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INTRODUCTION 
 

The human brain is a nonlinear dynamic system, which 

needs to keep flexible or complex to adapt to the 

external changing environment. Neuroimaging studies 

have demonstrated that the variability of brain signals is 

more than intrinsic spontaneous noise, and is closely 

linked to different cognitive states [1, 2]. Thus the loss 

of  complexity  in  brain  activity  may lead to neural in- 

 

efficiency and cognitive deficits, which substantially 

increase the risk of the susceptibility for many mental 

disorders. Previous study has shown that older adults 

exhibited significantly decreased complexity of resting 

brain activity compared with young adults [3], 

suggesting declined brain functions and impaired 

adaptability to environment with age. Alzheimer’s 

disease (AD) is the most common form of dementia in 

aging most often characterized by cognitive deficits in 
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ABSTRACT 
 

Brain complexity, which reflects the ability of the brain to adapt to a changing environment, has been found to 
be significantly changed with age. However, there is less evidence on the alterations of brain complexity in 
neurodegenerative disorders such as Alzheimer’s disease (AD). Here we investigated the altered complexity of 
resting-state blood oxygen level-dependent signals in AD-related neurodegeneration using multiscale entropy 
(MSE) analysis. All participants were recruited from the Alzheimer’s Disease Neuroimaging Initiative, including 
healthy controls (HC, n=62), amnestic mild cognitive impairment (aMCI, n =81) patients, and Alzheimer’s 
disease (AD, n=25) patients. Our results showed time scale-dependent MSE differences across the three groups. 
In scale=1, significantly changed MSE patterns (HC>aMCI>AD) were found in four brain regions, including the 
hippocampus, middle frontal gyrus, intraparietal lobe, and superior frontal gyrus. In scale=4, reversed MSE 
patterns (HC<aMCI<AD) were found in the middle frontal gyrus and middle occipital gyrus. Furthermore, the 
values of regional entropy were significantly associated with cognitive functions positively on the short time 
scale, while negatively on the longer time scale. Our findings suggest that MSE could be a reliable measure for 
characterizing brain deterioration in AD and may provide insights into the neural mechanism of AD-related 
neurodegeneration.  
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multiple domains, including episodic memory, 

executive function, and decision-making [4, 5]. 

Although substantial neuroimaging studies have 

reported brain alterations in AD using various measures, 

there has been less study on how the complexity of 

brain activity changes in AD-related neurodegeneration. 

 

To quantify the complexity in a dynamic system, 

entropy is developed to measure the nonlinear 

characteristics of time series data, which has been 

successfully applied in scientific and clinical researches 

[6, 7]. In several AD-related neuroimaging studies, 

converging evidence has shown the abnormality of 

altered complexity in brain activity, associated with 

impaired cognitive and psychosocial functions. For 

example, electroencephalography (EEG) studies have 

reported approximate entropy significantly decreased in 

AD patients, suggesting a reduced irregularity in brain 

activity [8, 9]. As a modification of approximate 

entropy, sample entropy is less sensitive to the change 

of data length, and has been found significantly 

decreased in AD patients as well [10]. Likewise, 

entropy analysis in magnetoencephalography (MEG) 

studies reported significantly decreased complexity or 

increased regularity of brain activity in AD [11, 12]. 

Different from using a single temporal scale in 

approximate entropy and sample entropy analysis, 

multiscale entropy (MSE) has been developed to assess 

the irregularity of a time-series signal in multiple time 

scales, providing a more informative measurement in 

exploring age-related brain deterioration [3, 13].  

 

In recent years, increasing numbers of studies have 

been focusing on the dynamic analysis of blood-

oxygen-level-dependent (BOLD) signals derived from 

resting-state fMRI (rs-fMRI) data. Compared with 

EEG and MEG, fMRI provides high spatial resolution 

in understanding regional activity and interregional 

connections. Using resting-state fMRI, accumulating 

evidence has revealed AD-related dysfunctions in 

multiple brain regions, including the prefrontal cortex 

(PFC), hippocampus, parietal lobe, and temporal lobe 

[14, 15]. Functional connectivity analysis indicates 

that decreased global connections and increased local 

connections were found in amnestic mild cognitive 

impairment (aMCI) and AD [16, 17]. In addition to 

the conventional fMRI analyses, recent studies have 

reported entropy of spontaneous BOLD signals could 

be a sensitive biomarker for assessing the complexity 

and synchronicity of brain activity in normal aging 

[18] and psychiatric disorder [19]. Taken together, the 

disrupted regional brain activities and network 

connectivities implicate the abnormal dynamics of 

spontaneous brain activity in AD, suggesting an 

altered BOLD complexity may be closely linked to 

the etiology of AD. 

