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COVID-19 vulnerability: age, diseases, gender 
 
COVID-19 is caused by coronavirus SARS-CoV-2. 
Most cases of COVID-19 are asymptomatic, but some 
are severe and lethal. Mortality is the simplest marker of 
COVID-19 vulnerability. COVID-19 vulnerability can 
be defined as a chance of death from COVID-19, once 
infected. 
 
Age: 
In all studies conducted in all countries, the mortality 
rate from COVID-19 increases exponentially with age 
[1–11]. Exact mortality rates varied in hundreds of 
studies because they depend on testing and therapeutic 
interventions. But the rule is clear: the mortality rate is 
increasing exponentially with age. 
 
Age-related diseases: 
Mortality is especially high in patients with pre-existing 
conditions [6, 9, 10, 12–23]. 
 
In Italy, 99% of patients, who died, had at least one 
illness.  

 

https://www.bloomberg.com/news/articles/2020-03-
18/99-of-those-who-died-from-virus-had-other-illness-
italy-says. 
 
In other words, infected people without pre-existing 
diseases do not die. This may seem paradoxical because 
we just discussed that age is sufficient to increase 
mortality exponentially. This is because pre-existing 
conditions are manifestations of biological age, whereas 
aging and diseases are two sides of the same coin [24–
26]. These conditions are typical age-related diseases: 
hypertension, diabetes, obesity, ischemic heart disease 
(IHD) and chronic obstructive pulmonary disease 
(COPD) and other diseases [9, 12–23]. 
 
Of course, not all (only some) patients with age-related 
diseases die from COVID-19. In other words, age-
related diseases are necessary but not sufficient for 
mortality from COVID-19. 
 
Age and pre-existing (age-related) diseases are 
interdependent. A number and severity of diseases 
correlate with age. An average 60 year old person has 
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it to other age-related diseases. It also explains inflammaging and immunosenescence, hyperinflammation, 
hyperthrombosis, and cytokine storms, all of which are associated with COVID-19 vulnerability. Anti-aging 
interventions, such as rapamycin, may slow aging and age-related diseases, potentially decreasing COVID-19 
vulnerability. 
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more age-related diseases than an average 50 your old 
person. Yet, a particular 60 year old person may have 
no age-related diseases, whereas a particular 50 year old 
person may have multiple diseases including 
hypertension, diabetes, obesity and cancer. In this case, 
it is a chronologically younger person who is bio-
logically older. And it is the biological age that 
determines the likelihood of death from COVID-19. 
 
Male Gender: 
At the same age, the mortality rate is twice higher in 
men than in women [9, 27, 28], in part, because men 
age faster than women and, at any chronological age, 
men are biologically older than women [29]. 
 
So, three rules can be combined in one: COVID-19 
vulnerability is determined by biological age. Biological 
age combines chronological age, age-related diseases 
and gender. A combination of all age-related diseases 
(and pre-diseases) is a biomarker of biological age. 
Figuratively, SARS-Cov-2 can “measure” biological 
age, which is thus the best predictor of mortality from 
both COVID-19 and other diseases. 
 
Mortality from aging compared with COVID-19 
mortality 
 
Aging can be measured as an increase in the probability 
of death with age. Mortality increases exponentially, 
starting from age 8-9. Men have a higher “normal” age-
related death rate than women because men age faster 
than women [29]. 
 
COVID-19 mortality rate parallels the “expected” 
aging-related death rate (Supplementary Figure 1) and 
see second graph in: 
https://medium.com/wintoncentre/how-much-normal-
risk-does-covid-represent-4539118e1196. 
 
Chances to die from COVID-19 are proportional to 
chances to die from aging itself at any age. The only 
discrepancy between natural and COVID-19 mortality 
is observed below the age of 8 years old. Whereas 
natural death rate is relatively high, COVID-19 
mortality is low (no mortality [11]). This discrepancy 
will be discussed later. But first how do animals, 
including humans, die from aging? 
 
Age-related diseases 
 
Humans and other animals (including the worm [30] and 
the fly [31]) do not die from aging itself but from age-
related diseases such as ischemic heart disease (IHD), 
hypertension, diabetes, cancer, Alzheimer’s and 
Parkinson’s diseases, age-related macular degeneration, 
osteoporosis and sarcopenia (As we will discuss, even 

seemingly non-deadly diseases such as osteoporosis can 
lead to deadly complications). The incidence of these 
diseases increases exponentially with age. Some diseases 
such as obesity, hypertension and diabetes develop 
earlier in the course of aging. Other diseases, such as 
Alzheimer’s disease and macular degeneration, are 
usually diagnosed later [32, 33]. Age-related diseases 
may also occur in younger people with genetic 
predisposition and environmental exposure hazards. But 
even without these factors, diseases develop because 
they are quasi-programmed (see “Quasi-programmed 
aging section”). These diseases are not diseases of 
civilization, as it may seem. Humans simply now live 
long enough to develop them. Of course, “hazards of 
civilization” can accelerate them at a younger age. 
 
