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INTRODUCTION 
 
Since the beginning of the coronaviral burst in 
December 2019, SARS-CoV-2 has widely spread in 
more than 50 countries around the world. The increased 
fatality of COVID-19 amongst older versus younger 
individuals has become more evident [1]. 
 
The aging process is characterized by increased levels 
of oxidative stress and chronic inflammation 
contributing to many age-related pathologies [2, 3]. It 
has been suggested that increases in inflammation may 
be promoted by the release of pro-inflammatory and 
other factors from senescent cells as part of what  
is known as the senescence-associated secreted 
phenotypes (SASP) [4, 5], which includes increase  
in  senescence-associated β-galactosidase (SA-β-gal)  

 

activity, increased levels of the cyclin-dependent kinase 
(CDK) inhibitors p16 and p21, and pro-inflammatory 
cytokines including IL-6, IL-8 and IL-1α [6]. The SASP 
promotes the development of an inflammatory 
environment leading to tissue frailty contributing to 
many diseases including cancer, chronic obstructive 
pulmonary disease, diabetes and neurodegenerative 
diseases [5, 7–9]. 
 
In a recent research perspective, the use of senolytic 
drugs was suggested for the treatment and prevention of 
COVID-19 [10]. These drugs induce the apoptosis of 
senescent cells and reduce production of the SASP, 
reducing vulnerability to chronic diseases [11]. The 
authors described how many FDA-approved drugs 
including azithromycin, doxycycline and chloroquine 
have been shown to act as senolytics. 
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ABSTRACT 
 
Cell senescence is a process that causes growth arrest and the release of a senescence associated secretory 
phenotype (SASP), characterized by secretion of chemokines, cytokines, cell growth factors and metalloproteases, 
leading to a tissue condition that may precipitate cancers and neurodegenerative processes. With the recent 
pandemic of coronavirus, senolytic drugs are being considered as possible therapeutic tools to reduce the 
virulence of SARS-CoV-2. In the last few years, our research group showed that lithium carbonate at microdose 
levels was able to stabilize memory and change neuropathological characteristics of Alzheimer’s disease (AD). In 
the present work, we present evidence that low-dose lithium can reduce the SASP of human iPSCs-derived 
astrocytes following acute treatment, suggesting that microdose lithium could protect cells from senescence and 
development of aging-related conditions. With the present findings, a perspective of the potential use of low-dose 
lithium in old patients from the “high risk group” for COVID-19 (with hypertension, diabetes and chronic 
obstructive pulmonary disease) is presented. 

mailto:taniaviel@usp.br


www.aging-us.com 1036 AGING 

Recently our research group and others have identified 
additional compounds that may also inhibit the 
inflammation associated with aging and neuro-
degenerative diseases. Lithium in microdose  
[12, 13], for example, was shown to enhance the 
maintenance of memory, decrease the density of senile 
plaques, and reduce neuronal cell loss both clinically 
and pre-clinically. A recent review highlighted the 
potential use of lithium as candidate for therapy of 
COVID-19 along with chloroquine or other drugs [14]. 
It is possible that one of the mechanisms by which 

microdose lithium may be eliciting its protective effects 
is via preventing inflammatory SASP induction. 
 
In order to test this, human iPSCs-derived astrocytes 
were seeded in cell culture plates pre-coated with 
matrigel (Corning Matrigel Matrix, Tewksbury, MA, 
USA) and treated with different concentrations of 
Li2CO3 for 24 h and 48h. Concentrations up to 100 µM 
showed no toxicity in the astrocytes as determined by 
the MTT assay (Figure 1A, 1B). Based on this analysis 
and our previous pre-clinical studies [13], three 

 

 
 

Figure 1. Effects of increasing lithium concentrations on cell viability and induction of senescence and the SASP in human 
iPSC-derived astrocytes. (A, B) cell viability measured by the MTT assay. Data are expressed as individual points, mean and SEM; 
performed in triplicate. (C, D) Relative levels of secreted IL-6 and IL-8. Conditioned media was collected 24h following induction of 
senescence with 1% FBS and data was normalized to cell number. (E–G) RNA isolated from human iPSCs-derived astrocytes was analyzed for 
IL-1α, p16INK4a and p21 mRNA levels by qPCR. Transcripts were normalized to actin and are shown as fold change over control levels. (H) GSK-
3β activation measured as the proportion of phosphorylated and total GSK-3β. Data are expressed as individual points, mean and SEM. (I) SA 
β-gal in iPSC-derived astrocytes in the absence and presence of Aβ with increasing concentrations of lithium. Values show relative amounts of 
SA β-gal positive cells in three independent experiments. (J) Representative panels of SA-β gal staining under various treatment conditions. 
*p<0.05; **: p<0.01; ***:p < 0.001. For (C–H), data are expressed as individual points, mean and SEM of 4-5 independent experiments. 
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concentrations (2.5 µM, 10 µM and 25 µM) were 
selected for subsequent experiments; treatments were 
maintained for 24 h. 
 
