.008** 

Stage III/IV 90 38 (42.2%) 52 (57.8%)  

Differentiation     

Well/Moderate 232 131 (56.5%) 101 (43.5%) 0.108 

Poor 134 64 (47.8%) 70 (52.2%)  

Cirrhosis     

No 74 42 (56.8%) 32 (43.2%) 0.318 

Yes 138 88 (63.8%) 50 (36.2%)  

Relapse     

No 229 122 (53.3%) 107 (46.7%) 0.963 

Yes 142 76 (53.5%) 66 (46.5%)  

Metastasis    0.279 

No 266 140 (52.6%) 126 (47.4%)  

Yes 4 1 (25.0%) 3 (75.0%)  

Lymph node 
metastasis 

    

No 252 136 (54%) 116 (46.0%) 0.032* 

Yes 4 0 (0%) 4 (100%)  

Abbreviations: AFP, α-fetoprotein; P < 0.05 (*), P < 0.01 (**) 

geneous tumor structures, promoting neoplastic 

transformation and functional development into distinct 

cell populations. Furthermore, according to the intra-

tumoral immune states and immune subtypes (C1-C6) 

mentioned by Thorsson et al., we found substantial 

variation in the proportion of immune subtypes in these 

two groups (Figure 6D). As illustrated, patients with 

HCC were rich in C3 and C4. A higher percentage of 

high-risk-group patients than low-risk-group patients 

were rich in C1, which has been reported to have less 

favorable outcomes [10]. 

DISCUSSION 
 

HCC is a deadly and silently progressing malignancy, 

ranking second in mortality among all human 

malignancies worldwide [1] Currently available 

biomarkers for this aggressive cancer are not 

sufficiently specific and sensitive to meet all clinical 

needs. A number of studies have reported the crucial 

role of CSCs (CSCs) in the progression of HCC in 

patients with advanced HCC. CSCs exhibit self-renewal 

ability and multilineage differentiation capabilities, 
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enabling tumor cell metastasis invasion and resistance 

to chemotherapy, thus causing a high rate of death [11]. 

Moreover, CSCs in HCC have been reported to be 

characterized by the CD133 phenotype [4]. Patients 

who have a higher percentage of CD133+ liver tumor-

initiating cells are related to poorer survival [6]. 

Therefore, there is an imminent and pressing need for 

strategies that can specifically target critical factors to 

improve the therapeutic effect for HCC patients. 

 

Owing to the heterogeneity and complexity of the 

etiology and clinical characteristics of HCC, it is urgent 

to find a practical combination of biomarkers with high 

sensitivity and specificity instead of searching for a 

single biomarker for early diagnosis and prognostication 

of HCC. Our current study focused on the aggressive 

phenotype of CD133+ cells. We initially exploited data 

available in three GEO datasets comparing the 

differential gene expression between sorted CD133+ 

liver CSCs and CD133- differentiated counterparts. Due 

to systematic nonbiological variation between groups of 

samples, we found batch effects in these three datasets. 

PCA is a well-known technique for reducing the 

dimensionality of such datasets and can increase 

interpretability while at the same time minimizing 

information loss by reducing the dimensionality of a 

dataset [12]. The utilization of R software (FactoMineR 

and factoextra packages) enabled us to remove batch 

effects and obtain normalized clean data. Furthermore, 

we unveiled 24 differentially expressed genes with high 

correlations with CD133. Most of the deregulated genes 

(22 out of 24) were elevated, suggesting that some 

oncogenic genes or signaling pathways were 

prominently activated. Next, by verifying survival data 

 

 
 

Figure 4. Gene sets significantly enriched between high-risk patients and low-risk patients, determined using GSEA. (A) 
MULTIPLE_CANCER_INVASION. (B) TUMOR VASCULATURE_UP. (C) LIVER_ CANCER_ RECURRENCE. (D) cell proliferation. NES, normalized 
enrichment score; FDR: false discovery rate. 
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in TCGA through the univariate Cox regression method, 

