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INTRODUCTION 
 

Aging refers to the progressive loss of tissue and organ 

functions over time. It is well established that reactive 

oxygen species (ROS) derived from action of various 

oxidases such as nicotinamide adenine dinucleotide  

 

phosphate (NADPH) oxidase and lipoxygenase can 

cause damages to DNA, proteins and membrane lipids 

[1]. The accumulation of the oxidative stress-induced 

damages in these different macromolecules causes age-

associated functional loss in different tissues and organs 

[2], accounting for the core of the oxidative stress 
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ABSTRACT 
 

The general transcription factor, CREB has been shown to play an essential role in promoting cell proliferation, 
neuronal survival and synaptic plasticity in the nervous system. However, its function in stress response 
remains to be elusive. In the present study, we demonstrated that CREB plays a major role in mediating stress 
response. In both rat lens organ culture and mouse lens epithelial cells (MLECs), CREB promotes oxidative 
stress-induced apoptosis. To confirm that CREB is a major player mediating the above stress response, we 
established stable lines of MLECs stably expressing CREB and found that they are also very sensitive to 
oxidative stress-induced apoptosis. To define the underlying mechanism, RNAseq analysis was conducted. It 

was found that CREB significantly suppressed expression of the B-crystallin gene to sensitize CREB-expressing 
cells undergoing oxidative stress-induced apoptosis. CREB knockdown via CRISPR/CAS9 technology led to 

upregulation of B-crystallin and enhanced resistance against oxidative stress-induced apoptosis. Moreover, 

overexpression of exogenous human B-crystallin can restore the resistance against oxidative stress-induced 

apoptosis. Finally, we provided first evidence that CREB directly regulates B-crystallin gene. Together, our 
results demonstrate that CREB is an important transcription factor mediating stress response, and it promotes 

oxidative stress-induced apoptosis by suppressing B-crystallin expression.  
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theory of aging. The cellular ROS components include 

superoxide anion (O2•), hydroxyl ion (OH•) and 

hydrogen peroxide (H2O2) [1]. Although H2O2 is not a 

free radical, through the Fenton or Haber-Weiss 

reaction, it can generate hydroxyl radicals which are 

extremely reactive, causing damage to proteins in 

cytoplasm and phospholipids in cellular membrane [1–

2]. In the human eye, it has been reported that the level 

of H2O2 is elevated in the aqueous humor from less than 

25 μM in normal lens to more than 50 μM in cataract 

patients [3]. Oxidative stress has been considered as one 

of the initiating factors in the formation of cataract, an 

essential aging disease that causes blindness in 

developing countries [4]. 

 

The cAMP response element binding protein, CREB is a 

general transcription factor, and its most prominent 

function has been shown to mediate synaptic plasticity 

associated with long-term memory [5–30]. Disruption of 

CREB in mice causes defects in long-term potentiation 

and long-term memory [19]. On the other hand, expression 

of the dominant-active CREB polypeptide accelerates the 

learning process [20, 21]. The CREB control of synaptic 

plasticity occurs through its regulation of a panel of genes 

implicated in synthesis of neuropeptides and 

neurotransmitters [12–15, 17–19, 22–24]. 

 

CREB also promotes growth factor-dependent survival 

of both sympathetic and cerebellar neurons [13, 25–27]. 

Nerve growth factor (NGF) and brain-derived 

neurotrophic factor (BDNF) have been shown to 

enhance survival of the above types of neurons [13, 25–

27]. At the molecular level, it has been shown that NGF 

and BDNF activate the RSK90 kinase, which 

phosphorylates CREB at S133 to promote expression of 

the anti-apoptotic gene Bcl-2 [28].  

 

In addition, knockout study reveals that CREB regulates 

cell proliferation. The CREB (-/-) mice die at birth with 

impaired T-cell development [29]. Mice with 

expression of S133A mutation develop dwarfism due to 

somatotroph hypoplasia, which is due in part to a block 

in cell proliferation [30].  

 

Although CREB functions in mediating synaptic 

plasticity associated with long-term memory, growth 

factor-dependent cell proliferation and survival have 

been well established [10–13, 15–22, 26–28], its 

function mediating stress response remains elusive.  

 

Cataract is an aging disease that in most cases is derived 

from aging process or stress induction such as oxidative 

stress [4 and references therein]. Mechanistically, we 

have previously demonstrated that stress-induced 

apoptosis is a common cellular basis for non-congenital 

cataractogenesis [31–32].  

B-Crystallin is a major lens protein that has a 

structural role in maintaining the transparency of the 

lens [33, 34]. It is a member of the small heat shock 

protein (HSP) family [35]. B-crystallin is mainly 

expressed in the ocular lens. In addition, it is also 

expressed outside of the lens in a number of tissues such 

as skeletal and cardiac muscles and to a lesser extent in 

skin, brain, and kidney [36–38]. Besides its structural 

role, B-crystallin has been shown to act as molecular 

chaperone [36–51], autokinase [52], and antiapoptotic 

regulators [53–75]. Although the protective role of B-

crystallin against stress conditions such as oxidative 

stress has been well documented [76–81], its regulation 

by upstream factors remains to be further characterized. 
 

In the present study, we first determined that rat lens 

organ culture treated by oxidative stress underwent 

apoptosis, and associated with the apoptotic process, we 

observed that CREB was transiently upregulated, and in 

contrast, B-crystallin expression was downregulated. 

Cells expressing wild type CREB was very sensitive to 

hydrogen peroxide-induced apoptosis. To define the 

underlying mechanism, we have conducted RNAseq 

analysis and subsequent confirmation studies. Our 

results revealed that CREB completely suppresses 

expression of the B-crystallin gene in mouse lens 

epithelial cells to sensitize the CREB-expressing cells 

undergoing stress-induced apoptosis. Knockdown of 

CREB via CRISPR/CAS9 technology led to 

upregulation of B-crystallin and enhanced resistance 

against oxidative stress-induced apoptosis. In addition, 

overexpression of exogenous human B-crystallin can 

also inhibit the stress-induced apoptosis to a large 

degree in CREB-expressing cells, indicating that 

CREB-mediated suppression of B-crystallin gene is a 

major mechanism for its promotion of stress-induced 

apoptosis. Finally, using EMSA and ChIP assays, for 

the first time, we demonstrated that CREB directly 

regulates B-crystallin gene by binding to upstream and 

downstream enhancer elements. Together, our results 

demonstrate that CREB is an important transcription 

factor regulating stress response, and it does so by 

suppressing B-crystallin expression.  