In the current study, we investigated the changes in 

fMRI signal complexity in aMCI and AD patients 

compared with healthy controls (HC) by examining 

MSE of resting-state BOLD signals. We hypothesized 

that MSE would be altered in multiple brain regions in 

aMCI and AD groups, and was associated with AD-

related cognitive decline. Moreover, we speculated that 

the changes of MSE patterns in AD would depend on 

different time scales. 

 

RESULTS 
 

Defining parameters in MSE analysis 
 

Based on analyzing 90 regions in AAL template, results 

from one-way ANOVA showed MSE parameters of m = 

1, r = 0.35 and scale = 2 with the largest total F scores 

(F = 42.4), giving the highest sensitivity in 

differentiating the HC, aMCI and AD groups (see 

Figure 1). Then these parameters were applied to 

calculate the individual’s entropy map for the sub-

sequent whole-brain voxel-wise analysis. A voxel-wise 

ANCOVA was used to examine the differences across 

the three groups, and showed significant MSE changes 

in four brain regions (p < 0.05, AlphaSim correction), 

including the right hippocampus, right precentral gyrus 

(PCG), right intraparietal lobe (IPL), and right superior 

frontal gyrus (SFG) (see Figure 2A left and Table 2). 

Post-hoc comparisons were performed to examine the 

differences between each paired group. In the 

hippocampus and PCG, both aMCI and AD groups 

showed significantly decreased entropy than the HC 

group (p < 0.05, FDR correction). In the IPL and SFG, 

the AD group showed significantly decreased 
 

 
 

Figure 1. Examining the sensitivity of MSE parameters in 
differentiating the HC, aMCI, and AD groups using one-way 
ANOVA. Compared with other parameters, the combination of m 

= 1, r = 0.35, and scale = 2 gave the largest total F scores, showing 
the highest discrimination power of detecting the differences 
across the three groups.  
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Table 1. Demographics and characteristics of participants.  

 HC (n = 62) aMCI (n = 81) AD (n = 25) p value 

Age 74 ± 6 74 ± 7 74 ± 6 0.79 

Male (n) 28 43 13 0.63 

Education (Years) 16 ± 3 16 ± 3 15 ± 3 0.42 

MOCA 26 ± 2 23 ± 3 * 16 ± 5 *,# < 0.01 

MEM 1.0 ± 0.6 0.3 ± 0.7 * -0.8 ± 0.7 *,# < 0.01 

EF 0.8 ± 0.7 0.3 ± 0.9 * -0.9 ± 0.9 *,# < 0.01 

Head motion 0.18 ± 0.11 0.19 ± 0.16 0.18 ± 0.13 0.96 

Data are presented as means ± standard deviations for the HC, aMCI, and AD groups. *, p<0.05 compared with HC; #, p<0.05, 
compared with MCI. Note: HC, healthy control; aMCI, amnestic mild cognitive impairment; AD, Alzheimer’s disease; MOCA, 
Montreal Cognitive Assessment; MEM, memory; EF, executive function.  
 

entropy compared with HC and MCI groups (p < 0.05, 

FDR correction, see Figure 2B left). 

 

MSE analysis in different time scales 

 

Further analyses examined how the altered MSE 

patterns changed with time scales. In scale = 1, there 

was no significant difference across the HC, aMCI, and 

AD groups. In scale = 3, entropy in the right cuneus 

showed significant difference across the three groups 

(see Figure 2A middle, Table 2). A post-hoc analysis 

showed that the aMCI group has significantly decreased 

entropy than the HC group (p < 0.05, FDR correction). 

