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INTRODUCTION 
 

Glioma is a tumor of the central nervous system caused 

by abnormal growth of glial cells [1]. Pathological 

anatomy shows that it is mainly composed of astrocytes 

and oligodendrocytes. The World Health Organization 

(WHO) classifies gliomas into four grades [2]: Grade I 

and II are low-grade gliomas (LGGs) and Grade III/IV 

are high-grade gliomas (HGGs). LGG usually grows 

slowly, and accounts for approximately 20% of all 

primary brain tumors [2]. Studies have shown that LGG 

survival rate is higher than that of HGG; the median 

survival time of LGG patients is between 5 and 10 

years, and the survival time of some subtypes can 

exceed 10 years [3]. Although LGG patients have a 

longer survival time than HGG patients, it is concerning 
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ABSTRACT 
 

Alternative splicing (AS) changes are considered to be critical in predicting treatment response. Our study 
aimed to investigate differential splicing patterns and to elucidate the role of splicing factor (SF) as prognostic 
markers of low-grade glioma (LGG). We downloaded RNA-seq data from a cohort of 516 LGG tumors in The 
Cancer Genome Atlas and analyzed independent prognostic factors using LASSO regression and Cox 
proportional regression to build a network based on the correlation between SF-related survival AS events. We 
collected 100 patients from our center for immunohistochemistry and analyzed survival using χ2 test and Cox 
and Kaplan-Meier analyses. A total of 9,616 AS events related to LGG were screened and identified as well as 
established related models. Through analyzing specific splicing patterns in LGG, we screened 16 genes to 
construct a prognostic model to stratify the risk of LGG patients. Validation revealed that the expression level 
of the prognostic model in LGG tissue was increased, and patients with high expression showed worse 
prognosis. In summary, we demonstrated the role of SFs and AS events in the progression of LGG, which may 
provide insights into the clinical significance and aid the future exploration of LGG-associated AS. 
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that many patients will deteriorate from LGG to HGG 

approximately 4–5 years after diagnosis [4, 5], resulting 

in a sharp decline in prognosis. Although the surgical 

methods and pre- and post-operative treatments for 

LGG are often controversial in the field of 

neurosurgery, doctors are unified in the purpose of 

treatment, that is, to extend overall survival (OS) while 

maintaining the quality of life of patients [6]. Therefore, 

how to delay the progress of LGG and prevent its 

deterioration to HGG has become the latest research 

direction. Unfortunately, there are still few biomarkers 

available that accurately reflect the progression of LGG, 

and thus new biomarkers are urgently required to 

monitor LGG. 

 

Alternative splicing (AS) is a mechanism that allows 

cells to generate a considerable amount of protein 

diversity from a limited number of genes [7]. It is 

important to regulate the transcription of mRNA 

through transcription regulation mechanisms [8]. AS 

events can be divided into seven types, and each has a 

different mechanism of action: alternate acceptor site 

(AA), alternate donor site (AD), alternate promotor 

(AP), alternate terminator (AT), exon skip (ES), 

mutually exclusive exons (ME), and retained intron 

(RI). Recent research showed that abnormal AS events 

have important roles in cancer including in tumor 

progression, metastasis, endogenous processes, and 

resistance to treatment [9–12]. Mutations in splicing 

factor (SF) expression may not only cause the activation 

of oncogenes or cancer pathways but may also be 

related to the loss of tumor suppressor function [13, 14]. 

Since AS events are inextricably linked to cancer, their 

executors, SF genes, may be potential targets for cancer 

treatment programs. 

 

In the current study, we obtained RNA-seq from The 

Cancer Genome Atlas (TCGA) program and elucidated 

the role of differential AS patterns in 516 LGG cohorts 

to conduct an in-depth analysis of the potential impact 

of specific AS events on the prognosis of LGG patients. 

Finally, we investigated how SF gene-regulated AS 

events are involved in the occurrence and development 

of LGG. The purpose of this study was to explore the 

role of various splicing modes in LGG and to examine 

how SF genes regulate AS events and thus have an 

important role in the treatment and prognosis of LGG. 

The results of our study will provide new ideas for the 

treatment and detection of LGG 

 

RESULTS 
 

Our research was divided into three phases in sequence, 

and Figure 1 shows all processes of the system program. 

First and foremost, 47,510 prognosis-related AS events 

and 22,163 corresponding genes in LGG patients were 

identified after combining TCGA splice-sequence data 

and clinicopathological information with stringent 

filters. Then, survival analyses were performed after 

LASSO regression analyses of AA, AD, AP, AT, ES, 

ME, RI, and all types of AS events. Finally, we 

identified the SF genes and performed a detailed 

analysis of the regulatory role of these genes in AS 

events as well as the role they played in the occurrence 

and development of LGG. 

