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ABSTRACT

This study aimed to investigate the potential pathogenesis of early non-small cell lung cancer (NSCLC), including
lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), by constructing a global transcriptional
regulatory landscape to identify hub genes and key pathways. A total of 1,206 differentially expressed genes
(DEGS) in early NSCLC were identified compared to normal lung tissue samples in GSE33532 and GSE29013.
DEGs-related protein-protein interaction networks (PPls) were constructed based on the STRING database and
were then modularly analyzed using the ClusterOne tool. The enrichment analysis revealed that multiple
modules were significantly involved in pathways such as the TNF signaling pathway, PPAR signaling pathway
and PI3K/AKt signaling pathway. Ten genes were identified as hub genes in the PPIs and also found up-
regulated at protein level. The prognostic value of the hub genes and the ten hub gene set variation score
varied according to the different pathological types of NSCLC, which suggested the ten hub gene expression
patterns can reflect the heterogeneity of two types of NSCLC. In conclusion, by carrying out a series of in-depth
analyses, hub genes and key pathways associated with early NSCLC were identified by a global transcriptional
regulatory landscape.

INTRODUCTION

Non-small cell lung (NSCLC) is one of the most
common malignant tumors in the world, accounting for
80% of all lung cancers [1, 2]. Early (I-11 stage) NSCLC
has a good prognosis, with a 5-year relative overall
survival rate of more than 60%, however, only 25% of
patients with NSCLC are diagnosed at this stage [3].
Therefore, it is necessary to urgently determine the
pathogenesis of early NSCLC and investigate the
biomarkers and key pathways related to NSCLC for its
early diagnosis and treatment.

Epidermal growth factor receptor (EGFR), anaplastic
lymphoma kinase (ALK), ROS1 proto-oncogene
receptor tyrosine kinase (ROS1), and serine/threonine-

protein kinase B-Raf (BRAF) have proven to be genetic
causes and effective therapeutic targets for selected
patients with NSCLC [4-7]. These agents, however, are
not suitable for a large proportion of those with
NSCLC, and the associated effects are generally
incomplete and temporary. Obviously, additional
similar hub genes are required in this regard. Notably,
most studies often focus on single pathological type of
NSCLC as well as single or multiple genes, which may
reveal a limited aspect of the pathogenesis of NSCLC.
Furthermore, few reports mention the two most
common pathological types of NSCLC from a global
perspective.

Therefore, the present study explores the functional
modules from differentially expressed gene-related
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protein-protein interaction networks (PPIs) in NSCLC
from a global perspective. The pathways in which
multiple functional modules are involved may serve as
potential key pathways for early NSCLC. Potential hub
genes were identified, and their aberrant expressions
were validated. Their corresponding prognostic values
were also explored in an independent data set.

RESULTS

In the present study, the DEGs among the early NSCLC
tissue samples and normal lung tissue were used to
construct the PPI networks. The key pathways of the
early NSCLC samples were identified via modular and
enrichment analyses, while the TFs that drive NSCLC
were identified by the hypergeometric test.
Accordingly, a global regulatory landscape related to
early NSCLC was constructed. The differential
expression of the hub genes was validated, and its
prognostic value was explored in the early LUAD and
LUSC datasets in TCGA (Figure 1).

Atlas of expression imbalance in early NSCLC

The obtained PCA results demonstrated that the batch
effect present in the two data sets were well removed
(Figure 2A, 2B). A total of 1,206 DEGs (Figure 2C)
were differentially expressed in early NSCLC compared
to normal lung tissue samples, with 487 being
significantly upregulated and 719 being significantly

downregulated. Cluster analysis illustrated that the
expression patterns of the corresponding DEGs could
distinguish early NSCLC tissue samples from normal
lung tissue samples (Figure 2D).

NSCLC is the result of multiple functional modules

Here, 1,206 DEGs were mapped into the STRING
database in order to construct a PPl network containing
1,206 nodes and 29,677 interaction pairs. Ten functional
modules were identified comprised of 803 DEGs
(Figure 3). Modularization helped to observe the
complex interactions between these DEGs in regard to
close protein interaction. To this effect, the occurrence
of NSCLC was found to be the result of the combined
action of multiple functional modules.