In scale = 4, entropy was found significantly different in 

two brain regions, including the right middle frontal 

gyrus (MFG) and right middle occipital lobe (MOG) 

(see Figure 2A right, Table 2). A post-hoc analysis 

showed AD > HC and aMCI > HC in the right MFG, 

and AD > aMCI > HC in the right MOG (p < 0.05, FDR 

correction). 

 

Additionally, an independent two-sample t-test was 

performed to examine how the MSE patterns of AD 

versus HC changed with time scales (see Figure 3A). To 

 

 
 

Figure 2. MSE differences across the three groups using voxel-wise ANCOVA, controlled for age, education, head motion, and 
GM. (A) Significant differences of MSE were observed in multiple brain regions, including four regions in scale = 2 (the right hippocampus, right 

PCG, right IPL and right SFG), one region in scale = 3 (the right cuneus), and two regions in scale = 4 (the MFG and MOG). All the statistical results 
were corrected for multiple comparisons (p < 0.05, AlphSim correction). (B) The peak entropy value within each region was extracted and used to 
examine the differences between each pair of groups (p<0.05, FDR correction). Note: PCG, precentral gyrus; IPL, intraparietal lobe; SFG, superior 
frontal gyrus; MFG, middle frontal gyrus; MOG, middle occipital gyrus; GM, gray matter. *, p<.05; **, p<.01. 
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Table 2. Brain regions with significant MSE differences across HC, aMCI, and AD. 

Region Peak value Cluster (voxels) MNI coordinates p value 

Time Scale=2     

  Right hippocampus 14.5 262 39, -15, -15 <0.001 

  Right PCG 8.7 71 57, 6, 42 0.002 

  Right IPL 10.7 59 30, -48, 45 0.014 

  Right SFG 13.5 54 24, 6, 54 0.028 

Time Scale=3     

  Right cuneus 7.2 52 6, -84, 21 0.04 

Time Scale=4     

  Right MFG 8.5 53 39, 48, 0 0.04 

  Right MOG 10.1 106 48, -84, -3 <.001 

Significant MSE changes across groups by using ANCOVA, controlled for age, education, head motion, and GM (p < 0.05, 
AlphaSim correction). Note: MNI, Montreal Neurological Institute; PCG, precentral gyrus; IPL, intraparietal lobe; SFG, superior 
frontal gyrus; MFG, middle frontal gyrus; MOG, middle occipital gyrus; GM, gray matter. 
 

better represent the trajectory of entropy changes, we 

didn’t apply any criterion to the statistic maps. Compared 

with HCs, AD patients showed widespread regions with 

decreased entropy in short time scales (scale =1 and 2), 

followed by more regions with increased entropy in 

longer time scales (scale=3 and 4). The entropy values 

within the brain regions defined in the ANCOVA were 

extracted to show the time scale-dependent MSE changes 

in the HC and AD groups, respectively (see Figure 3B). 

After controlling for age, education, GM, and head 

motion, a repeated measures analysis showed significant 

interaction effects of group × scale in the hippocampus, 

SFG, MFG, and MOG (uncorrected p < 0.01). 

 

Correlation analysis for MSE 

 

Partial correlation was applied to examine the 

relationships between MSE of BOLD signals and 

neuropsychological assessments in the entire sample, 

controlled for age, education, GM, and head motion (see 

Table 3). In scale = 2, the results showed that MOCA was 

positively correlated with MSE in the hippocampus, IPL, 

and SFG (see Figure 4A). The MEM and EF were 

positively correlated with MSE in the hippocampus, IPL 

and SFG separately. Also, the EF was positively 

associated with MSE in the MFG as well. In scale = 3, 

there was no significant correlation found in the cuneus 

(see Figure 4B). In scale = 4, negative correlations were 

found between MOCA and MSE in the MOG (see Figure 

4C). In addition, the MEM and EF were negatively 

correlated with MSE in the MFG and MOG separately 

 

DISCUSSION  
 

In the current study, we investigated the altered 

complexity of resting-state BOLD signals in AD-

associated neurodegeneration, and its relationships with 

declined cognitive functions. Compared with HCs, AD 

patients showed significantly decreased MSE of BOLD 

signals for scale = 1, while increased MSE for scale = 4. 