 

Integrated AS LGG group activities 

 

A total of 47,510 AS events with 22,163 genes were 

determined in 516 LGG patients, indicating that the 

average number of AS events involved in each gene 

was approximately equal to 4. Figure 2A shows all 

seven types of AS events. Among these types, ES had 

the largest number of events, and AP and AT also had 

many. In detail, we detected 18,931 ES events in 7,074 

genes, 9,964 AP in 3,976 genes, 8,718 AT in 3,809 

genes, 3,876 AA in 2,716 genes, 3,351 AD in 2,353 

genes, 2,937 RI in 1,971 genes and 273 ME in 261 

genes (Figure 2B). 

 

In LGG, ES is the most frequent AS event and ME is 

the rarest. Of note, a gene may have several different 

splicing patterns. We described the detailed information 

of genes of a specific AS type in the Upset diagram 

(Figure 2C). Compared with a traditional Venn 

diagram, it can more effectively prove the quantitative 

results of multiple interaction sets. 

 

LGG survival association with AS events 

 

To investigate the prognostic value of AS events in 

LGG, we used Cox univariate survival analysis to 

assess the overall influence of every outcome of AS 

events. 

 

Importantly, one gene may be involved in multiple 

survival-related AS events in LGG. Therefore, the 

UpSet graph illustrates the number of all types of AS 

events in LGG and a subset of overlapping AS events 

(Figure 2D). Furthermore, most genes are associated 

with at least two AS events, and some genes have a 

relationship with four AS events. 

 

Therefore, we screened 9,616 AS events that were 

significantly associated with OS in LGG patients 

(P<0.05). We drew a volcano map based on the 

obtained data, which clearly shows that AS events 

relating to prognosis accounted for the majority (Figure 

2E). In Figure 2F–2L, the 20 most important AS-related 

events with the highest survival rates among these seven 

types are shown, and most of these AS events are poor 

prognostic factors. 
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LASSO regression analyses 

 

Next, we performed a LASSO regression analysis of 

AA, AD, AP, AT, ES, ME, RI, and all types of AS 

events related to prognosis (Figure 3). The left mode of 

each group is the LASSO coefficient curve, and the 

right mode of each group is the choice of the adjustment 

parameter (λ) in the LASSO model. The y-axis 

represents partial likelihood deviations. The lower x-

axis indicates the logarithm (λ), and the upper x-axis 

represents the average number of predictors. The red 

dot represents the average deviation value for each 

model with a given lambda, where the location 

announced the best data. As a result, the prognostic-

relevant AS events in the eight groups were selected, 

including 12 AA events, 10 AD events, 10 AP events, 

nine AT events, 12 ES events, 13 ME events, 18 RI 

events, and 10 all-AS events. 

 

Prognostic factors of LGG queue 

 

To determine the independent prognostic factors 

associated with LGG patients in AS events, we screened 

the most important AS events. A multiple Cox 

regression model with independent prognostic factors 

was performed for all other AS events. To confirm the 

final prognostic factors, we analyzed and screened all 

different types of candidate events and independent 

prognostic AS events. In our data analysis, we found 

that in all splicing modes, among the prognostic models 

composed of different types of AS events, all models 

had a strong ability to predict the prognosis of LGG 

patients (Figure 4A–4H). 

 

We were not satisfied with this result, so we established 

a single prognostic model showing the capabilities of 

each of the seven strongest prognostic models (Figure 

4B–4H). In addition, we aggregated independent 

prognostic AS events for seven different candidates to 

establish a final prognostic indicator. It is worth noting 

that the final prognostic indicators show better 

prognostic indicators than some single types of splicing  

mode (Figure 4H). The final prognostic index ROC had 

an AUC of 0.924 (0.891–0.934). The highest AUC was 

AA (0.934), followed by the ES (0.931) and ME (0.926) 

models (Figure 4I). 