 

RESULTS 
 

Treatment of rat lens organ culture with oxidative 

stress induces apoptosis of lens epithelial cells, which 

is linked to down-regulation of B-crystallin but up-

regulation of CREB  
 

It is well established that oxidative stress has an 

initiating role in cataractogenesis [4, 31–32]. In 

deducing the underlying cellular mechanism, we have 

previously demonstrated that oxidative stress first 
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induces apoptosis of lens epithelial cells followed by 

subsequent cataractogenesis [31, 32]. To further explore 

how oxidative stress causes apoptosis of lens epithelial 

cells, we treated rat lenses with 40 mU glucose oxidase 

(GO) for 0 to 3 hours. Consistent with our previous 

studies [31–32], GO treatment generated hydrogen 

peroxide (Figure 1A) and caused significant drop of the 

free thiol level (Figure 1B). As a result, the epithelial 

cells of the treated rat lens were induced to undergo 

apoptosis (Figure 1C and 1D). More importantly, we 

observed that GO treatment caused significant 

downregulation of B-crystallin expression in 30 

minutes (Figure 2A, 2B). Paralleling to downregulation 

of B-crystallin expression, GO induced transient 

upregulation of CREB expression in 30 minutes (Figure 

2C, 2D). Subsequently, as CREB expression became 

attenuated, expression of B-crystallin appeared 

slightly restored in 180 minutes, suggesting that CREB 

seemed to negatively regulate B-crystallin to promote 

apoptosis (Figure 2B, 2D). 

 

 
 

Figure 1. Treatment of rat lens with 40 mU GO caused apoptosis of lens epithelial cells. (A) Dynamic H2O2 concentration 

generated from 40mU glucose oxidase (GO) in the M199 medium in which rat lenses were cultured in 10-cm culture dish with 30 ml medium. 
(B) Dynamic changes of free thiol levels in rat lens epithelial cells under 40 mU GO treatment. (C) Live/dead assays to reveal time-dependent 
apoptosis of rat lens epithelial cells under treatment of 40 mU GO. Green fluorescence represents live cells as detected by Calcein-AM, and 
red fluorescence detected by EthD-1 refers to dead cells. (D) Apoptotic rate of rat lens epithelial cells under 40 mU GO treatment. All 
experiments were repeated three times. Error bar represents standard deviation, N=3. 
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Mouse lens epithelial cells expressing CREB are 

more sensitive to oxidative stress-induced apoptosis 

 

To test if CREB could suppress B-crystallin 

expression to promote oxidative stress-induced apop-

tosis, we first established stable lines of lens epithelial 

cells expressing the empty vector, pCI-TN4-1, or wild 

type CREB, pCI-CREB-TN4-1. Expression of exo-

genous wild type CREB was determined using western 

blot analysis and immunofluorescence. As show in 

Figure 3A and 3B, wild type CREB was clearly 

overexpressed. Both endogenous and exogenous CREB 

were localized in the nuclei (Supplementary Figure 1). 

 

Next, we treated different lines of lens epithelial cells, 

TN4-1, pCI-TN4-1 and pCI-CREB-TN4-1 with 40 

mU glucose oxidase (GO) for 6 hours (Figure 3C and 

3F). Hydrogen peroxide was consistently generated 

from 3 to 6 hours (Figure 3D). At the same time, the 

free thiol levels in these cells were significantly 

downregulated (Figure 3E). Live/dead viability/ 

cytotoxicity assay and ATP loss analysis [89] revealed 

that cells expressing wild type CREB were most 

sensitive to GO-induced apoptosis (Figure 3C and 3F). 

A 6-hour treatment with 40 mU GO caused ATP loss in 

more than 90% cells expressing wild type CREB 

(Figure 3F). Thus, our results revealed that expression 

of exogenous wild type CREB sensitizes lens epithelial 

cells to oxidative stress-induced apoptosis.  
 

RNAseq analysis revealed that expression of 

exogenous CREB significantly downregulates B-

crystallin gene in lens epithelial cells 
 

To understand why CREB-expressing cells displayed 

strong sensitivity to oxidative stress insult, we 

conducted RNAseq analysis between wild type (WT) 

CREB transfected cell and vector-transfected cells. As 

shown in Figure 4A (SRA accession: PRJNA566306), 

overexpression of WT CREB altered expression 

patterns of 1916 genes among which 872 were 

upregulated, and 1044 were downregulated. These 

genes belong to various signaling pathways 

(Supplementary Figure 2). Among these genes, we 

noticed that the most striking gene with consistently 

changed expression pattern is the one coding for B-

crystallin (Figure 4B, Cryab). QRT-PCR analysis 

confirmed the RNAseq result about B-crystallin 

expression in vector and CREB-expressing cells (Figure 

4C). Thus, our results revealed that expression of 

exogenous CREB suppresses B-crystallin expression 

to confer its hypersensitivity to stress response. 

 

 
 

Figure 2. GO-induced apoptosis of rat lens epithelial cells is derived from downregulated expression of B-crystallin caused 
by upregulation of CREB. (A) Western blot analysis of B-crystallin in rat lens epithelium with 40mU glucose oxidase treated from 0 to 180 

minutes. (B) Semi-quantification of the western blot results in (A). (C) Western blot analysis of total CREB (T-CREB) in rat lens epithelium with 
40mU glucose oxidase treated from 0 to 180 minutes. (D) Semi-quantification of the western blot results in (C). Note the reverse relationship 

between expression of B-crystallin with that of total CREB expression. All experiments were repeated three times. Error bar represents 
standard deviation, N=3. * p<0.05; ** p<0.01; NS, statistically not significant. 
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Overexpression of CREB in mouse lens epithelial 

cells dramatically down-regulates endogenous B-

crystallin 

 

To confirm the RNAseq analysis data and demonstrate 

that the B-crystallin downregulation by CREB indeed 

accounts for the hypersensitivity of pCI-CREB-TN4-1 

cells to stress-induced apoptosis (Figure 4D), we 

conducted western blot analysis and examined the 

relative levels of B-crystallin in all 3 types of cells 

under treatment by 40 mU GO for 3 or 6 hours (Figure 

4E and 4F). As shown in Figure 4D, cells expressing 

CREB displayed quick ATP loss under 40 mU GO 

treatment. Consistent with quick loss of ATP, the 

 