Likewise, aMCI group showed moderately decreased 

MSE on a short scale, and increased MSE on a longer 

scale. Interestingly, we found unexpected non-

monotonic MSE changes (HC > aMCI <AD) in the 

cuneus in scale = 3, suggesting a complicated pattern of 

brain functional alterations in AD progression. 

Additionally, the correlation analyses showed that the 

relationships between BOLD complexity and cognitive 

functions depended on different time scales. Our study 

found that MSE of BOLD activity successfully 

characterized the brain deterioration of AD-related 

neurodegeneration, which may be a sensitive biomarker 

for AD diagnosis and intervention. 

 

The abnormal BOLD complexity of multiple brain 

regions in the patient groups may indicate disrupted 

brain connections and declined cognitive functions. On 

a short time scale (scale = 2), aMCI and AD exhibited 

significantly changed MSE values within four brain 

regions, including the SFG, PCG, hippocampus, and 

IPL. Converging evidence has shown that AD-related 

neurodegenerative disorders show significantly 

functional and structural disruptions of the hippo-

campus, which lead to typical memory deficits [20, 21]. 

Since entropy in short time scales has been found 

associated with local information processing [22],  the 

reduced entropy may be due to disrupted regional 

activity or local connectivity of the hippocampus in AD 

[23, 24]. As a core hub of the default mode network 

(DMN), the IPL showed decreased low-frequency 

oscillation in AD, suggesting the hypoactivity of the 

DMN [25].  In addition, reduced regional activity and 

disrupted connections of the SFG and PCG have been 

found in individuals at risk for AD [16, 26]. In line with 

these studies, here the decreased pattern of BOLD 

complexity on a short time scale confirmed that these 
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brain regions were vulnerable to AD pathology, 

especially for the hippocampus and PCG. In contrast to 

the findings on the short scale, several brain regions, 

such as the MFG and MOG, exhibited significantly 

increased entropy in the aMCI and AD groups on the 

longer scale (scale = 4). Similarly, findings from EEG 

study also showed entropy was decreased on the short 

scales and increased on the longer scales in AD 

compared with HC [27]. As well, several neuroimaging 

studies have reported abnormal hyperactivity and 

enhanced connectivity in the frontal and occipital 

regions in AD brain, which may be due to a 

compensation mechanism [28, 29]. It is noteworthy that 

we found an unexpected non-monotonic pattern of MSE 

change (HC > aMCI < AD) in the cuneus (scale  = 3). A 

similar phenomenon has been found in previous AD-

related studies as well. For example, Dickerson et al. 

reported hyperactivity of the hippocampus in aMCI 

compared with HC and AD in the face-name encoding 

task [30]. Using graph theoretical analyses, Seo et al. 

found that functional association between neighboring 

brain regions was most severely altered in aMCI stage 

 

 
 

Figure 3. The comparison of MSE patterns between AD and HC in different time scales using independent two-sample t-test, 
controlled for age, education, head motion, and GM. (A) In scale = 1 and 2, most of the brain regions showed decreased entropy in AD 

compared with HC. In scale = 3 and 4, the statistical maps tended to show reversed patterns of MSE. (B) MSE of each region was extracted 
and showed significant interaction effects of group × scale in the hippocampus, SFG, MFG, and MOG (p < 0.01). Note: PCG, precentral gyrus; 
IPL, intraparietal lobe; SFG, superior frontal gyrus; MFG, middle frontal gyrus; MOG, middle occipital gyrus; GM, gray matter. 
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Table 3. Relationships of MSE with neuropsychological assessments. 

Region MOCA MEM EF 

Time scale = 2    

  Right hippocampus .29 *** .27 *** .19** 

  Right MFG .14 .16 * .23 ** 

  Right IPL .22 ** .18 ** .18 * 

  Right SFG .23 ** .26 *** .27 *** 

Time scale = 3    

  Right cuneus -.05 .07 .09 

Time scale = 4    

  Right MFG -.08 -.20 ** -.18 * 

  Right MOG -.29 *** -.20 ** -.26 *** 

Partial correlation showed the relationships between entropy and MOCA, MEM, EF in the entire sample, controlled for age 
and education. Data represents the correlation coefficient (r). Note: MNI, Montreal Neurological Institute; PCG, precentral 
gyrus; IPL, intraparietal lobe; SFG, superior frontal gyrus; MFG, middle frontal gyrus; MOG, middle occipital gyrus. *, p<0.05; 
**, p<0.01; ***, p<0.001. 
 

and gradually re-increase in AD [31]. Taken together, 

our results indicated that time scale is an important 

factor in studying the biological mechanism of AD, and 

aMCI may be a more complicated state rather than a 

simple transitional stage between normal aging and 

dementia. 