 

 
 

Figure 1. Flowchart of the systematic profiling of the alternative splicing in glioblastoma multiform in this study. TCGA, the 

Cancer Genome Atlas; AS, alternative splicing; LGG, low grade glioma; SF, splicing factor. 
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Figure 2. Overview and identification of prognosis-related AS events of LGG. (A) Schematic diagram of 7 different types of AS 

events was displayed. (B) 45,710 AS events in22,163 genes were obtained from 516 LGG patients after quality control. (C) Upset intersection 
diagram suggested that most genes might contain several kinds of AS events. (D) The Upset intersection diagram includes 7 different types of 
prognosis-related AS events in LGG. (E) Screening and identification of prognosis-related AS events and no significant AS events. (F–L) The top 
20 significant prognosis-related AS events in 7 different types of AS events were illustrated in bubble charts. 
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Survival risk assessment and Cox regression 

analyses 

 

Figure 5 shows the distributions of survival time, status, 

and risk scores among the low-risk and high-risk 

groups. The image is divided into upper, middle, and 

lower sections. The top portion indicates the distribution 

of risk scores, the middle part shows the survival time 

and status of LGG patients (green indicates alive, red 

indicates dead), and the bottom part is the heatmap 

associated with it. The black vertical dashed line in the 

middle indicates the best dividing line between the low-

risk group and the high-risk group. AS events (Figure 

5A) including ES of KLC1, ES of TRAF3IP2, and AP of 

UGP2, were associated with good prognosis. AS events 

including AP of SET and ES of ASAP2 were associated 

with poor prognosis. 

 

The bottom section shows a heatmap of the PSI values 

of the corresponding final AS predictors. As shown  

in Figure 6, we executed univariate and multivariate  

Cox regression analyses of the eight groups of

 

 
 

Figure 3. LASSO regression analyses were then performed in prognosis-related AS events in (A) all types of AS events, (B) AA, (C) AD, (D) AP, 

(E) AT, (F) ES, (G) ME and (H) RI. 
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prognosis-related AS events in the forest plot. We 

analyzed the data using univariate Cox regression, 

showing that age (reference low), grade (reference low), 

and risk score (reference low) of the eight groups were 

used as independent prognostic indicators of LGG 

(P<0.05). Multivariate Cox regression analyses also 

demonstrated that age (reference low), grade (reference 

low), and risk score (reference low) of the eight groups 

were independent prognostic indicators of LGG 

(P<0.05). 

 

Correlation analyses between AS and SF genes 

 

Finally, we compared the identified SF genes with the 

genes obtained from TCGA and extracted the 

expression data of SF genes from the latter. We 

screened a total of 16 SF-related genes and constructed 

a regulatory network of AS and SF genes (IcorI> 0.8, 

P<0.001) using Cytoscape, and integrated the analyses 

with the risk factors (Figure 7A). In related networks, 

there were 16 survival-related SF genes (blue triangles) 

and 207 survival-related AS events, including 146 good 

(low-risk) AS events (green circles) and 61 bad (high-

risk) AS events (red circles). We used line colors to 

indicate mutual relationships: red indicates positive 

feedback, green indicates negative feedback. 

 

As illustrated in Figure 7B, gene–protein interaction 

analyses of 16 SFs and related genes were performed. 

Different line colors represent different types of gene–

gene interaction networks: 49.56% were physical 

interactions, 22.29% were co-expression, 13.41% were 

 

 
 

Figure 4. Survival analyses and ROC constructions of prognosis-related AS events. The risk score of each LGG patient was 

calculated using multivariate Cox regression analyses after LASSO regression analyses. The cut-off of low- and high-risk groups was decided 
by the risk score, and Kaplan-Meier survival analyses were presented in each group of (A) all types of AS events, (B) AA, (C) AD, (D) AP, (E) AT, 
(F) ES, (G) ME and (H) RI. (I) The final prognostic index ROC has an AUC of 0.924(0.891-0.934). 



 

www.aging-us.com 13690 AGING 

predicted, 8.57% were co-localization, 6.06% shared 

protein domains, and 0.11% were genetic interactions. 

In Figure 7C, we executed a functional and pathway 

enrichment analysis of the 16 SF genes, and the results 

were displayed in bubble charts. The results of GO 

analyses showed that changes in BPs of SFs were 

significantly enriched in RNA processing and mRNA 

processing, changes in CCs of SFs were mostly 

enriched in RNA binding and mRNA binding, and 

changes in MFs of SFs were mostly enriched in 

spliceosomal snRNP complexes and U2-type 

prespliceosomes. Changes in Reactome pathway 

enrichment analyses existed in mRNA 3'-end processing 

and post-elongation processing of intron-containing pre-

mRNA. Changes in KEGG pathway enrichment 

analyses existed in spliceosome and RNA transport. 