 
 

Figure 3. The expression of exogenous CREB sensitizes mouse lens epithelial cells to 40 mU GO-induced apoptosis (C, F). (A) 

Western blot analysis of the CREB levels in TN4-1, pCI-TN4-1, and pCI-CREB-TN4-1 cells. (B) Semi-quantification of the western blot 

results in (A). (C and F) The TN4-1, pCI-TN4-1, and pCI-CREB-TN4-1 cells were grown to 90% confluence. Then, 40 mU GO was added into 
the 3 types of cells, and the 3 types of cells were treated for indicated time. At the end of treatment, the cells were harvested for either 
live/dead assays (C), or for CellTiter-Glo® Luminescent Cell Viability Assay analysis [89] (F) to determine the rate of apoptosis. Note that pCI-

CREB-TN4-1 cells displayed the highest level of apoptosis (nearly 100%) in the 40mU glucose oxidase treatment (F). Green fluorescence 
represents live cells as detected by Calcein-AM, and red fluorescence detected by EthD-1 refers to dead cells. (D) Dynamic H2O2 concentration 
generated from 40mU glucose oxidase (GO) in the DMEM medium. (E) Dynamic changes of free thiol levels in mouse lens epithelial cells 
cultured in the DMEM medium under 40 mU GO treatment. All experiments were repeated three times. Error bar represents standard 
deviation, N=3. ** p<0.01. 
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expression of B-crystallin in cells expressing CREB 

remained constantly very lower level, and 40 mU GO 

treatment further downregulated it to barely detectable 

level (Figure 4E and 4F). In TN4-1 and pCI-TN4-

1cells, 40 mU GO also down-regulated the expression 

of B-crystallin to certain degree. Thus, in CREB-

expressing cells, loss of cell viability is closely linked to 

the suppression of B-crystallin expression by CREB.

 

 
 

Figure 4. Comparative transcriptome analysis. (A–C) Both pCI-TN4-1 and pCI-CREB-TN4-1 cells were grown to 90% confluence and 

then harvested for RNAseq analysis. The gene expression patterns between vector-transfected cells and wild type CREB-transfected cells 
were compared (SRA accession: PRJNA566306). Compared to pCI-vector, expression of the exogenous WT-CREB caused changes in the 
expression patterns of 1916 genes, 872 genes were upregulated and 1044 genes were downregulated (A). (B) Hierarchical cluster analysis of 

apoptosis-associated genes. (C) The expression levels of the anti-apoptotic gene B-crystallin in pCI-TN4-1 and pCI-CREB-TN4-1 cells (B) 

were further verified by qRT-PCR. Note that the expression of anti-apoptotic gene coding for B-crystallin was significantly downregulated in 

pCI-CREB-TN4-1 cell. (D–F) CREB downregulates expression of B-crystallin during H2O2-induced apoptosis of CREB-expressing cells. (D) 

Apoptosis rate changes in TN4-1, pCI-TN4-1 and pCI-CREB-TN4-1 cells under treatment of 40 mU GO from 0 to 6 hours were measured 

by CellTiter-Glo® Luminescent Cell Viability Assay analysis [89]. (E) Western blot analysis of the expression levels of B-crystallin in TN4-1, 

pCI-TN4-1 and pCI-CREB-TN4-1 cells under 40 mU GO. Note that the expression level of B-crystallin was significantly downregulated in 

pCI-CREB-TN4-1 cell. In addition, 40 mU GO treatment downregulated expression level of B-crystallin in TN4-1, pCI-TN4-1 and pCI-

CREB-TN4-1 cells. (F) Semi-quantification of the western blot results in E. All experiments were repeated three times. Error bar represents 
standard deviation, N=3. ** p<0.01.  
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Knockdown of endogenous CREB in lens epithelial 

cells upregulates B-crystallin expression and confers 

resistance to oxidative stress-induced apoptosis 

 

To confirm that CREB suppresses B-crystallin 

expression, which affects the sensitivity of mouse lens 

epithelial cells to stress response, we used CRISPR/ 

CAS9 technology to knockout expression of CREB in 

TN4-1 cell (Figure 5A). The deletion of a single 

nucleotide in exon 5 was confirmed with DNA 

sequencing (Figure 5A) and the absence of CREB 

protein expression was verified by western blot analysis 

(Figure 5B, 5C). When CREB expression was 

significantly knocked down, the expression level of B-

crystallin gene was distinctly upregulated (Figure 5B–

5D). Next, we treated Mock-KO-TN4-1 and CREB-

KO-TN4-1 cells with 40 mU GO, and the cell viability 

was measured by ATP loss. As shown in Figure 5E, 

cells with knockdown of endogenous CREB expression 

and upregulation of endogenous B-crystallin 

expression displayed much stronger resistance to 

oxidative stress-induced apoptosis than mock 

knockdown cells. Together, these results confirm that 

CREB is a negative regulator of B-crystallin gene and 

it promotes oxidative stress-induced apoptosis of mouse 

lens epithelial cell by suppressing B-crystallin 

expression. 
 

Overexpression of exogenous human B-crystallin 

partially restores the resistance against stress-

induced apoptosis of mouse lens epithelial cells 

expressing CREB 
 

To further confirm that CREB-induced down-regulation 

of B-crystallin was indeed the main reason for the 

enhanced apoptosis of the CREB-transfected cells under 

GO treatment, we next overexpressed human B-

crystallin (HB) cDNA in pCI-CREB-TN4-1 cells 

using pEGFPC3-HB with the vector pEGFPC3 as 

control. Expression of EGFP or EGFP-HB fusion 

protein can be distinguished by their localization  

(Figure 6A-b/c). While EGFP alone was homogenously 

expressed within the cells (Figure 6A-b), expression of 

EGFP-HB was largely restrained in the cytoplasm 

(Figure 6A-c). The expression of exogenous EGFP and 

the fusion protein, EGFP-B-crystallin were further 

verified by western blot analysis using antibodies 

against B-crystallin (Figure 6B) and GFP (Figure 6C).