Concentrations of the hallmark SASP factors such as 
IL-6 and IL-8 were measured in the conditioned culture 
media using ELISA kits. Treatment with 2.5 µM and 10 
µM Li2CO3 promoted a 57.6% (P<0.05) and 47.5% 
decrease (P<0.05), respectively, in the release of IL-6 
and a 54.2% (P<0.05) and 49.6% (P<0.05) decrease in 
the release of IL-8 compared to untreated controls. 
Incubation of 25 µM Li2CO3 however did not alter the 
release of either cytokine (Figure 1C, 1D). These data are 
in agreement with recent studies from our lab and others 
showing anti-inflammatory properties of low-dose 
lithium as evidenced by reductions in pro-inflammatory 
cytokine density [15], Toricelli et al. (Toricelli M, 
Evangelista SR, Buck HS, Viel TA. Microdose lithium 
treatment reduced inflammatory factors and neuro-
degeneration in organotypic hippocampal culture of old 
SAMP-8 mice. Submitted to Cellular and Molecular 
Neurobiology, March 2020). These results are of 
particular interest as a very recent report shows strong 
association of elevated IL-6 levels with respiratory failure 
in COVID-19 infected patients [16]. 
 
Similar expression profiles for the senescence markers 
p16 and p21 and the SASP factor IL-1α were also 
observed following treatment with Li2CO3 compared 
with untreated controls. 2.5 µM Li2CO3 significantly 
reduced expression of p16 and p21 and 25 µM Li2CO3 
also reduced p21 expression. For IL-1α, however, the 
decrease in expression with Li2CO3 did not reach 
statistical significance (Figure 1E–1G).  
 
Interestingly, positive effects of acute treatment with 
low dose lithium seems not to act via known 
mechanism of lithium (inhibition of GSK-3β activation) 
[17], as no differences in phosphorylation of Ser9-GSK-
3β were observed following acute treatment with low 
concentrations of lithium (Figure 1H). In a previous 
study, treatment of WI-38 fibroblasts with 20 mM 
lithium chloride reduced GSK3-dependent increases in 
p53 and p21 nuclear levels [18], indicating that 
microdose lithium used in the present work has different 
cell effects than lithium in higher concentrations.  
 
We further confirmed the antisenescence properties of 
lithium using an established amyloid β-induced 
senescence model [19]. We observed that low dose of 
Li2CO3 including 2.5 μM, 10 μM and 25 µM 
significantly suppressed amyloid-β (Aβ) increased SA 
β-gal staining in astrocytes, a hallmark of cellular 
senescence (Figure 1I, 1J). Overall our results highlight 
the potential of microdose lithium (a safe FDA 
approved drug) in suppressing cellular senescence. 

Lithium carbonate is still widely used as a therapeutic 
for bipolar depression [20]. Recently, low-dose lithium 
has begun to be considered as a disease-modifying 
strategy for some neurodegenerative diseases [13, 15, 
21–24]. Its neuroprotective effects in pre-clinical 
models may be due to its anti-inflammatory properties 
[15, 25], Toricelli et al. 
 
This work was originally initiated by the authors to 
explore the beneficial effects of low-dose lithium in 
brain aging and age-related neurodegenerative diseases. 
However, in face of the recent COVID-19 pandemic 
and the urgency to identify anti-viral drugs, including 
the potential use of FDA-approved drugs displaying 
senolytic properties, we believe that these findings will 
be important to broaden the research community 
therapy possibilities. The fact that microdose lithium 
suppresses IL-6 and recent finding correlating IL-6 
level with severity of the diseases in COVID-19 patients 
provides a strong rationale for why lithium treatment 
should be tested as treatment. In this way, low-dose 
lithium may constitute a novel potential therapeutic to 
reduce the virulence of SARS-CoV-2. It is important to 
highlight that no side effects were verified in old people 
with the use of low-dose lithium [12, 26]. 
 