 

Subsistence analysis 

 

A heatmap (Figure 7D) of AS events and clinical 

correlations was generated showing the correlation 

between various clinical indicators and AS events and 

SF genes. Considering that all eight groups of AS 

events were related to the prognosis of LGG patients, 

the SF genes were related to the prognosis of LGG 

patients and were either positively correlated, 

negatively correlated, or balanced. Based on the 

constructed AS–SF network, we further studied how the 

SF genes regulate AS events, thereby affecting the 

treatment and prognosis of LGG. We analyzed the 

datasets in the Oncomine database to verify the effects 

of these genes on the OS and DFS of LGG. We 

examined the relationship between all 16 genes and 

LGG survival prognosis. In this network, we can clearly 

see what role SF genes play in AS events and how they 

affect the prognosis of LGG by regulating AS events. 

For example, CELF3 was positively correlated with 

good AS events and negatively correlated with adverse 

AS events; after searching, we found that it was indeed 

negatively correlated with the poor prognosis of LGG 

(Figure 8A, 8B). As another example, we found that 

SNRNP70 was positively correlated with adverse AS 

events, suggesting that this gene is positively correlated 

with LGG poor prognosis. We validated it with OS/DFS 

and demonstrated that SNRNP70 is indeed associated 

with a poor prognosis of LGG (Figure 8C, 8D). 

 

As another example, we found that SNRNP70 was 

positively correlated with adverse AS events and 

negatively correlated with good AS events, suggesting 

 

 
 

Figure 5. Survival risk assessment of prognosis-related AS events. The distribution of survival time, status and risk score in low- and 

high-risk groups were shown in all types of AS events, (A) AA, (B) AD, (C) AP, (D) AT, (E) ES, (F) ME, (G) RI and (H) all types of AS events. 
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that this gene is positively correlated with LGG poor 

prognosis. We validated it with OS and demonstrated 

that SNRNP70 is indeed associated with a poor 

prognosis of LGG. 

 

Clinicopathological features related to SF expression 

statuses in the cohort 

 

To verify our hypothesis, we performed 

immunohistochemistry (IHC) to reveal the staining 

distribution in tumor and normal tissues (Figure 8E, 

8F). The scatter plot of the IHC scores revealed that 

SNRNP70 expression was significantly elevated in LGG 

tissues in the AHYMUN cohort (P<0.001). We then 

selected all LGG patients from 2003 to the present. As 

shown in Table 1, in the AHYMUN cohort, SF 

expression increased with age (P=0.022), increased 

grade (P=0.009), history of epilepsy (P=0.045), and a 

lower Karnofsky score (which also indicates that the 

patient is less tolerant to the next treatment) (P=0.002). 

The chi-squared test showed that the baseline data were 

balanced in the distribution of the categorical data, 

including sex, incidence of microvascular invasion, and 

presence of capsule infiltration (P>0.05). 

Cox regression analysis 

 

As shown in the forest plot, univariate Cox regression 

analysis showed that there was no significant 

correlation between sex and epilepsy history in patients 

from AHYMUN (Figure 8G) and DFS. In the 

multivariate model, the Karnofsky score (ref. <80) was 

significantly correlated with DFS in LGG patients 

(HR=1.914; P=0.045). More importantly, a subgroup 

analysis of SNRNP70 expression showed that in this 

cohort, amplification of SNRNP70 was significantly 

correlated with DFS (HR=3.048; P=0.001). In addition, 

according to the multivariate model used for Cox 

regression analysis, in the AHNTU cohort, the presence 

of capsular infiltration was significantly associated with 

poor DFS (HR=2.66; P=0.006), and microvascular 

invasion was also significantly associated with poor 

DFS (HR=2.563; P=0.007) (Table 2). 

 

Several parameters such as sex and epilepsy history in 

the cohorts in Figure 8H were not significantly related 

to OS. As shown in Table 2, multivariate Cox analysis 

showed that Karnofsky scores (ref <80) were 

significantly correlated with OS in the AHYMUN 

 

 
 

Figure 6. Univariate and multivariate Cox regression analyses of prognosis-related AS events in 8 groups were performed in forest plots of 

(A) all types of AS events, (B) AA, (C) AD, (D) AP, (E) AT, (F) ES, (G) ME and (H) RI (P < 0.05). 
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cohort (HR=2.127; P=0.031). SF gene amplification 

was significantly associated with OS in AHYMUN 

patients (HR=6.246; P<0.001). Other factors, including 

capsular infiltration and microvascular invasion, were 

related to OS (P<0.05). 

 

Survival curves showed that LGG patients with elevated 

SNRNP70 expression levels in the AHYMUN cohort 

showed poorer OS (P=0.003) and poorer DFS 

(P<0.001) (Figure 8I, 8J). 