Aging and its diseases cannot be separated. Healthy aging, 
or aging without diseases, is merely a slow aging, when 
biological age is less than chronological age. During a 
period of seemingly healthy aging, pre-pre-diseases and 
pre-diseases are progressing until they eventually reach 
clinical manifestations. Thus, healthy aging progress to 
unhealthy and pre-diseases become diseases [34]. 
 
Age-related diseases and COVID-19 vulnerability are 
highly intertwined. Patients, who die from COVID-19, 
otherwise would die from age-related diseases such as 
heart disease, cancer, diabetes, hypertension, just a year 
later. COVID-19 approximately doubles a patient’s 
aging-dependent risk of dying during one year. For 
example, (numbers are very approximate), a sixty year 
old woman has 1% chance to die from aging before her 
61st birthday. At that age, if infected, the death rate from 
COVID-19 is around 1% for females. If infected, a 
patient has approximately doubled chances to die 
compared with usual age-related mortality during one 
year. As David Spiegelhalter put it: “getting COVID-19 
is like packing a year’s worth of risk into a week or two”. 
https://medium.com/wintoncentre/how-much-normal-
risk-does-covid-represent-4539118e1196. 
 
Children and young adults have a very low risk of death 
from aging-related diseases, so that risk remains 
extremely low even when doubled. 
 
Although natural mortality is relatively high in the 
youngest age group, especially in infants, they do not die 
from age-related diseases of course. Instead, infants are 
vulnerable to bacterial infections and candida infections 
due to underdeveloped immune system [35]. Low 
COVID-19 mortality in the pediatric age group [11] is 
consistent with the notion that COVID-19 vulnerability 
is not due to a “weak” immune system. In contrast, as 
we will discuss in the next section, it is hyper-functional 
immune response that leads to death from COVID-19 in 
the elderly by causing cytokine storm. 

https://medium.com/wintoncentre/how-much-normal-risk-does-covid-represent-4539118e1196
https://medium.com/wintoncentre/how-much-normal-risk-does-covid-represent-4539118e1196
https://medium.com/wintoncentre/how-much-normal-risk-does-covid-represent-4539118e1196
https://medium.com/wintoncentre/how-much-normal-risk-does-covid-represent-4539118e1196
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Cytokine storm as a hyperfunction 
 
Severe COVID-19 is characterized by hyper-
inflammation, cytokine storm, acute respiratory distress 
syndrome (ARDS), damage to the lung, heart and 
kidneys [36–39]. 
 
In response to viral replication, hyperfunctional 
monocytes and macrophages infiltrate the lung, 
causing hyper-inflammation and hyper-secretion of 
cytokines such as interleukin (IL)-6, IL-2, IL-7, IL-
1ra, interferon-γ inducible protein (IP)-10, tumor 
necrosis factor (TNF)-α, ferritin, monocyte chemo-
attractant protein (MCP)-1, macrophage inflammatory 
protein (MIP) 1-α, granulocyte-colony stimulating 
factor (G-CSF), C-reactive protein (CRP) and 
procalcitonin. [22, 36–42]. 
 
This leads to leukocyte recruitment, vascular 
permeability, edema and further pulmonary damage in 
vicious cycle [37, 38, 41, 43, 44]. Hyper-inflammation 
becomes systemic, in turn causing hyper-coagulation 
and thrombosis, disseminated intravascular coagulation 
[45]. This causes injury of distant organs such as the 
kidneys. Pre-existing organ damage (late stages of age-
related diseases) exacerbates organ damage caused by 
cytokine storm [42, 43, 46]. In addition, cellular hyper-
functions and systemic hyper-inflammation may lead to 
cellular exhaustion, such as exhaustion of lymphocytes 
(lymphopenia) [47–49]. Hypercoagulation is associated 
with hyperactive fibrinolysis and increased D-dimer 
blood levels [23]. Cytokine storm is a systemic 
hyperfunctional response (Figure 1). 

Of course, age-related hyperfunctional response, such as 
cytokine storm, is not caused by lifelong accumulation 
of molecular damage. Aging is not caused by molecular 
damage after all. Instead it’s a continuation of 
developmental/growth programs that lead to hyper-
functions and in turn eventually to dysfunctions. 
 
Hyperfunction theory of quasi-programmed 
aging 
 
“Quasi” means “resembling” or “seemingly, but not 
really.” Quasi-program of aging is not a program but a 
continuation of developmental programs that were not 
switched off upon their completion [24, 50]. They 
purposelessly unfold, leading to age-related diseases, 
secondary organ failure and death. Quasi-programmed 
(program-like) aging is associated with higher than 
optimal cellular and systemic functions, which 
eventually, via cellular exhaustion and organ damage, 
lead to functional decline (Figure 2). For example, 
starting from birth, blood pressure increases and 
continues to increase after organismal growth is 
completed. Therefore, hypertension is the most 
prevalent age-related disease. In turn, hypertension can 
cause organ damage: stroke, infarction and renal failure. 
Similarly, obesity develops in post-development as a 
continuation of growth (yet, it can be prevented by low 
caloric diets, illustrating that quasi-program of aging 
can be decelerated). 
 