MATERIALS AND METHODS 
 
Culture of human iPSCs-derived astrocytes 
 
Commercially available human iPSC-derived astrocytes 
(iCell, # 01434) were used for our studies. Cells were 
seeded at 1 x 104 cells/cm2 in cell culture plates pre-
coated with matrigel (Corning Matrigel Matrix, 
Tewksbury, MA, USA) and cultured to 70-80% 
confluence. Cells were then cultured at 37°C and 5% 
CO2 in complete DMEM media (supplemented with N2 
supplement and 2% penicillin/streptomycin) containing 
10% fetal bovine serum (FBS). Cells were grown in 
physiological (3%) oxygen concentrations as previously 
described [27, 28]. Cells were incubated with 
concentrations of up to 1 mM Li2CO3 for 24-48 hrs and 
toxicity verified by the MTT assay. 
 
Determination of IL-6 and IL-8 levels 
 
Following treatment with 2.5 µM, 10 µM and 25 µM 
Li2CO3 for 24h, culture medium was prepared by 
washing cells once in PBS followed by incubation in 
DMEM with 1% FBS for 24 hr. The medium was 
collected and stored at -80 °C. Cell numbers were 
determined with an automated cell counter (Thermo 
Scientific). ELISA assays were performed using an 
alphaLISA IL-6 or IL-8 Immunoassay Research Kit 
(Perkin Elmer) following the manufacturer’s 
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instructions. Data was normalized to cell number and 
expressed as picograms per 1,000 cells. 
 
RT-qPCR analysis 
 
Total RNA was prepared from human astrocytes using a 
Direct-zol RNA MiniPrep Kit (Genesee Scientific). 
Integrity of RNA was verified using a nanodrop system. 
RT-qPCR was performed using the Universal Probe 
Library System (Roche, South San Francisco, CA) with 
the following primers and probes: 
 
IL-1a: forward (FW) 5′-ggttgagtttaagccaatcca-3′; 
reverse (RV) 5′-tgctgacctaggcttgatga-3′ 
 
p16INK4a: FW 5′-cggaaggtccctcagacatc-3′; RV 5′-
aaactacgaaagcggggtgg-3′ 
 
p21: FW 5′-ccagcatgacagatttctaccac-3′; RV 5′- 
cttcctgtgggcggattagg-3′ 
 
actin: 5′-ACCGAGCGCGGCTACAG-3′; 5′-
CTTAATGTCACGCACGATTTCC-3′ 
 
Determination of GSK-3β activation 
 
For protein extractions, astrocytes were collected and 
homogenized in lysis buffer containing 50 mM Tris pH 
8.0, 150 mM NaCl, 1% NP-40, a protease inhibitor 
cocktail (Roche) and a phosphatase inhibitor cocktail 
(Sigma-Aldrich). Lysates were centrifuged at 10,000g 
for 10 min at 4 °C and supernatants collected. Total 
protein concentration was determined using the 
Bradford assay [29]. Proteins (10 µg) were separated by 
10% sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) and transferred onto 
PVDF membranes. Membranes were blocked with 
TBST containing 5% non-fat milk for 1 hour and then 
incubated with the primary antibody GSK-3β (Cell 
Signaling Technology, 9315, 1:1000) and phospho-
GSK-3β (Cell Signaling Technology, 5558, 1:1000). 
Bands were detected using an ECL system (EMD 
Millipore) and quantified densitometrically. Actin 
(1:2000) was used as a loading control. 
 
Senescence-associated-β-galactosidase (SA-β-gal) assay 
 
SA-β-gal staining was performed according to the 
method described by Bhat and co-workers [19]. Cells 
were plated at 1 x 104 cells/cm2 in chamber slides and 
treated or not with 5 µM amyloid-β for 2 h. The 
medium was then replaced with fresh medium 
containing 0 µM, 2.5 µM, 10 µM or 25 µM Li2CO3. 
This treatment was maintained for three days after 
which cells were assessed for SA-β-gal activity. 

Positive (blue) cells were expressed as a percentage of 
total cell number. 
 
Statistical analysis 
 
Data were expressed as means ± SEM and analyzed 
with the Graph Pad Prism program (GraphPad 
Software, San Diego, CA, version 6). Data were 
analyzed using one-way analysis of variance (ANOVA) 
followed by Bonferroni’s test. In all analyses, only 
probability values (P) less than 0.05 were considered 
statistically significant. 
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