 

 
 

Figure 5. Silence of CREB activates expression of B-crystallin in TN4-1 cells. (A). CREB knockout strategy in TN4-1 cells. The 

homozygous point deletion was created by CRISPR/CAS9 technology. A single nucleotide was deleted in exon 5, and the deletion mutation 

was verified by DNA sequencing. (B) Western blot analysis of the expression levels of CREB and B-crystallin in TN4-1 mock knockdown and 

CREB knockdown cells. (C, D) Semi-quantification of the western blot results in (B). (E) Apoptosis rate in, mock KO and TN4-1 CREB KO cells 
under treatment of 40 mU GO for 6 hours measured by CellTiter-Glo® Luminescent Cell Viability Assay analysis [89]. All experiments were 
repeated three times. Error bar represents standard deviation, N=3. * p<0.05, *** p<0.005. 
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Next, we compared the sensitivity of the 3 types of cells 

to 40 mU GO-induced apoptosis. As shown in Figure 

6D, expression of human B-crystallin cDNA in pCI-

CREB-TN4-1 cells decreased more than 50% of 40 

mU GO-induced apoptosis. Together, these results 

further demonstrated that CREB sensitizes lens 

epithelial cells to stress-induced apoptosis mainly 

through suppression of B-crystallin expression. 

CREB directly regulates B-crystallin gene 

 

Next, we determined if CREB can directly regulate B-

crystallin gene. First, we used bioinformatics to search 

the CREB binding sites in B-crystallin gene promoter. 

As shown in Supplementary Figure 3, the mouse B-

crystallin gene contains multiple copies of either well-

conserved full CREB binding site such as M8 or the 

 

 
 

Figure 6. Exogenous human B-crystallin restores the ability of pCI-CREB-TN4-1 cells against hydrogen peroxide-induced 
apoptosis. (A) The pCI-CREB-TN4-1 cells were either untransfected (A-a), or transfected with pEGFPC3 vector (A-b), or pEGFPC3-HB (A-c) 

transiently. Transfection was confirmed by fluorescence microscopy. The pEGFPC3 vector-transfected pCI-CREB-TN4-1 cells displayed 

homogenous distribution of green fluorescence protein in the whole cells (A-b). In contrast, in the pEGFPC3-HB-transfected pCI-CREB-TN4-
1 cells, the green fluorescence fusion protein was largely restricted in the cytoplasm (A-c). (B) Western blot analysis of the expression level of 

endogenous B-crystallin and GFP-B fusion protein in pCI-CREB-TN4-1 cells (a), pCI-CREB-TN4-1/pEGFPC3-TN4-1 cells (b) and pCI-CREB-

TN4-1/pEGFPC3-HB-TN4-1 cells (c) detected with anti-B antibody. (C) Western blot analysis of the expression level of GFP and GFP-B 

fusion protein in pCI-CREB-TN4-1 cells (a), pCI-CREB-TN4-1/pEGFPC3-TN4-1 cells (b) and pCI-CREB-TN4-1/pEGFPC3-HB-TN4-1 cells 
(c) detected with anti-EGFP antibody. (D) After treatment by 40 mU GO for 6 hours, apoptosis in the 3 types of cells as indicated were 

analyzed. Note that pCI-CREB-TN4-1/pEGFPC3-HB-TN4-1 cells expressing exogenous HB displayed over 50% less apoptosis than pCI-

CREB-TN4-1 cells and pCI-CREB-TN4-1/pEGFPC3-TN4-1 cells. All experiments were repeated three times. Error bar represents standard 
deviation, N=3. * p<0.05; NS, statistically not significant.  
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variated CREB full binding sites like M10 within the 

250 kb sequences examined. Next, we tested if CREB 

can bind to these putative sites. We chose M8, the well 

conserved full CREB binding site as well as M10, the 

less conserved variant CREB binding sites (it has one 

nucleotide variation) as oligo probes to conduct gel 

mobility shifting assay. As shown in Figure 7A, 7B, 

nuclear extracts from pCI-CREB-TN4-1 cells 

displayed strong binding to the M8 sequences, which 

can only be competed off by wild type but not mutant 

oligos. A much-reduced binding was observed when 

probe was derived from M10 site region. The 

authenticity of the CREB binding was confirmed by the 

formation of the supershifting bands after incubation 

with anti-CREB antibody (Figure 7A, 7B). 

Interestingly, we did not observe the supershifting band 

formation with the M1 oligos (Supplementary Figure 

4B). Lack of the supershifting band may be due to the 

formation of heterodimers (see discussion). Together, 

our results suggest that different CREB binding sites in 

the B-crystallin gene promoter and enhancer regions 

display differential affinities with CREB in the in vitro 

binding assays. 

 

CREB regulates B-crystallin gene in vivo. 

 

We next determined if CREB can regulate B-crystallin 

gene in vivo. To do so, we conducted ChIP assays using 

the oligos (Supplementary Table 1) from the M8 and 

M10 regions. The nuclear extracts isolated from vector- 

or CREB-transfected cells were immuno-precipitated 

with mock IgG or anti-CREB antibody. The precipitated 

complexes were used for extraction of template DNAs, 

which were then amplified in QPCR analysis. As shown 

in Figure 8, both M8 and M10 cis-elements can be 

bound by CREB. Moreover, the M10 region seems to 

be bound by CREB more tightly in the exo vivo 

condition. ChIP assay also confirmed that CREB can 

bind to M1 region (Supplementary Figure 4C). These 

results demonstrated that CREB can bind to multiple 

sites of the enhancer regions of the B-crystallin gene 

in vivo to suppress expression of the later. 

 

 
 

Figure 7. Electrophoretic mobility shifting assays (EMSA) demonstrated that CREB directly binds to the promoter enhancer 

sequences of the B-crystallin gene to control its expression. Bioinformatics analysis revealed that the mouse B-crystallin gene 

contains many half CREB binding sites in the proximal promoter, and completely conserved CREB sites in the upstream enhancer or 
downstream enhancer regions (Supplementary Figure 3). EMSA revealed that CREB can directly bind to the conserved CREB binding sites in 
both upstream (M8) or downstream (M10). A-a, diagram of the two oligos containing a well-conserved CREB binding site (WT-M8, top) or 
mutant CREB binding site (MT-M8, bottom), which were used for gel mobility shifting assays described in A-b. A-b, gel mobility shifting 

assays. Nuclear extracts prepared from pCI-CREB-TN4-1 cells were incubated with -32P-ATP-labeled oligo-nucleotide containing wild-type 
CREB binding site (A-a, top) under various conditions shown in the figure. B-a, diagram of the two oligos containing a less conserved CREB 
binding site (WT-M10, top) or mutant CREB binding site (MT-M10, bottom), which were used for gel mobility shifting assays described in B-b. 