we identified four important proteins, including 

LGALS3 (galectin-3), RFX6 (regulatory factor X6), 

ADH6 (alcohol dehydrogenase 6), and UCHL1 

(ubiquitin C-terminal hydrolase L1). LGALS3, RFX6 

and UCHL1 play a risk role in HCC patients, and in 

contrast, the other protein (ADH6) acts as a protective 

factor for HCC. LGALS3 is a member of the β-

galactosidase-binding lectin family, mediating the 

proliferation, differentiation, and angiogenesis of tumor 

cells to promote cancer progression via endogenous and 

secretion mechanisms [13, 14]. Both endogenous and 

secreted LGALS3 were upregulated in HCC tumor 

tissue and serum samples [15, 16], which was highly 

correlated with poor survival. Moreover, in vivo studies 

demonstrated that LGALS3 deficiency was significantly 

associated with a smaller tumor burden, less invasive 

characteristics, reduced proliferation and an increased 

apoptosis rate [13, 16], while rLGALS3 showed the 

opposite effects [17, 18]. Alcohol dehydrogenase 6 

(ADH6) is a liver-specific secreted protein belonging to 

the alcohol dehydrogenase family that encodes class V 

alcohol dehydrogenase, which controls retinol 

metabolism. ADH6 has been reported to be a novel 

circulating biomarker and may be involved in HCC 

pathogenesis [19]. Consistent with our data, ADH6 

exhibited fivefold decreased expression in HCC 

secretome analysis compared to normal samples [20]. 

Furthermore, ADH6 has been reported to be a 

hypermethylated-repressed gene with aberrant DNA 

methylation on its promoter region, which may be 

responsible for its downregulation in HCC [21]. 

Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a 

member of the ubiquitin carboxyl-terminal esterase 

family, which belongs to the deneddylation enzymes 

[22]. Inconsistent with our data, accumulating evidence 

has shown that UCHL1 is overactivated in HCC, 

exhibiting its role in driving aggressive characteristics 

in HCC, and is related to poor overall survival. 

Additionally, UCHL1 upregulation demonstrated its 

role in conferring drug resistance by promoting 

apoptosis [23]. The gene regulatory factor 6 (RFX6) is a 

transcription factor that is involved in cancer 

progression in various cancers [24]. However, to the 

best of our knowledge, this is the first report of its 

significance in HCC. In addition, RFX6 was found to 

regulate the number of pancreatic progenitors, 

suggesting its potential involvement in cancer stemness 

[25]. We further investigated the statistical significance 

of clinical parameters, and the results showed that  

this new risk scoring system could serve as a potential 

and independent predictor for OS and metastasis, 

particularly in male patients. Further, we also performed 

the time-dependent receiver operator characteristic 

curve (ROC) curves in both the training dataset and two 

validation datasets, which demonstrating the accuracy 

of this prognostic model for predicting OS in HCC 

patients (Supplementary Figure 3). 
 

 
 

Figure 5. Pathway enrichment showing the disturbance of immune hepatic homeostasis. (A) The top gene sets of the hallmark 
gene sets, curated gene sets, Gene Ontology gene sets, and immunologic signature gene sets. NES>1.5 and FDR<0.25 were used as criteria. 
(B) The enriched pathways in the hepatic immune microenvironment generated from hallmark gene sets. (C) Highly enriched pathways 
related to inflammatory responses and the disturbance of immune cells. 
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To determine the primary cause of poor survival and 

aggressive cancer features, we next investigated the 

deep mechanisms that are deregulated in high-risk 

group patients. In this study, interestingly, both the 

enrichment pathway associated with the differential 

genes between CD133+ liver CSCs and their 

counterparts and that associated with the differential 

genes between the high-risk group and the low-risk 

group revealed that pathways related to the TME were 

dramatically enriched, especially those related to 

immune cells, the main cellular components, and 

extracellular components such as the extracellular 

matrix. This finding strongly suggests that high-risk 

group patients might generate tumor-promoting stroma 

in the liver. It is widely recognized that the hepatic 

microenvironment and stemness properties play a 

pivotal role in triggering HCC initiation and 

development [26]. Tumor stroma influences the 

processes of hepatocarcinogenesis, epithelial-to-

mesenchymal transition, invasion, and metastasis [27]. 

The tumors in the high-risk group patients were 

hallmarked by increased inflammation and aberrant 

activation of the EMT pathway, IL6/Jak/STAT3 

pathway and TNF-α signaling pathway. Consistent with 

our data, a recent report suggested the constitutive 

activation of IL-6-mediated inflammatory programs in 

accelerating the transformation of CD133+ liver stem 

cells into metastatic CSCs [28]. In addition, a recent 

report revealed that TNF-α signaling promoted the self-

renewal and metastasis phenotypes of HCC cells [29]. 