Key pathways for early NSCLC

The conducted enrichment analyses (GO and KEGG)
suggest that these functional modules were significantly
enriched in 4,467 biological processes (BPs), 317
cellular components (CCs), 685 molecular functions
(MFs), and 120 KEGG pathways. The 20 biological
processes (BP) containing over three functional
modules involved inflammatory responses and immune
functions (Figure 4A), which may serve as potential key
BPs in early NSCLC. More than two functional
modules were involved in 19 pathways, such as the
cytokine-cytokine  receptor interaction  signaling

Raw data of gene expression profiles
(GSE29013 and GSE33532)

Remove batch effect

[dentification of differentially expressed genes

Protein-protein interaction network

[dentification of hub genes |«

Modular analysis | Functional enrichment analysis

Hypergeometric test

Validation of differential expression
of hub gene (The Human Protein
Atlas and early NSCLC in TCGA)

Survival analysis (early
NSCLC in TCGA)

Transcription factor-module-pathway network

Figure 1. Flow chart of this study. TCGA, The Cancer Genome Atlas; NSCLC, non-small cell lung cancer.
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pathway, IL-17 signaling pathway, TNF signaling
pathway, PPAR signaling pathway and PI3K/AKt
signaling pathway (Figure 4B), which may constitute
potential key pathways of early NSCLC.

Global regulation landscape of early NSCLC

Ninety-seven TFs that regulated the 10 functional
modules were identified via hypergeometric test. Here,
6 TFs were found to be significantly dysregulated, and
their target genes were significantly involved in the key
pathways of early NSCLC. Subsequently, a TF-module-
pathway network (Figure 5) was built to construct a
novel globally-controlled landscape map of NSCLC.
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Hub gene is a potential biomarker for early NSCLC
prognosis

The 10 hub genes were observed to be UBE2T, PBK,
MELK, TNNC1, CCNB1, RRM2, CDK1, TOP2A,
TPPX2 and UBE2C, which had top W values (Table
1). The differential expression of these 10 hub genes
(Figure 6A) was verified in the LUAD (Figure 6B) and
LUSC (Figure 6C) data sets from TCGA. A high
expression of CCNB1, MELK, RRM2, CDK1,
TOP2A, TPX2, and UBE2C in LUAD patients was
found to be associated with a poor prognosis (Figure
6D), while a high expression of CCNB1, MELK,
RRM2, CDK1, TOP2A, and PBK genes was observed
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Figure 2. Expression disorders of early NSCLC. (A) PCA analysis before batch effect removal. (B) PCA analysis following batch effect
removal. (C) Differentially expressed gene (DEG) volcano map. Red nodes represent upregulated genes, blue nodes represent downregulated
genes, and gray nodes represent no differentially expressed genes. (D) Hierarchical clustering dendrograms of the expression patterns of
differently expressed genes that distinguish between NSCLC and normal lung tissue.
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to be associated with a good prognosis in LUSC
patients (Figure 6E). The prognostic value of the hub
genes differed according to the various pathological
types of NSCLC. Moreover, the high hub GSVA index
was associated with a better prognosis in LUSC, which
contrasted with that of LUAD. This indicates that
significant heterogeneity in LUAD and LUSC is
present. In addition, some hub genes were also observed
to be highly expressed in LUAD and LUSC compared
to normal lung tissue at the protein level (Figure 7). The
genes UBE2T, TNNC1, and TPPX2 were not available
in The Human Protein Atlas.

DISCUSSION

Detecting early NSCLC is critical due to its greater
chance for survival [8]. Therefore, this study attempted
to determine the hub genes and key pathways of early
NSCLC from a global perspective in regard to its
pathogenesis. In this regard, PPl networks and a
modular analysis based on DEGs in early NSCLC
samples were conducted. Each module may represent
the potential pathogenesis of NSCLC, and NSCLC was
determined to be the result of the combined action of
multiple functional modules. These functional modules
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Figure 3. Module network showing the modules and their gene
expressions.

members with color mapping logFC of their differential

WWW.aging-us.com 17951

AGING



are significantly involved in the inflammatory response mechanism of tumorigenesis [9]. Multiple functional

as well as biological immune functions, suggesting that modules were involved in the cytokine-cytokine
the development of early NSCLS is closely related to receptor interaction signaling pathway, IL-17 signaling
the immune system, while immune evasion is a pathway, TNF signaling pathway, PPAR signaling
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Table 1. Hub genes.