B-b, gel mobility shifting assays. Nuclear extracts prepared from pCI-CREB-TN4-1 cells were incubated with -32P-ATP-labeled oligo-
nucleotide containing wild-type M10 CREB binding site (B-a, top) under various conditions shown in the figure.  
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DISCUSSION  
 

In the present study, we have obtained the following 

results: 1) In cultured rat lenses, oxidative stress-

induced apoptosis appeared to be derived from 

downregulation of B-crystallin expression which was 

associated with CREB upregulation; 2) RNAseq 

analysis, QRT-PCR and western blot analysis 

demonstrated that CREB-expressing cells displayed 

strongest sensitivity to stress-induced apoptosis, which 

is largely due to suppression of B-crystallin expres-

sion; 3) Knockdown of CREB activates expression of 

the endogenous B-crystallin and enhances its 

resistance to oxidative stress-induced apoptosis; 4) 

Over-expression of the exogenous human B-crystallin 

cDNA can rescue the CREB-expressing cells from 

oxidative stress-induced apoptosis; 5) Both gel  

 

 
 

Figure 8. ChIP assays to demonstrate that CREB binds to 

the promoter of B-crystallin gene in vivo. qChIP 

experiments revealed that in the in vivo condition, CREB 
displayed stronger affinity with M10 site (B), suggesting that 
CREB may interact with its partner to bind to the M10 site, and to 
a less degree, to the M8 site (A). All experiments were repeated 
three times. Error bar represents standard deviation, N=3. * 
p<0.05; ** p<0.01; *** p<0.005; NS, statistically not significant.  

mobility shifting assay and ChIP analysis reveal that 

CREB directly suppresses expression of B-crystallin 

gene in vivo. Thus, our results showed that CREB plays 

an important role in stress response. It sensitizes lens 

epithelial cells to stress-induced apoptosis by 

suppressing expression of the B-crystallin gene. 
 
CREB negatively regulates cell survival of lens 

epithelial cells 
 

It has been well established that CREB can promote 

survival. For example, in the nervous system, CREB 

has been shown to promote neuronal survival by NGF 

and BDGF [13, 25–27]. Through activation of RSK90 

kinase, the activated CREB can promote Bcl-2 

expression and thus enhance survival of the related 

neurons. In a more recent study, it was reported that the 

mammalian embryo-derived preimplantation factor (PIF) 

enables neuroprotection in rodent models of 

experimental autoimmune encephalomyelitis and 

perinatal brain injury [82]. Mechanistically, it was 

found that PIF can activate both PKA and PKC to 

phosphorylate CREB at S133, and the activated CREB 

can facilitate expressions of GAP43, BDNF besides 

Bcl-2 to exert the neuroprotection [82]. In the present 

study, we observed that CREB plays an important role 

in stress response. We demonstrated that in cultured rat 

lenses, oxidative stress-induced apoptosis was 

associated with downregulated expression of B-

crystallin, and the later was closely associated with 

CREB upregulation. Using CREB-transfected cell line, 

we further demonstrated that mouse lens epithelial cells 

expressing exogenous CREB were very sensitive to 

oxidative stress-induced apoptosis (Figure 3). More 

importantly, we found that overexpressed CREB in pCI-

CREB-TN4-1 cells significantly downregulates 

expression of the B-crystallin gene (Figure 4). In 

contrast, silence of CREB stimulates expression of the 

B-crystallin gene, which confers the resistance against 

oxidative stress-induced apoptosis (Figure 5). 

Furthermore, overexpression of the exogenous human 

B-crystallin can largely rescue the pCI-CREB-TN4-1 

cells from oxidative stress-induced apoptosis (Figure 6). 

Why downregulation of B-crystallin expression by 

CREB sensitizes the mouse lens epithelial cells to 

oxidative stress-induced apoptosis? It has been well 

established from numerous laboratories including ours 

that B-crystallin is a strong anti-apoptotic regulator 

[53–75]. It represses apoptosis through several 

mechanisms. First, it can bind to both procaspase-3 and 

the intermediate of the partially processed caspase-3 to 

prevent procaspase-3 activation [62–64, 68]. Second, it 

can interact with Bax and Bcl-XS to prevent 

translocation of the later into mitochondria, and thus 

shut off the activation of the intrinsic death pathway 
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[68]. Third, it can interact with GRF2 to suppress the 

RAS-RAF-MEK-ERK signaling pathway which 

mediates both calcimycin and UVA-induced apoptosis 

[69–70]. Together, by suppressing B-crystallin 

expression, CREB negatively regulates the viability of 

lens epithelial cells. 
 

CREB transcriptionally regulates expression of the 

B-crystallin gene 
 

Although CREB has been shown to positively regulate 

A-crystallin [83–84], our results have demonstrated 

that CREB negatively regulates expression of B-

crystallin gene (Figures 4, 5, 7, 8). Bioinformatics 

analysis revealed that B-crystallin gene contains both 

fully conserved CREB binding site such as M8, and also 

less conserved CREB binding sites like M1 and M10 

(M1 has a changed nucleotide from G to C at the 

position 5, and M10 has a varied nucleotide from C to A 

at position 7) (Supplementary Figure 3). EMSA 

revealed that the CREB strongly binds to fully 

conserved M8 binding site, but displayed significant 

decrease in binding to the M10 site with one nucleotide 

variation in the 7th position in the in vitro binding 

assays. Nevertheless, anti-CREB antibody can bind to 

the CREB-M8 complex or CREB-M10 complex to form 

the supershifting bands (Figure 7A and 7B). In contrast, 

the M1 site has a variated nucleotide in the middle, and 

this greatly affected CREB binding since anti-CREB 

antibody could not bind to the CREB-M1 complex to 

form the supershifting band (Supplementary Figure 4). 