 

DISCUSSION 
 

In this study, we first correlated survival-related AS 

events in LGG with SF genes. We analyzed the 

correlation between AS and SF in LGG. We used the 

SF genes to predict the development and prognosis of 

LGG patients and confirmed our hypothesis through OS 

and DFS. Our splicing network constructed by AS 

events and SF genes further lays the foundation for the 

regulatory mechanism of LGG occurrence and 

development. Survival-related AS in this study provides 

new ideas for new targeted therapies for LGG. 

 

Gliomas are the most common brain tumors and are 

characterized by rapid growth and early relapse. Patients 

usually have a poor prognosis [15]. Diffuse gliomas 

account for most intracranial malignancies, comprising 

more than 60% of cases [6]. Low-grade glioma (LGG) is 

a slow-growing solid invasive primary brain tumor 

(WHO I–II) [16, 17]. At the beginning, its clinical 

manifestations are not obvious and many patients consult 

a doctor for seizures [18–20]. Despite the development of 

various treatments, LGG cannot be cured. As tumors 

develop [21, 22] and gradually invade the central nervous 

system, LGG inevitably progresses to HGG, leading to 

poor prognosis [23–25]. To date, biomarkers that can 

effectively reflect the prognosis of LGG are lacking. 

 

 
 

Figure 7. Interaction networks and functional annotations of SFs. (A) A total of 16 SF genes were identified to be significantly related 

with the regulation of AS events in LGG patients. (B) The PPI network of 16 SFs and neighbor protein nodes. (C) The results of GO analyses of 
SFs. (D) Overall heat map of AS events related to LGG survival. 
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AS is common in mRNA processing and has an 

important role. It can cause a variety of complex 

changes in proteins, relying on a limited genome, and 

resulting in a large number of proteins [26]. Much 

research has given us a better understanding of the role 

and changes of AS in cancer. In tumors, abnormal AS 

can occur in a variety of ways, making it difficult to 

elucidate the role of each AS event in cancer [27–30]. 

Studies have found that some mRNAs associated with 

AS events are related to the development of cancer [31]. 

Some researchers have started to correlate AS with the 

development of cancer subtypes to explore its impact on 

cancer prognosis [7], such as that of prostate [32], 

ovarian [33], and colorectal cancer [34]. Several studies 

have applied AS to the clinical practice of assessing 

cancer prognosis, providing new ideas for assessing 

 

 
 

Figure 8. Further verification of SF gene and LGG prognosis. (A–D) OS and DFS of two example genes in LGG. CELF3 (A, B), SNRNP70 

(C, D); (E) IHC on collected LGG tissue; (F) The scatter plot of the IHC scores(P < 0.05); (G, H) Forest plots were used to visualize the univariate 
Cox regression analysis of DFS and OS in the AHYMUM cohorts. (I, J) Survival curves showed that LGG patients with elevated SNRNP70 
expression levels in the AHYMUN cohort showed poorer OS (P = 0.003) and poorer DFS (P < 0.001). 
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Table 1. Clinicopathological characteristics in relation to SNRNP70 expression level in AHYMUM cohort. 

Characteristics 

AHYMUM cohort SNRNP70 expression 

χ2 P (N=100) Low IHC score High IHC score 

 
(N=50) (N=50) 

N (%) 
     

Age 
   

5.263 0.022 

<60 years 81(0.81) 36(0.44) 45(0.56) 
  

≥60 years 19(0.19) 14(0.74) 5(0.26) 
  

Gender 
   

2.21 0.137 

Male 87(0.87) 41(0.47) 46(0.56) 
  

Female 13(0.13) 9(0.69) 4(0.31) 
  

Grade 
   

6.775 0.009 

G1 82(0.82) 46(0.56) 36(0.44) 
  

G2 18(0.18) 4(0.22) 14(0.78) 
  

Seizure history 
   

4.336 0.066 

yes 82(0.82) 45(0.55) 37(0.45) 
  

no 18(0.18) 5(0.28) 13(0.72) 
  

Microvascular invasion 
   

10.746 0.001 

Absent 76(0.76) 31(0.41) 45(0.59) 
  

Present 24(0.24) 19(0.79) 5(0.21) 
  

Capsular invasion 
   

0.271 0.063 

Absent 82(0.82) 40(0.49) 42(0.51) 
  

Present 18(0.18) 10(0.56) 8(0.44) 
  

Karnofsky score 
   

9.458 0.002 

≥80 61(0.61) 38(0.62) 23(0.38) 
  

<80 39(0.39) 12(0.31) 27(0.69) 
  

 

Table 2. Multivariate Cox regression analysis of DFS and OS in AHYMUM cohorts (DFS: disease-free survival; OS: 
overall survival). 