Furthermore, we also showed the increased hepatic 

infiltration of macrophages in the high-risk groups, 

accompanied by downregulated levels of B and T cells. 

Our findings support several other studies with regard to 

antitumor activity. For instance, Marta et al 

demonstrated that the ablation of B cells resulted in 

enhanced tumor growth and reduced local T cell 

activation [26]. On the other hand, Schneider et al 

recognized that T and B cells were critical for the 

suppression of HCC progression [30]. Another study 

performed by Nielson et al reported that tumor-

infiltrating B cells with an atypical CD27−memory 

phenotype were correlated with better prognosis in 

ovarian cancer [31]. We believe that elevated inflam-

matory responses, especially increases in IL-6 and TNF-

α signaling, as well as decreases in B and T cells, 

accounted for, at least in part, severe HCC development 

in the high-risk-group patients. According to a previous 

study [10], C1 is one of the immune subtypes that 

shows elevated expression of angiogenic genes and 
 

 
 

Figure 6. Box and whisker chart showing the aberrant elevation of the tumor immune infiltrate in high-risk patients. (A) The 
proportion of major classes of immune cells. (B) BCR (top) and TCR (bottom) diversity measured by the Shannon entropy and species 
richness. (C) Four key immune expression signature scores. (D) Number of patients and distribution of immune subtypes in the high-risk 
and low-risk groups. The text above the bars shows the specific number of patients in each immune subtype. The bar width reflects the 
number of tumor samples; the six immune subtypes include C1 (wound healing), C2 (IFN-γ dominant), C3 (inflammatory), C4 (lymphocyte 
depleted), C5 (immunologically quiet) and C6 (TGF-b dominant); values from min to max are plotted. 
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a high proliferation rate. A higher percentage of high-

risk-group patients than low-risk-group patients was 

rich in C1, suggesting that the immune micro-

environment promotes the proliferation and angio-

genesis of tumors [10]. Additionally, we found more 

diverse TCR and BCR repertoires in high-risk patients 

than in low-risk patients; such diversity is critical for 

the recognition of pathogens and malignant cells and 

may increase the degree of clonal expansion and 

challenges of antitumor drug therapy [32, 33]. 

Moreover, the high-risk group exhibited significantly 

higher levels of aneuploidy, homologous recombination 

deficiency (HRD), and intratumor heterogeneity than 

the low-risk group, suggesting that these processes lead 

to tumor development through different routes. High-

risk patients might develop carcinogenesis through 

chromosomal instability (CIN) [34], impairing the DNA 

repair pathway [35], which is often associated with poor 

prognosis and drug resistance in cancers. In addition, it 

would be interesting to see how this model behaves 

when predicting inflammatory conditions of the liver. 

Thus, we separated patients into the hepatitis group and 

the non-hepatitis group. Interestingly, we found that this 

model behaves well when considering inflammatory 

conditions of the liver. As shown in Supplementary 

Figure 2A and 2B), we found that the high-risk group 

was significantly related to poor prognosis in both 

groups, suggesting that this model is independent of 

inflammatory conditions of the liver. 

 

The CD133 fraction is mainly expressed in endothelial 

cells, according to the latest discoveries by Nadim 

Aizarani et al [39], published in Nature. Their work 

successfully improved our knowledge of the cellular 

composition of the liver by performing single-cell RNA 

sequencing of ~10,000 cells from normal liver tissue 

from 9 human donors, providing an interactive human 

liver cell atlas. This atlas comprises all the main liver cell 

types, including hepatocytes, bile duct cells, liver 

sinusoidal endothelial cells (LSECs), macrovascular 

endothelial cells (MaVECs), hepatic stellate cells, 

Kupffer cells, and immune cells. (http://human-liver-cell-

atlas.ie-freiburg.mpg.de/). Here, the epithelial cell marker 

EPCAM showed epithelial cell clusters (Supplementary 

Figure 1; right). The t-SNE maps clearly demonstrated 

that CD133 showed a consistently high expression level 

in epithelial cells (Supplementary Figure 1; left). In 

addition, as proof of concept, CD133 is a marker of 

CSCs in HCC, and we found that CD133 showed 

relatively high expression levels in cluster 7. As 

mentioned in the scientific work by Nadim Aizarani et 

al., cluster 7 is the MUC6high population, which has been 

proposed to be the origin of EPCAM+ hepatic stem cells. 