Lack of the supershifting band may be due to the 

masking of the epitope for anti-CREB binding. We 

could not, however, rule out the possibility that the 

proteins bound to M1 site may be a heterodimer of 

CREB and AP-1 component, or other interacting 

transcription factor partner. CREB has been shown to 

interact with numerous other factors [85–86]. Our 

EMSA data showed that the genomic gene for B-

crystallin spans over 240 kb since both the M8 (-91 kb) 

and the M10 site (+150 kb) are functional CREB 

binding sites. The ChIP assay results with oligos 

derived from the M8 and M10 regions (Figure 8) also 

support out conclusion.  
 

In summary, our results demonstrate that CREB is an 

important transcription factor mediating stress response, 

and it promotes stress-induced apoptosis by suppressing 

B-crystallin expression. 
 

MATERIALS AND METHODS 
 

Chemicals 
 

Various molecular biology reagents were purchased 

from Invitrogen Life Technologies, Gaithersburg, MD; 

Stratagene, La Jolla, CA and Promega Biotech, 

Madison, WI. All the oligos, DNA and protein size 

markers were purchased from Invitrogen Life 

Technologies, Gaithersburg, MD and Sangon Biotech 

(Shanghai) Co., Ltd. Various antibodies were obtained 

from Cell Signaling Technology, Boston, MA; abCam 

Inc., Cambridge, MA; Santa Cruz Biotechnology, Inc. 

Dallas, TX; Sigma-Aldrich, St. Louis, MO; 

Transduction Laboratories, San Diego, CA. The culture 

medium, and most other chemicals and antibiotics were 

purchased from Sigma-Aldrich, St. Louis, MO and 

Invitrogen Life Technologies, Gaithersburg, MD. 

 

Culture of mouse lens epithelial cells (TN4-1)  

 

The mouse lens epithelial cell line, TN4-1, was 

kindly provided by Dr. Paul Russel of the National 

Eye Institute, and grown in Dulbecco’s Modified 

Eagle’s Medium (D7777, Sigma) containing 10% fetal 

bovine serum as described previously [87–88]. The 

medium was prepared in ion-exchanged double-

distilled water to give an osmolarity of 

300 ± 5 mosmols supplemented with 26 mM NaHCO3 

and 50 units/ml penicillin and streptomycin. Media 

were sterilized by filtration through 0.22-μm filters 

with pH adjusted to 7.2. All cells were kept at 37 °C 

and 5% CO2 gas phase.  

 

Measurement of hydrogen peroxide and free thiol 

levels 

 

The free thiol content was determined with a 

fluorometric thiol quantitation kit (Sigma-Aldrich 

Corp., #MAK151) according to the manufactory’s 

instruction. Briefly, rat lenses or TN4-1 cells were 

treated with 40 mU GO for 0 to 6 hours. After GO 

treatment, the cells were washed with PBS for three 

times, lysed in 150 μl of the assay buffer, and 20 μl of 

the cell lysates were used for each assay reaction. For 

the rat lens, the epithelial cells from six rat lenses were 

lysed in 180 μl assay buffer, and 50 μl lysates were used 

for each assay reaction. 

 

Preparation of expression constructs 

 

The CREB cDNA was cloned into pCI-Neo vector at 

EcoRI and XbaI sites. Human B cDNA was 

amplified by RT-PCR from human lens mRNA using 

the following primers: 5’-TACCTCGAGATG 

GACATCGCCATCCAC-3’ (forward), 5’-CAACCC 

GGGTTCAAGAAAGGGCATCTA-3’ (reverse) as 

described before [68]. The cDNA was further inserted 

into an enhanced green fluorescence protein 

expression vector, pEGFPC3, at the XhoI and SmaI 

sites that were created by PCR to generate in frame 

fusion constructs. To target CREB knockout, the 
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CRISPR/Cas9 construct was prepared with the oligos 

5’-caccgtttcaaggaggccttcctac-3’ and 5’-aaacgtagg 

aaggcctccttgaaac-3’ annealed and inserted into pSp 

Cas9(BB)-2A-Puro (PX459) vector. The knockout 

results were verified by DNA sequencing and western 

blot analysis (Figure 5A –5C) 

 

Establishment of stable expression cell lines 

 

The pCI-Neo and pCI-CREB constructs were amplified 

in DH-5 and purified by two rounds of CsCl 

ultracentrifugation as previously described [68, 70]. 

Transfection of TN4-1 cells was performed using 

LipofectamineTM 2000 from the Invitrogen Life 

Technologies according to the company instruction 

manual. The pCI-Neo and pCI-CREB transfected cells 

were then subjected to G418 (500 μg/ml) selection for 

4-6 weeks and subsequently individual clones for the 

following stable transfected cell lines were established. 

These include pCI-TN4-1 and pCI-CREB-TN4-1. 

 

Treatment by glucose oxidase 

 

The αTN4-1 cells were grown to 90% confluence in 

DMEM containing 10% fetal bovine serum [68, 70]. 

Then, the media with serum-free plus 40mU glucose 

oxidase (GO) were used to replace the culture media for 

the required period of incubation as indicated. After 

treatment, all samples were collected for analysis of 

apoptosis and gene expression. 

 

Apoptosis analysis with cellTiter-Glo® luminescent cell 

viability assay and live/dead viability/cytotoxicity  

 

The percentage of apoptotic cells was determined either 

by cellTiter-Glo® luminescent cell viability assay kit 

(G7573, Promega) [89] or using live/dead viability/ 

cytotoxicity kit (L3224, Thermofish Scientific) 

according to the company instruction. The CellTiter-

Glo® Luminescent Cell Viability Assay is a homo-

geneous method to determine the number of viable cells 

in culture based on quantitation of the ATP present, 

which signals the presence of metabolically active cells. 

About 2x104 cells were seeded into each well of 96-well 

plates, 12h later, the culture media were replaced with 

100ul medium containing 40 mU GO to induce cell 

apoptosis. After treatment, the same volumes of the 

mixed CellTiter-Glo® Buffer and CellTiter-Glo® 

Substrate were added into each well and luminescence 

was read by synergy microplate reader (BioTek). 

 

RT-PCR, qPCR and RNAseq 

 

RT-PCR and qPCR were conducted as we described 

previously [87–88]. Total RNAs were extracted using 

the TRIzol Reagent (Invitrogen). cDNA synthesis was 

performed with 1 μg of total RNAs using the HiScript II 

Q RT SuperMix for qPCR (+gDNA wiper) kit (R223-01; 

Vazyme). Gene expression levels were analyzed using 

ChamQ SYBR Color qPCR Master Mix (Q411-02; 

Vazyme) and the LightCycler 480 qPCR system 

(Roche). The assays were performed in triplicate, and 

the Ct values were normalized to -actin. The primers 

used are listed in Supplementary Table 1. 