Covariates 
DFS  OS 

HR 95% CI P value  HR 95% CI P value 

Grade (ref. G1) 0.822 0.412-1.707 0.609  0.915 0.412-2.443 0.832 

Microvascular invasion (ref. Absent) 2.563 1.286-5.110 0.007  2.826 1.186-5.712 0.024 

Capsular invasion (ref. Absent) 2.660 1.331-5.317 0.006  2.691 1.231-6.617 0.044 

Karnofsky score (ref. >80) 1.914 1.014-3.611 0.045  2.127 1.176-4.927 0.031 

SNRNP70 expression (ref. low) 3.084 1.632-5.828 0.001  6.246 1.596-16.424 <0.001 

 

tumor prognosis at the molecular level. Thus far, LGG 

has not been examined with respect to AS. In our study, 

we not only screened AS events related to LGG 

survival, but also established a model to predict the 

survival of LGG patients after surgery. In addition, we 

also screened SF-enriched genes and analyzed AS co-

expression in the protein–SF network to further 

investigate AS molecules in LGG and the molecular 

mechanisms underlying SF genes. 

 

We analyzed data for all the splicing patterns studied, 

and from these data we found that all subgroups of AS 

patterns have clinical survival advantages. The 

observations from this study indicate that one gene can 
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produce multiple mRNAs through AS, resulting in 

numerous transcription events to produce many 

proteins. Our study found that these have more or less 

of an impact on the prognosis of LGG. For example, 

CLK2 was only positively related to the interaction of 

bad AS events, so it had a negative impact on the 

prognosis of LGG. Therefore, this is not conducive to 

the recovery of LGG, and the likelihood is that LGG 

recurrence will increase in patients with high 

expression. ELAVL2 is negatively correlated with 

adverse AS events and positively correlated with good 

AS events; therefore, it has a positive impact on the 

prognosis of LGG. Not only is the prognosis good, but 

the likelihood of relapse is reduced. The relationship 

between SF genes such as DNAJC6 and CELF5 and AS 

events is complex, and the impact of these core genes 

on the occurrence and development of LGG requires 

further study. However, these SF genes may be 

potential biomarkers of LGG and may play an important 

role in determining patient treatment options and 

observing prognosis. We also selected 100 LGG 

patients from the tissue bank of our hospital to verify 

our hypothesis. 

 

This study has some limitation. First, although we 

analyzed the correlation between the SF genes and AS, 

their mechanism of action and regulatory methods 

have not been fully determined, and the role of  

other regulatory factors in LGG is unclear. Therefore, 

more research is needed to clarify the prognostic  

value of comprehensive splicing regulatory networks 

and regulatory factors. Second, we only selected  

cases from our center for retrospective research, and 

we will expand the sample size and range in the next 

study. 

 

In conclusion, we not only established data on overall 

AS-related events in LGG, but also found that the 

prognostic markers identified in AS events showed 

satisfactory predictive effects for the survival of LGG 

patients. Comprehensive genome-wide profiling of the 

AS landscape in our LGG cohort revealed novel AS 

patterns associated with carcinogenesis and aggressive 

progression, which may shed light on AS-related 

clinical implications in LGG. This work further 

elucidated SF gene-regulated AS events, laying the 

foundation for the future molecular treatment of LGG 

and providing novel perspectives on LGG treatment and 

prognostication. We have not studied whether there are 

some prognostic AS patterns or splicing factors that are 

common to all tumors, which will be our new point of 

inquiry. In addition, merely expression level and 

prognostic value of SNRNP70 were identified in this 

study, thus further functional works, as well as in-depth 

mechanisms were needed to verify the absoluteness of 

these findings. 

MATERIALS AND METHODS 
 

Collection and standardization of data 

 

We downloaded mRNA replacement splicing data  

for 516 LGG patients from the TCGA SpliceSeq  

dataset (bioinformatics.mdanderson.org) [35]. We then 

performed a normalized test on these data using percent 

spliced in index (PSI) values. The average PSI value of 

each AS event was greater than 0.05, and the minimum 

PSI standard deviation was greater than 0.01. We then 

performed an interactive quantitative analysis of all seven 

AS event types in the form of an UpSet chart [36]. At the 

same time, we obtained the RNA sequencing data and 

clinicopathological information of 516 LGG patients 

from TCGA database [37], and merged it with mRNA 

alternative splicing data. In addition, to identify the 

potential correlation between SF genes and prognosis-

related AS events, we obtained a list of SFs from the 

SpliceAid2 database [38]. 