 

To further assess the changes of BOLD complexity over 

cognitive functions, correlation analyses were applied to 

examine the relationships between BOLD complexity 

and neuropsychological assessments. We found time 

scale-dependent correlations between altered entropy 

and cognitive deficits. On a short time scale, the entropy 

in the hippocampus, IPL, and SFG were positively 

correlated with cognitive functions, showing decreased 

entropy with impaired adaptability to cognitive 

demands in the AD group. While on a longer scale, the 

entropy values of the MFG and MOG were negatively 

 

 
 

Figure 4. Partial correlation was applied to examine the relationships between MSE and MOCA in the entire sample, 
controlled for age, education, head motion, and GM. The entropy showed significant positive correlations in the hippocampus, IPL, 

and SFG (A), and negative correlation with the MOG (C). While no significant correlation was found between MOCA and entropy in the PCG 
(A), cuneus (B), and MFG (C). Note: PCG, precentral gyrus; IPL, intraparietal lobe; SFG, superior frontal gyrus; MFG, middle frontal gyrus; 
MOG, middle occipital gyrus; GM, gray matter. *, p<.05; **, p<.01; ***, p<.001. 



 

www.aging-us.com 13577 AGING 

associated with cognitive functions, representing higher 

entropy associated with more cognitive deficits in 

AD. Therefore, we speculate the higher regional 

entropy in AD on longer scales may be due to increased 

uncorrelated randomness according to Yang’s previous 

study [19]. Notably, although the correlations between 

cognitive deficits and altered entropy were highly 

significant in some regions such as the right 

hippocampus and right SFG, we must be cautious to 

interpret the results due to the small correlation 

coefficients (r = 0.18 - 0.29). A more appropriate way to 

evaluate the effect size is to calculate squared 

correlations, which represent explained percentage of 

variance. Here the small range of effect size (r2 = 3.2% - 

8.4%) implies the relationships between regional 

entropy and cognitive functions are quite limited. 

 

Several limitations need to be considered in the current 

study. First, the MSE analysis was limited to the short 

length of BOLD time series (130 time points) and 

relative low temporal resolution (TR = 3000 ms). 

Therefore, it would be difficult to compare our results 

with previous findings from EEG-based MSE analysis. 

Although previous studies have shown that sample 

entropy and MSE were successfully applied in short 

BOLD data [13, 32], longer time series data would be 

better to characterize the profiles of brain entropy. In 

recent years, a parallel imaging technique named 

multiband imaging has been widely used to acquire 

more data points with a short repetition time (TR < 

1000 ms), which may partially solve this problem [33]. 

Second, we didn’t subdivide the aMCI group into early 

and late stages, which have been found changed 

differently in regional activities [14]. Future studies 

need to validate whether the patterns of altered MSE are 

different between the two stages. Third, the numbers of 

subjects were unbalanced across the HC, aMCI, and AD 

groups due to the limitation of ADNI dataset, thus it is 

worth replicating the current analysis in a well-balanced 

dataset in the future. Lastly, since the current study only 

examined the relationships between MSE changes and 

cognitive assessments, further studies need to involve 

more AD-related biochemical measurements, such as, 

but not limited to pro-inflammatory cytokines, as well 

as levels of hydrogen sulfide.  

 

In summary, the altered MSE of resting-state BOLD 

activity may be linked to AD-related brain deterioration, 

reflecting the impaired capability of adapting to the 

external changing environment. Moreover, the altered 

BOLD complexity and its correlation with cognitive 

deficits are dependent on time scales. Our findings 

confirm the crucial role of the temporal dimension in 

understanding the neural substrates of AD, and suggest 

that MSE of brain activity may be a potential biomarker 

for AD diagnosis and intervention. 