 

For the RNAseq analyses, total RNAs were extracted 

from pCI-TN4-1 and pCI-CREB-TN4-1 cells using 

the TRIzol reagent according to the manufacturer’s 

instruction. Preparation of the RNAseq library and 

subsequent sequencing were conducted by the Berry 

Genomics Corporation. Pooled samples of two 

biological repeats were sequenced on Illumina Nova 

6000. The obtained sequence reads were cleaned and 

mapped to (GRCm38/mm10) using Tophat. Gene 

expression and changes were analyzed using Bowtie2 

and RSEM. The relative abundance of mRNAs was 

normalized and presented as fragments per kilobase of 

transcript per million mapped reads (FPKM). 

Hierarchical cluster and scatter plot analyses of gene 

expression levels were performed using the R software 

(http://www.r-project.org/). KEGG analysis was carried 

out by Kobas. Samples harvested from two independent 

experiments were pooled and used for each RNAseq 

analysis sample.  

 

Protein preparation and western blotting analysis 

 

A total of 80 rats of 4-week including both male and 

female supplied by the Sun Yat-sen University Animal 

Facility were used for GO treatment study. Animal 

usage was strictly conducted according to the animal 

usage protocol approved by the IACUC Committee of 

Sun Yat-sen University. Rat lenses were dissected as 

previously described [31, 32]. The dissected lenses were 

first incubated in medium 199 at 37oC overnight to 

exclude damaged (becoming opaque) lenses, and the 

selected transparent lenses were then treated with 40 

mU glucose oxidase (GO) for 0 to 180 minutes in 

medium 199 at 37oC incubation. After GO treatment, 

both mock and GO-treated lenses were dissected into 

epithelial cells and fiber cells which were used for 

extraction of total proteins as described below. 

 

For cultured cells, total proteins were prepared from the 

mock, or 40mU glucose oxidase-treated TN4-1, pCI-

TN4-1, or pCI-CREB-TN4-1 cells for 3 to 6 hours. 

After treatment, total proteins were extracted using 

protein extraction buffer in the presence of the protease 

inhibitor cocktail. The buffer contained 1% NP-40, 0.5% 

sodium deoxycholate, 0.1% SDS, 9.1 mM Na2HPO4, 1.7 

mM NaH2PO4, 150 mM NaCl, 30 μl/ml aprotinin with 

pH of the preparation adjusted to 7.4. After homo-

http://www.r-project.org/
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genization by passing through an initial 18.5-gauge 

needle followed by the 23.5G needle, the cell lysate was 

centrifuged at 10,000 x g for 20 min at 4oC, the 

supernatant fraction of each sample was collected and 

stored in aliquots at -80oC. Fifty or one hundred 

micrograms of total proteins in each sample were 

resolved by 10 % SDS-polyacrylamide gel and 

transferred into supported nitrocellulose membranes. 

The protein blots were blocked with 5% nonfat milk in 

TBS (10 mM Tris HCl, pH8.0/ 150 mM NaCl) for one 

hour, then incubated overnight at 4oC with following 

primary antibodies: anti-CREB (4820), phospho-CREB 

at S133 (9198) antibodies from Cell Signaling Inc., anti-

B-crystallin antibody (generous gift of Dr. J Horwitz in 

the Julie Eye Institute of UCLA), and anti--actin, anti-

GAPDH as well as anti-tubulin antibodies (Sigma) at a 

dilution of 1 to 500 to 2,000 (μg/ml) in 5% milk 

prepared in TBS (for total proteins) or 5% BSA in TBS 

(for phosphor-antibody). The secondary antibody is anti-

mouse IgG or anti-rabbit IgG at a dilution of 1 to 1,000 

(Amersham). Immunoreactivity was detected with an 

enhanced chemilluminescence detection kit according to 

the company's instruction (ECL, Amersham Corp.). 

 

Gel mobility shifting assays 

 

The gel mobility shifting assay (EMSA) was conducted as 

we described before [90–92]. The oligos used were listed 

in Figure 7A, 7B and Supplementary Figure 4. For the 

binding assays, 2 μg of nuclear extracts from pCI-TN4-1 

or pCI-CREB-TN4-1 cells were incubated with 1 x 105 

cpm of 32P-labeled double-stranded synthetic oligos for 20 

min on ice. For competition experiments, 50-fold of the 

unlabeled wild type (WT) or mutant (MT) oligos were 

pre-incubated with the nuclear extracts for 20 min before 

addition of the labeled probe. For supershifting assays, the 

nuclear extracts were incubated with anti-CREB or 

normal IgG for 20 minutes on ice, then the reaction 

mixture was incubated with the labelled oligos for 20 min 

at room temperature, allowing formation of the 

supershifting complex. The reaction mixture was 

separated with 3.5% native gel. 

 

ChIP assays 

 

The binding of CREB to the B-crystallin gene distal 

enhancer sites was confirmed using SimpleChIP® 

Enzymatic Chromatin IP Kit (Magnetic Beads) (#9003, 

Cell Signaling), according to the manufacturer’s 

instruction. In brief, cells were grown to 95% confluence, 

approximately 3.0 x 107 cells were incubated with 1% 

formaldehyde for 10 min at room temperature for 

crosslinking, which was terminated by addition of glycine 

solution. The cells were further washed with cold PBS 

twice and then scraped into cold PBS containing protease 

inhibitor cocktail. The pelleted cells were used for nuclei 

preparation and chromatin digestion. The nuclei lysates 

were sonicated 15 times for 10 s each time to generate 

DNA fragments that ranged in size from 200 to 1,000 bp. 

The sheared chromatin-lysates were incubated with either 

5 μg of anti-histone 3, 5 μg of anti-CREB antibody or  

5 μg of normal IgG overnight at 4°C, and then incubated 

for an additional 2 h with 30 μL protein G magnetic 

beads. The immunoprecipitates were washed by low salt 

wash buffer three times and high salt wash buffer one 

time, then suspended in the elution buffer, reverse cross-

links by adding 6 μl 5M NaCl and 2 μl Proteinase K, and 

incubate 2 h at 65°C. Finally, these samples were 

processed for DNA purification using spin columns. The 

extracted DNA with specific primers listed in the 

Supplementary Table 1 were used for ChIP-qPCR assays. 