 

We downloaded RNA-seq data from the LGG cohort of 

TCGA data portal (https://portal.gdc.cancer.gov/ 

projects). The PSI value quantifies AS events and 

calculates the ratio of the seven types. In our research, 

we not only analyzed the seven AS events individually, 

but also analyzed the overall AS events. Because the 

PSI value represents the percentage of standardized read 

counts that include the transcript element in all 

standardized reads (including reads and exclude reads) 

of the event, a change in the average PSI value indicates 

that the splicing pattern between groups has changed. 

 

In this study, from January 2003 to December 2019, 

100 LGG patients were recruited from the Affiliated 

Hospital of Youjiang National Medical University 

(AHYMUN) (Baise, China). The inclusion criteria 

included: (1) pathology (surgery or biopsy) and typical 

dynamic imaging examination; (2) no tumor treatment 

or tumor resection has been performed before; and (3) 

no other brain tumors. The clinical and pathological 

parameters of our cohort included age at surgery, sex, 

grade, seizure history, Karnofsky score, degree of 

microvascular invasion, and capsule invasion. Tissue 

samples including LGG and adjacent normal tissues 

were collected during surgery and these samples were 

obtained from the AHYMUN tissue bank. All study 

design and testing procedures were performed in 

accordance with Helsinki Declaration II. Ethical 

approval was obtained from the ethics committee and 

all patients provided consent to participate in this study. 

 

Identification of prognosis-related AS events 

 

We screened AS events related to prognosis based on 

the PSI values and OS of LGG patients and analyzed 

https://portal.gdc.cancer.gov/projects
https://portal.gdc.cancer.gov/projects
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these date by univariate Cox regression analysis. We 

performed a quantitative intersection analysis on the 

seven different prognosis-related AS events and 

displayed them in the form of an UpSet graph. Then, we 

used bubble charts to show the top 20 important events 

in the seven different AS events. We used the glmnet 

software in R (version 3.6.2) to perform a LASSO 

regression analysis of all AS events to screen the most 

important AS events related to prognosis, and also to 

avoid overfitting. After that, we performed multivariate 

Cox regression analysis on the obtained data and 

calculated the risk score of each LGG patient based on 

the corresponding highly important prognosis-related 

AS PSI value. Finally, we divided the 516 confirmed 

LGG patients into low-risk and high-risk groups based 

on risk scores. 

 

Survival analysis 

 

This study included 516 patients with complete clinical 

parameters, all of whom were LGG patients. We 

performed a Cox univariate analysis to assess all other 

splicing events that may affect OS in LGG patients and 

analyzed their clinical significance. We also performed a 

multivariate Cox analysis of all types of AS events to 

determine their prognostic factors. We combined all 

independent prognostic AS events of the seven different 

types to establish the final indicators of prognosis. In 

addition, we plotted Kaplan-Meier curves as a prognostic 

indicator for patients with LGG OS over 5 years. We 

used the receiver operating characteristic (ROC) software 

package (version 1.0.3) of the R software to compare the 

survival efficiency of each prediction model [39]. 

 

Comprehensive bioinformatics and statistical 

analysis 

 

We distinguished the intersections between AS events 

that occurred in LGG and related survival, and 

visualized the results using Upset charts. In Cytoscape 

software (version 3.7.2), we entered the gene names 

related to the survival prognosis of LGG patients [40]. 

By analyzing the constructed gene network, we 

identified the most critical central genes, and thus 

established a SF network related to the prognosis of 

LGG. The relationship between crucial SF gene 

expression and AS events was established. Finally, we 

used Cytoscape to construct the relevant pictures. All 

statistical analyses were performed using BiocManager 

(version 1.30.1), and all P-values of <0.05 were 

considered statistically significant (P-values are two-

sided). To investigate the difference in AS between 

LGG tissue and normal brain tissue, we calculated the 

percentage of all AS types. To accurately evaluate the 

value of AS in predicting the occurrence, development, 

and prognosis of LGG, we use ROC curves to describe 

it. In addition, we analyzed the effect of AS events on 

OS and disease-free survival (DFS) of LGG patients by 

the Cox model to screen for possible prognostic 

biomarkers. To further explore the independent clinical 

factors related to LGG, we performed univariate and 

multivariate Cox regression analyses on age (reference 

low), gender (reference male), grade (reference g1), 

microvascular invasion (reference absent), capsular 

invasion (reference absent), Karnofsky score (reference 

> 80) and SF gene expression (reference low) of the 

eight groups in the AS events analysis. 