MATERIALS AND METHODS 
 

ADNI dataset 
 

Data used in the preparation of this research were 

obtained in April 2015 from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database 

(adni.loni.ucla.edu). The ADNI was launched in 2003 by 

the National Institute on Aging (NIA), the National 

Institute of Biomedical Imaging and Bioengineering 

(NIBIB), the Food and Drug Administration (FDA), 

private pharmaceutical companies and non-profit 

organizations, as a $60 million, 5- year public-private 

partnership. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment 

can be combined to measure the progression of MCI and 

AD. Determination of sensitive and specific markers of 

very early AD progression is intended to aid researchers 

and clinicians develop new treatments and monitor their 

effectiveness, as well as lessen the time and cost of 

clinical trials. The Principal Investigator of this initiative 

is Michael W. Weiner, MD, VA Medical Center and 

University of California – San Francisco. ADNI is the 

result of efforts of many co-investigators from a broad 

range of academic institutions and private corporations, 

and subjects have been recruited from over 50 sites across 

the U.S. and Canada. The initial goal of ADNI was to 

recruit 800 adults, ages 55 to 90, to participate in the 

research, approximately 200 cognitively normal older 

individuals to be followed for 3 years, 400 people with 

MCI to be followed for 3 years and 200 people with early 

AD to be followed for 2 years. For up-to-date 

information, see http://www.adni-info.org. 

 

Participants 

 

The data used in this study were obtained from ADNI2 

and ADNIGO. We identified 227 subjects with rs-fMRI 

data aged from 60 to 90 years. Then 59 subjects were 

excluded due to an unmatched time window, according 

to our criterion that an individual’s imaging data and 

clinical assessments were required to be collected 

within six months. Finally, the remaining 168 subjects 

(HC = 62, aMCI = 81, AD = 25) were used in the 

current study (see Table 1). Montreal Cognitive 

Assessment (MoCA), ADNI composite score for 

memory, and executive function (ADNI-Mem and 

ADNI-EF) were extracted from the data set to be 

neuropsychological assessments [34, 35]. 
 

Imaging data acquisition  
 

All imaging data were collected on a 3.0 Tesla Phillips 

MRI. The structure images were obtained by using a 

http://www.adni-info.org/
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MPRAGE scan (TR/TE = 6.77/3.13 ms, TI = 0 ms, FA 

= 9°, matrix = 256×256, resolution 1×1×1mm3, slice 

thickness = 1 mm). The rs-fMRI imaging data were 

obtained by using an echo-planar imaging (EPI) 

sequence (TR = 3000 ms, TE = 30 ms, flip angle = 80º, 

slice thickness=3.3 mm, matrix=64×64, spatial 

resolution=3×3×3 mm3, number of volumes = 140, 

number of slices = 48).  

 

Brain atrophy 

 

Voxel-based morphometry (VBM) analysis was 

performed using SPM8. Briefly, the structural images 

were segmented into gray matter (GM), white matter, 

and cerebrospinal fluid. After an initial affine 

registration of GM map into the MNI space, the GM 

images were generated through an iteratively nonlinear 

registration using DARTEL, a toolbox with a fast 

diffeomorphic registration algorithm [36]. For each 

participant, the GM map was resliced (3×3×3 mm) and 

smoothed (FWHM = 6 mm). Then individual’s GM 

map was used as a covariate for controlling brain 

atrophy in the following analyses. 

 

rs-fMRI data preprocessing 

 

All functional images were preprocessed using 

DPARSF [37] based on SPM8 (http://www.fil.ion.ucl. 

ac.uk/spm/). The first 10 volumes were excluded to 

avoid potential noise related to the equilibrium of the 

scanner and participant’s adaptation to the scanner. For 

each participant, the remaining 130 volumes were 

corrected for slice timing and head-motion, co-

registered to their structure images, and normalized to 

the Montreal Neurological Institute (MNI) standard 

space (resliced to 3×3×3 mm). Then all the imaging 

data were removed linear trend and filtered with a 

bandpass filter of 0.01-0.08 Hz. Prior to MSE analysis, 

nuisance covariates were regressed out, including 6 

head motion parameters, white matter signal, and 

cerebrospinal fluid signal. All the participants exhibited 

head motion less than 2.5 mm or 2.5 degrees in the 

current study. Furthermore, given the commonality of 

head motion in old age and its confounding effect on 

resting-state functional connectivity [38], we still 

controlled for head motion in the following analyses.  