 

Immunofluorescence  

 

Cells were seeded on Millicell EZ 24-well glass slides 

(Millipore). After PBS wash, cells were fixed with 4% 

paraformaldehyde, permeabilized with methanol/ 

acetone 1:1, and blocked with normal rabbit or goat 

serum. Then the slides were incubated with the anti-

CREB (#MA1-083, Invitrogen Inc.) and anti-p-CREB 

antibody (#9198, Cell Signaling Technology) or normal 

rabbit IgG at 4°C overnight. After the PBS washings, 

the slides were incubated with fluorescence goat anti-

rabbit IgG or fluorescence goat anti-mouse IgG (1:200, 

Cell Signaling Technology). Cell nuclei were stained 

with 50 ng/ml 4’,6-diamidino-2-phenylindole (DAPI) 

for 5 min. Slides were mounted with anti-fade 

fluorescent mounting medium (Applygen). Images  

were acquired by a Zeiss 800 confocal microscope 

(CLSM, Carl Zeiss, Germany) and processed by ZEN 

software. 

 

Statistical analysis 

 

All experiments were repeated at least three times 

(N=3) except for RNAseq analysis in which each 

analyzed sample was a pool of two separated samples 

(N=4). Significance was determined by two-tailed 

Student’s t-test [87, 88]. The error bar in all figures 

represents standard deviation. 

 

Abbreviations  
 

BDGF: brain-derived neurotrophic factor; CREB: 

cAMP response element binding protein; EGFP: 

enhanced green fluorescence protein; B: B-crystallin; 

EGFP-B: enhanced green fluorescence and B-

crystallin fusion protein; DMEM: Dulbecco's modified 

eagle medium; GO: glucose oxidase; NGF: nerve 

growth factor; OS: oxidative Stress; PAGE: 

polyacrylamide gel electrophoresis; PBS: phosphate-

buffered saline; TN4-1: mouse lens epithelial cells; 
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SDS: sodium dodecylsulfate; TBS: tris-buffered saline; 

TBS-T: tris-buffered saline with tween-20. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 
 

 

Supplementary Figure 1. Expression and localization of exogenous and endogenous CREB in TN4-1, pCI-TN4-1, and pCI-

CREB-TN4-1 cells. Red fluorescence represents CREB expression, green fluorescence represents p-CREB S133 expression, yellow is co-

localization of CREB and p-CREB, and blue DAPI bound to DNA shows nuclear position.  Note that both exogenous and endogenous CREB are 

highly expressed and phosphorylated in pCI-CREB-TN4-1 cell. Both CREB and p-CREB S133 were primarily localized in the nuclei of all 3 types 
of cells.  
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Supplementary Figure 2. Top 20 enriched pathways derived from CREB overexpression in pCI-CREB-TN4-1 cell in 

comparison with pCI-TN4-1 cell. 
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Supplementary Figure 3. Diagram to show the relative position of the full CREB binding site (TGACGTCA, M8) and its variants 
(M1 and M10) as well as half CREB binding sites (TGAC or GTCA or their variants) in the promoter regions, upstream or 

downstream enhancer regions of the B-crystallin genomic gene. Oligos generated from M1, M8 and M10 regions were used for gel 

mobility shifting assays (EMSA, Figure 7A and 7B, and Supplementary Figure 4) and ChIP assays (Figure 8 and Supplementary Figure 4).   
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Supplementary Figure 4. Gel mobility shifting and ChIP assays to show that M1 binding site is functional. (A) Diagram of the 

two oligos containing a well-conserved CREB binding site (WT-M1, top) or mutant CREB binding site (MT-M1, bottom), which were used for 

gel mobility shifting assays described in B. (B) Gel mobility shifting assays. Nuclear extracts prepared from pCI-CREB-TN4-1 cells were 

incubated with -32P-ATP-labeled oligo-nucleotide containing wild-type M1 CREB binding site (A) under various conditions shown in the 
figure. The reaction mixtures were then separated with 3.5% native PAGE. The gel was dried and exposed to X-ray film for overnight. Lane 1, 

gel mobility shifting assays with labeled oligo containing wild-type M1 CREB binding site but no nuclear extract from pCI-CREB-TN4-1 cells.  

Lane 2, gel mobility shifting assays with labeled oligo containing wild-type M1 CREB binding site and nuclear extract from pCI-CREB-TN4-1 
cells. Lane 3, the same assay as described for lane 2 except that 50-fold of unlabeled oligo containing the wild-type M1 CREB binding site was 
added into the reaction. Note that the CREB complex was largely competed off by the unlabeled oligo. Lane 4, the same assay as described in 
lane 2 except that the unlabeled competing oligo containing a mutated CREB binding site (A, bottom), which could not compete off the CREB 
complex formed between CREB protein and the oligo containing wild-type CREB half binding site. Lane 5, the same assay as described in lane 
2 except that the reaction mixtures were pre-incubated with anti-CREB antibody. Note that no supershift band was detected. Lack of the 
supershifting band implies that CREB may interact with another co-activator which masked the anti-CREB epitope.  Lane 6, the same assay as 
described in lane 2 except that the reaction mixtures were pre-incubated with normal IgG. (C) qChIP assays to demonstrate that CREB binds 

to M1 region of B-crystallin gene promoter in vivo.  All experiments were repeated three times. Error bar represents standard deviation, 
N=3. * p<0.05; NS, statistically not significant.    
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Supplementary Table 
 

 

Supplementary Table 1. Primers used in RT-qPCR analysis and ChIP-PCR assays. 

Primer name Primer direction Primer sequences 
Mouse αB-crystallin (RT-qPCR) F CCAGGACGAACATGGCTTCATCTC 
 R GCGACAGCAGGCTTCTCTTCAC 
Mouse αB M1 (ChIP-qPCR) F GTCTCCATGAACTGGCGGTG 
 R GGCTGGTCAACTCCTTCAGC 
Mouse αB M8 (ChIP-qPCR) F TCCTAGTGTCACTGAGCAGCA 
 R CGCATCAGAAGGTCTGTTCGT 
Mouse αB M10 (ChIP-qPCR) F CTCCCGAGCAGTAGCTCCAA 
 R GGTCTCCTCCGGCTTACCTG 

 