 

Prognosis of AS and feature-rich analysis of SF 

 

We identified the functional enrichment of SFs in 

biological attributes by gene ontology (GO) enrichment 

analysis, including biological processes (BPs), cellular 

components (CCs), and molecular functions (MFs) in 

the form of bubble diagrams. SF analysis was also 

performed for the pathway enrichment analysis of the 

reaction group, and other related pathways that were 

important in the Reactome analysis were also 

introduced in detail. GO enrichment analysis of SFs was 

further illustrated and visualized by ClueGO (version 

2.5.4) and CluePedia (version 1.5.4), which are 

Cytoscape plug-ins that are used to visualize non-

redundant biological terms of gene modules in 

functional grouping networks. 

 

Correlation analysis of prognosis-related AS and SFs 

 

The correlation among SFs and the eight groups of AS 

events was displayed in a heatmap. Then, hierarchical 

clustering of the identified SFs was added to the 

heatmap based on the mRNA expression of SFs in 516 

LGG patients. TCGA Splicing Variants Database was 

used to identify splicing locations on the exons and 

junctions of some genes. 

 

Statistical analysis 

 

R (Version 3.6.2) and RStudio (Version 1.2.1335) were 

utilized to complete an Upset plot, univariate and 

multivariate Cox regression analyses, LASSO 

regression analyses, Kaplan-Meier plots, ROC curves, 

risk plots, PPI network, and functional annotations. In 

all tests, both sides and P-values less than 0.05 were 

considered significant. 

 

To determine the relationship between different SF gene 

expression levels and clinicopathological features, a χ2 

test was performed to compare the distribution of 

classification data between groups. A scatter plot was 

used to represent the differential expression of 

SNRNP70 in normal and LGG tissues. The primary 

endpoint was the OS of patients who survived a specific 
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period of time, which was determined based on the 

length of time from the date of surgery to the date of 

death or the date of the last follow-up. DFS as a 

secondary endpoint refers to the length of time from the 

start of curative treatment for which no disease can be 

found to the date of progression, the date of starting 

second-line treatment, death, or whichever occurred 

first. The follow-up time was estimated using the 

Kaplan-Meier method (95% confidence interval) (95% 

CI) and log-rank test (with independent curve). Hazard 

ratios were derived from Cox proportional hazard 

regression models based on high-to-low comparisons to 

identify independent predictors. Univariate and multiple 

Cox regression models were independently analyzed to 

assess the effects of confounding variables including age 

at surgery, sex, grade, history of epilepsy, Karnofsky 

score, microvascular invasion, capsular invasion, and 

gene expression. Statistical analysis was performed 

using SPSS software (version 23.0, SPSS Inc., Chicago, 

Illinois, USA). All hypothesis tests are two-sided tests, 

and all tests have P-values of less than 0.05. 

 

Immunohistochemistry 

 

Immunohistochemical streptavidin-peroxidase method 

was used to detect the expression of SFs in LGG and 

adjacent tissues (we stained every SF gene we screened). 

The tissue was cut into sections with a thickness of about 

5 µM, then dewaxed, hydrated and immersed in 

hydrogen peroxide to inactivate endogenous peroxidase. 

Catalase, microwave repair with 0.01 mol / L sodium 

citrate buffer, I anti-blocking, II anti-incubation, 

dropwise addition of DAB colored solution, rinse with 

tap water, and counterstain with hematoxylin, 

dehydrated, transparent 2. The slides were sealed and 

then sealed under a microscope. Pathological sections 

were judged by two senior pathologists. Five high power 

field of view were randomly selected on each slide and 

brownish-yellow particles were considered as positive 

expression. Samples were scored based on cell staining 

(0 to 3 points): 0, cytosolic yellow particles; 0, cytosolic 

yellow particles. 1. Light brownish yellow particles are 

higher than background and negative control; 2 are 

obviously brownish yellow particles; 3. Stained by a 

large number of dark brown particles. Samples were also 

scored based on the percentage of positive cells (0 to 4 

points): 0% was rated as 0 points, <10% was rated as 1 

point, 11% to 50% was rated as 2 points, and 51% to 

80%. Rated 3 points and> 80% rated 4 points. Calculate 

the immune response score (IRS) by multiplying the two 

scores [41]. 
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