 

Multiscale entropy of BOLD signals 

 

Since no rigorous guideline exists for choosing the 

parameters to calculate MSE, we first determined the 

proper combination of parameters by examining the 

MSE differences among HC, aMCI and AD groups in 

90 cerebral regions based on automated anatomical 

labeling (AAL) template [39]. For each participant, 

BOLD time series of each AAL brain region was 

obtained by averaging the BOLD time series of all 

voxels within a given region, and was normalized to 

zero mean and unit variance. The procedure of MSE 

calculation has been well described in previous studies 

and can be summarized in three steps: (a) constructing 

coarse-grained time series according to different time 

scales; (b) calculating the sample entropy for each 

coarse-grained time series with suitable m and r; (c) 

examining the sample entropy profile in MSE analysis 

[40]. To capture the dynamic changes of BOLD signals 

at different timescales, we generated multiple coarse-

grained time series by down-sampling the original 

BOLD time series {x1,…, xi,…, xN}. For time scales (τ), 

the coarse-grained time series {y(τ)} is constructed by 

averaging data points within non-overlapping windows 

as follows: 
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With τ = 1, the time series {y(1)} is the original BOLD 

time series which represents a short time scale, whereas 

larger τ represents longer time scales. Then sample 

entropy was computed to quantify the irregularity of a 

time series signal with length N [41]. To calculate MSE, 

we calculated the sample entropy for each coarse-

grained time series {y(τ)}: 
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Where m is the pattern length, r is the similarity 

criterion, and in  is the number of matches. Sample 

entropy is defined as the negative natural logarithm for 

the conditional properties that two sequences similar 

within a tolerance r for m points remain similar at the 

next point [42].  

 

Different parameters were applied to calculate MSE 

based on different modalities of data, such as m = 1 or 

2, r = 0.1-0.5 in EEG data [27, 43], and m = 1, r = 0.35 

in fMRI data [13, 19]. Given the short length of data in 

our study, we applied m = 1 to obtain reliable sample 

entropy estimation following the recommendation in 

previous studies [19, 44]. Using different parameters (r 

= 0.1-0.5, scale = 1-4), one-way ANOVA was applied 

to examine MSE differences across the HC, aMCI, and 

AD groups for each AAL region (p < 0.05, uncorrected 

for multiple comparisons to ensure the inclusiveness of 

relevant regions). The F scores of all the significant 

regions were summed to define the optimal parameters, 

showing larger F scores indicated better discrimination 

power across the three groups (see Figure 1). Then an 

individual’s entropy map was generated using the 

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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optimal parameters, and was smoothed (FWHM = 6 

mm) to proceed with the subsequent whole-brain voxel-

wise analysis. Also, each BOLD time series was 

normalized before generating the MSE map. A one-way 

ANCOVA was applied to examine the significantly 

different regional MSE among the HC, aMCI, and AD 

group using statistical toolbox in REST 

(http://restfmri.net/forum/index.php?q=rest), controlled 

for age, education, GM, and head motion. The resulting 

statistic map was corrected for multiple comparisons 

with a threshold of individual p < 0.01 with cluster size 

> 49 voxels (corresponding to corrected p< 0.05), 

determined by Monte Carlo simulations (Ledberg, 

Akerman, & Roland, 1998) using the AFNI AlphaSim 

program (https://afni.nimh.nih.gov/pub/dist/doc/manual/ 

AlphaSim.pdf). In addition, to further examine the 

different MSE patterns between the AD and HC group 

in the temporal domain, a set of scale values (scale = 1-

4) were applied to generate the entropy maps in each 

time scale. 

 

Statistical analysis 

 

All the statistical analyses were performed using SPSS 

22.0. In ANCOVA result, the peak value within each 

significant region was extracted for a post-hoc analysis, 

examining the MSE differences between each pair of 

groups (p < 0.05, FDR correction). Partial correlation 

was applied to examine the relationships between MSE 

and neuropsychological assessments in the entire 

sample (p < 0.05, FDR correction), controlled for age, 

education, head motion, and brain atrophy. 
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