 

In conclusion, we identified a new risk model 

comprising genes highly correlated with CD133 that 

revealed the disturbance of immune hepatic homeostasis 

in HCC, especially the late stage of HCC in male 

patients, which can forecast survival in HCC, with 

higher risk scores indicating poor prognosis. Patients, 

especially males, who are in the high-risk group may 

have protumorigenic stromal interactions in the liver, 

thereby facilitating tumor growth and metastasis. This 

work provides a resource for understanding the impact 

of CD133+ CSCs (CSCs) on the progression of HCC in 

terms of tumor-immune interactions and has potential 

therapeutic and prognostic implications for identifying 

ways to advance immunotherapy research. 

 

MATERIALS AND METHODS 
 

Data collection and preprocessing 

 

Three genomic profiling datasets (GSE23450, 

GSE23451, and GSE56771) and a validation dataset 

(GSE54236) were retrieved from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/). GSE23450 and 

GSE23451 contain CD133+ and CD133- subpopulations 

sorted from Huh7 and PLC8024 HCC cells. The 

GSE56771 data were uploaded by another group and 

include information on CD133+ and CD133- cells sorted 

from Huh7 cells. The training dataset was  

downloaded from the database of the Liver 

Hepatocellular Carcinoma (LIHC) project 

(https://portal.gdc.cancer.gov/projects/TCGA-LIHC). A 

total of 365 HCC samples were included in the analysis 

of the training group. Eighty-one tumor samples and 242 

tumor specimens were included in the validation datasets 

GSE54236 and GSE14520, respectively. We performed 

principal component analysis (PCA) by reducing the 

dimensionality of the datasets [12]. Next, we used the 

well-known FactoMineR and factoextra packages in R 

software to reduce the dimension of the feature space 

and to visualize the existence of batch effects [36]. Later, 

the batch effects were removed by using the 

removeBatchEffect program in the LIMMA package. 

 

Screening of differentially expressed CD133(hi) genes 

 

The CEL files and probe annotation files in the three 

genomics profiling datasets were downloaded and 

combined for analysis through genome-wide microarray 

analysis. Next, we performed gene differential 

expression analysis using the LIMMA package (Version 

3.36.2). The Affy package was used to normalize the 

raw data by performing average background correction, 

quantile normalization and calculation of expression, 

after which a linear model was fitted, and empirical 

Bayes statistics were computed [37]. Clustering analysis 

of up- and downregulated differentially expressed genes 

was performed using the Pheatmap package in R 

statistical software. 

http://human-liver-cell-atlas.ie-freiburg.mpg.de/
http://human-liver-cell-atlas.ie-freiburg.mpg.de/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/projects/TCGA-LIHC
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Construction of the prognostic model 
 

The Cox proportional hazards model is essentially a 

regression model that is commonly used in statistical 

cancer research to investigate the association between 

the survival time of patients and other predictor 

variables. Univariate survival analysis of the individual 

differentially expressed CD133(hi) genes was performed 

by the Survival package in R. The coefficients, P values 

and hazard ratios (HRs) with 95% confidence intervals 

(CIs) of each gene were generated in the risk scoring 

system based on the expression of each sample in R 

studio at the same time. We then calculated the risk 

score of every patient. The prognostic model was 

constructed based on a linear combination of expression 

levels weighted by regression coefficients. A P 

value<0.05 was considered a significant difference. 

 

Confirmation and evaluation of the power of the new 

risk scoring system 

 

Based on the established model, we separated patients 

into high-risk groups and low-risk groups in both the 

training group and validation group according to the PI. 

Patients with expression levels higher than the mean 

value were categorized into the high-risk group, while 

those with expression levels lower than the mean value 

were categorized into the low-risk group. The survival 

curves of the two groups were plotted using Kaplan-

Meier survival curves, and the difference was tested 

using the log-rank method. 