Symbol Module Degree Log 2 fold change Adjust P value Weight Rank
UBE2T m1l 140 2.612245066 3.28E-28 10917.23979 1
PBK m1l 227 2.753660067 1.17E-16 10912.44999 2
PBK m10 227 2.753660067 1.17E-16 10912.44999 2
PBK m2 227 2.753660067 1.17E-16 10912.44999 2
MELK m10 225 2.618661314 5.17E-15 9233.525148 3
MELK m1l 225 2.618661314 5.17E-15 9233.525148 3
MELK m2 225 2.618661314 5.17E-15 9233.525148 3
TNNC1 m2 65 -3.056720526 2.03E-38 8143.511081 4
CCNB1 m1l 156 2.517999686 4.14E-19 7904.540951 5
RRM2 m1l 140 2.802407994 1.08E-16 6865.254987 6
TPX2 m1l 129 2.644431171 8.34E-19 6749.700127 7
UBE2C m1l 130 2.589317511 3.24E-18 6445.158204 8
CDK1 m1l 210 1.653412806 1.89E-17 6362.173919 9
CDK1 m2 210 1.653412806 1.89E-17 6362.173919 9
TOP2A m1l 157 2.193051181 1.42E-17 6355.448547 10
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Figure 6. Hub gene and its prognostic value. (A) Expression of hub genes in GSE33532 and GSE29013. (B) Expression of hub genes in the
early LUAD data set from TCGA. (C) Expression of hub genes in the early LUSC data set from TCGA. (D) Hub Genes and the hub GSVA index
associated with prognosis in the early LUAD data set from TCGA. (E) Hub Genes and the hub GSVA index associated with prognosis in the
early LUSC data set from TCGA. LUAD, lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; GSVA, gene set variation analysis; TCGA,
The Cancer Genome Atlas.

WWww.aging-us.com 17953 AGING



pathway and PI3K/AKt signaling pathway, which may
serve as potential pathways in the promotion of early
NSCLC. The IL-7 signaling pathway promotes the
pathogenesis of NSCLC [10], and activation of the TNF
signaling pathway via inflammatory response may
result in a poor prognosis of NSCLC [11]. It has also
been verified that the PI3K/AKTt signaling pathways are
involved in the regulation of apoptosis in NSCLC cells,
suggesting that the PI3K/AKt signaling pathway is
associated with NSCLC [12]. In addition, this study’s
proposed TF-module-pathway network may provide a
reference for the additional research pertaining to the
pathogenesis of NSCLC.

This study identified 10 hub genes: UBE2T, PBK,
MELK, TNNC1, CCNB1, RRM2, CDK1, TOP2A,
TPPX2, and UBE2C. Unsurprisingly, previous studies
have found that some of these genes were associated
with NSCLCs. The ubiquitin-binding enzyme E2C
(UBE2C) gene is amplified in approximately 7% of
NSCLC patients, suggesting its role in the patho-
physiology of NSCL [13]. The CDK1l and MELK
proliferation-related genes may serve as biomarkers of

normal Lung tissue LUAD LUSC

CCNB1 (CAB003804)

TOP2A (HPA006458)

TPX2 (HPAO05487)

NSCLC immune checkpoint inhibitor therapy [14]. A
high expression of RRM2 is a poor prognostic factor for
LUAD and is a biomarker for the LUAD potential
prediction of metastasis and prognosis [15], though it
may be favorable for LUSC, according to the
corresponding obtained results. A similar phenomenon
was evident in CDK1, MELK, and UBE2C, which was
unreported, suggesting that LUAD and LUSC have
significant  heterogeneity and different potential
therapeutic targets. The prognostic value of the hub
genes varied according to the different pathological
types of NSCLC. In conjunction with previous studies,
the 10 hub genes obtained in this study may help to
elucidate the molecular mechanism of NSCLC.

Although the present study proposed potential hub genes
and key pathways for early NSCLC, it has several
limitations. First, the gene modules were mined based on
the PPI networks from the STRING database, where some
proteins were based on prediction rather than molecular
experimentation. Thus, the molecular mechanism of these
key pathways and hub genes require further molecular
investigation. Second, less annotated pathways may be

normal Lung tissue LUAD LUSC

Nt
CDK1 (CAB003799)

RRM2 (HPA056994)

PBK (HPA005753)

UBE2C (CAB0114

Figure 7. High expression of hub genes in immunohistochemistry. Normal Lung tissue samples are on the left, lung adenocarcinoma
(LUAD) samples are in the middle, and lung squamous cell carcinoma (LUSC) samples are on the right.
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lost when filtering modules using the PPl network.
Weighted correlation network analysis (WGCNA) [16] is
an alternative module mining method, which is mainly
based on the correlation of genes.

CONCLUSION

In conclusion, this study identified potential hub genes
and related pathways of early NSCLC from a global
perspective in order to provide a reference for the study
of the pathogenesis of early NSCLC.

MATERIALS AND METHODS
Data collection and processing

In the present study, two NSCLC gene expression profile
datasets were downloaded from the Gene Expression
Omnibus  (GEO,  https://www.ncbi.nlm.nih.gov/geo/)
database, GSE33532 and GSE29013. The data set of
GSE33532 includes 80 early NSCLC tissue samples (40
adenocarcinomas, 16 squamous cell carcinomas, and 24
NSCLCs of mixed type) and 20 normal lung tissue
samples. The GSE29013 data set contains a total of 55
NSCLC samples including 38 early stage NSCLC
samples (22 adenocarcinomas and 16 squamous cell
carcinomas) and 17 advanced (llI-1V stage) NSCLC
samples. Both data sets were based on the GPL570
platform. The justRMA method in the affy package [17]
was applied to normalize the raw data of the two data sets,
and the sva package [18] removed the batch effect on the
normalized data. After removing 17 advanced NSCLC
samples, 118 NSCLC tissue samples and 20 normal lung
tissue samples were utilized in the study. If one gene
corresponded to multiple probes, the average expression
value of these probes was considered to be the expression
value of the gene. Principal component analysis (PCA)
was also used to evaluate removing batch effects.

Differentially expressed gene (DEG) analysis and
bidirectional hierarchical clustering

The DEGs between early NSCLC and normal lung
tissues were analyzed by the limma package [19] in R.
Genes with |logFC| > 1 and P value adjusted by false
discovery rate (FDR) < 0.05 were considered to be
significant. Hierarchical clustering was performed using
20 of the most upregulated DEGs as well as 20 of the
most downregulated DEGs using the pheatmap package
(https://CRAN.R-project.org/package=pheatmap) in R.

Construction of protein-protein interaction (PPI)
networks and modular analysis

According to the STRING database (https://string-
db.org/, [20]), PPI networks were constructed related to

the DEGs. Network visualization was performed by
Cytoscape [21] and the modules were analyzed
(Minimum=30) by the ClusterONE plugin [22]. The
DEGs-related PPl networks were organized into
different functional modules.

Enrichment analysis

The ClusterProfiler package in R was used [23] to perform
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis for the
functional modules. P adjusted by false discovery rate
(FDR) < 0.05 was considered to be statistically significant.

Module-related transcription factor (TF)

Based on the interaction of human TF and its target genes
in the TRRUST v2 database (http://www. grnpedia.
org/trrust/) [24], hypergeometric testing was applied to
predict the TFs of potential regulatory functional modules.
The hypergeometric test was performed using the igraph
package (https://igraph. org/t/) in R. A P value of < 0.05
was considered to be statistically significant. As a result, a
TF-module-pathway network was built.

Differential expression validation, gene set variation
analysis (GSVA) and survival analysis of hub gene set

After removing nodes not present in any of the modules
within the PPl networks, the degree of each node was
calculated, where the weight of a gene was W = -log10 (P
value) x degree x |logFC|. The 10 genes with the top W
values were considered to be hub genes. The early LUAD
and LUSC data sets in The Cancer Genome Atlas (TCGA,
https://www.cancer.gov/) were used to validate the
differential expression of the hub genes, and the limma
package's voom function was used to normalize the RNA-
seq data for these two data sets. Additionally, the hub
GSVA index was calculated for each sample using the
GSVA package in R [25]. To explore the prognostic value
of the expression of these 10 hub genes as well as the hub
GSVA index in early NSCLC, the median was selected as
the cutoff to divide early NSCLCs into high expression/
index group and low expression/index group in TCGA
data. The Kaplan-Meier survival curves of the two groups
were compared using the Log-rank method, and a P value
< 0.05 was considered to be statistically significant.

Validation of the differential expression of hub genes
at the protein level

The Human Protein Atlas (https://v15.proteinatlas.org/)
[26] provides information on the tissue and cell
distribution of all 24,000 human proteins, which was
used to validate the differential expression of hub genes
at the protein level in the present study.
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