 

Functional and pathway enrichment analysis 
 

Functional enrichment analyses of the differential 

CD133(hi) genes, including Gene Ontology (GO) 

annotation analysis and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway enrichment 

analysis of DEGs, were carried out using DAVID 

[37]. Gene set enrichment analysis (GSEA) [38] 

using a preranked tool was carried out by the 

program JAVA (http://www.broadinstitute.org/gsea) 

based on the collection of gene sets in the Molecular 

Signatures Database (MsigDB). A normalized 

enrichment score (NES) was generated for each gene 

set to compare the analysis results across gene sets. A 

false discovery rate (FDR) <0.25 was considered as a 

well-established cutoff to determine enrichment 

terms. A gene set P value < 0.05 was considered 

statistically significant. 
 

Statistics 
 

Statistical analysis was conducted using GraphPad 

Prism 8 software. Clinical parameters of the patients in 

the high-risk group and low-risk group were evaluated 

by the chi-squared test. Statistical significance was 

calculated by Student’s t-test, with P<0.05 considered 

significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 
 

 

 

 
 

Supplementary Figure 1. The CD133 fraction is mainly expressed in endothelial cells. 
 

 

 
 

Supplementary Figure 2. Our risk model behaves well considering the inflammatory conditions of the liver. 
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Supplementary Figure 3. Time-dependent ROC curves for the survival prediction of the prognostic model. 
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Supplementary Tables 
 

 

Supplementary Table 1. Significance and HR of the optimal genes associated with OS. 

Gene names Coef HR P value 

LGALS3 0.1376 1.1476 0.009 

RFX6 0.1089 1.1151 0.029 

ADH6 -0.0895 0.9144 0.032 

UCHL1 0.0742 1.077 0.009 

*HR, Hazard ratio; OS, overall survival; Coef, relative coefficient 
 

Supplementary Table 2. Annotation of the significant enriched GSEA datasets. 

Gene sets name Description 

WOO_LIVER_CANCER_RECURRENCE_UP 
Genes positively correlated with recurrence free 

survival in patients with hepatitis B-related 
(HBV) hepatocellular carcinoma (HCC); 

ANASTASSIOU_MULTICANCER_INVASIVENESS_SIGNATURE 
Invasiveness signature resulting from cancer 

cell/microenvironment interaction; 

CHIANG_LIVER_CANCER_SUBCLASS_CTNNB1_DN 
Top 200 marker genes down-regulated in the 

‘CTNNB1’ subclass of hepatocellular carcinoma 
(HCC); 

CHIANG_LIVER_CANCER_SUBCLASS_PROLIFERATION_UP 

Top 200 marker genes up-regulated in the 
‘proliferation’ subclass of hepatocellular 

carcinoma (HCC); characterized by increased 
proliferation, high levels of serum AFP, and 

chromosomal instability; 

LU_TUMOR_VASCULATURE_UP 

Genes up-regulated in endothelial cells derived 
from invasive ovarian cancer tissueGenes up-

regulated in endothelial cells derived from 
invasive ovarian cancer tissue; 

REACTOME_INTERLEUKIN_10_SIGNALING Interleukin-10 signaling 

GO_REGULATION_OF_MONONUCLEAR_CELL_MIGRATION 
Any process that modulates the rate, frequency or 

extent of mononuclear cell migration. 

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 
Genes defining epithelial-mesenchymal 

transition, as in wound healing, fibrosis and 
metastasis. 

HALLMARK_INFLAMMATORY_RESPONSE Genes defining inflammatory response 

GSE7218_UNSTIM_VS_ANTIGEN_STIM_THROUGH_IGG_B_CELL
_DN 

Genes down-regulated in B lymphocytes: 
expressing IgM BCR fusion and untreated versus 
expressing IgMG BCR fusion and treated by anti-

HEL. 

GSE25123_CTRL_VS_ROSIGLITAZONE_STIM_PPARG_KO_MACR
OPHAGE_UP 

> Genes up-regulated in bone marrow-derived 
macrophages with PPARG [knockout: control 

versus rosiglitazone 

GSE36888_UNTREATED_VS_IL2_TREATED_TCELL_17H_DN 
GSE36888_UNTREATED_VS_IL2_TREATED

_TCELL_17H_DN 

* False Discovery Rate (FDR) <0.25 and P-value of the gene sets < 0.05 was considered statistically significant. 
 