Hyperfunction is an excessive normal cellular function: 
contraction by smooth muscle cells (SMC), adhesion 
and aggregation by blood platelets, insulin secretion by 

 

 
 

Figure 1. Cytokine storm as a systemic hyperfunction. 
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beta-cells, lipid accumulation by adipocytes, secretion by 
stromal and immune cells, oxidative burst by leukocytes, 
just to name a few. When higher than optimal, they  
cause vasoconstriction and hypertension, thrombosis, 
hyperinsulinemia, hypertrophy, hyperplasia, obesity, 
hyper-secretory phenotype or Senescence-associated 
secretory phenotype (SASP), hyper-inflammation and  
so on. 
 
Hyper-function is not necessarily an absolutely increased 
function. It may be also insufficiently decreased function 
(relative hyperfunction). Levels of IGF-1 and growth 
hormone decrease during lifespan. Despite this decrease, 
IGF-1 levels are still higher than optimal (relative  
hyper-function) because further genetic decrease in  

IGF-1 levels (by genetic means) extends health span and 
lifespan in mammals [51–53]. 
 
Cellular hyperfunctions may eventually switch to 
cellular exhaustion and loss of functions at late  
stages. During the course of type II diabetes, mTOR 
overactivation and hyperinsulinemia eventually lead to 
beta-cell exhaustion and insulin insufficiency, from pre-
diabetes to diabetes [54, 55]. As another example, after 
puberty, hyperstimulation of the ovary eventually leads 
to oocyte exhaustion and menopause (see Figure 3 in ref. 
[29]). Depletion of naïve lymphocytes is another 
example, as reviewed here later. Age-related alterations 
are mostly noticed when they switch to functional 
decline, which is a late event. 

 

 
 

Figure 2. Quasi-programmed hyperfunctional aging. Aging is a continuation of developmental programs that were not switched off 
upon their completion. An increase in cellular and systemic functions (manifested as pre-diseases and then as diseases) leads to eventual 
organ damage and secondary loss of function. 
 

 
 

Figure 3. COVID-19 vulnerability as an age-related disease. Age-related diseases, including COVID-19 vulnerability, are manifestations 
of aging. Abbreviations: Ischemic heart disease (IHD); Chronic obstructive pulmonary disease (COPD). 
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In some cases, functional decline can be primary and 
programmed. For example, thymus involution 
(replacement of T cells by adipocytes) starts early in life, 
accelerates at puberty and continues later. Still loss of 
thymocytes and their niches may be in part due to 
adipocyte hyperplasia and hypertrophy [56]. In fact, 
obesity accelerates involution, whereas calorie 
restriction decelerates it [57, 58]. Furthermore, the 
oblation of sex hormones decelerates or even reverses 
thymus involution [59]. Thus, involution is triggered by 
adipocyte hyperplasia and increased production of sex 
hormones during puberty [56]. 
 
Quasi-programmed aging is not driven by molecular 
damage. It is driven by nutrient/hormone/cytokine-
sensing and growth-promoting signaling pathways such 
as Target of Rapamycin (TOR; mTOR), which are 
involved in developmental growth and later cause 
hyperfunctional aging and its diseases [24, 26]. 
 
Covid-19 vulnerability as an age-related 
syndrome 
 
What is the cause-effect relationship between age-related 
diseases and COVID-19 lethality? Do patients die from 
age-related diseases, complicated by COVID-19? Or, in 
contrast, do these various diseases make COVID-19 
infection lethal? Both scenarios take place to some 
extent. However, the relationship is mostly indirect. Both 
age-related diseases and COVID-vulnerability result 
from the same underlying cause (Figure 3). This is why 
they are highly correlated. The cause is aging itself. 
Aging is manifested by a sum of deadly - and not so 
deadly - diseases and conditions ranging from cancer to 
grey hair. Although not all diseases seem to be deadly, 
they can cause complications such as stroke, ventricular 
fibrillation, renal failure, lung edema. Even sarcopenia 
and osteoporosis lead to falls and broken bones 
culminating in a deadly sequence of events. Cosmetic 
manifestations such as aging spots and wrinkles, while 
not deadly by themselves, can be manifestations of other 
diseases. For example, baldness correlates with prostate 
enlargement [60], and the later can lead to urinary 
obstruction and renal failure. 
 
Diseases occur together. For example, chronic 
obstructive pulmonary disease (COPD) is associated 
with diabetes, cardiovascular disease and hypertension 
[61]. If a person has one disease (e.g., diabetes), this 
patient has higher chances of having other diseases (e.g., 
hypertension, IHD, cancer) or conditions, including 
COVID-19 vulnerability, which is revealed only during 
infection but can be predicted by pre-existing diseases. 
 
Aging is initially driven by an increase in cellular and 
systemic functions (hyperfunction), leading to age-

related conditions. For example, hypertension is a 
systemic hyperfunction due to hyperfunction of multiple 
cell types such as arterial smooth muscle cells (aSMC). 
Similarly, COVID-19-vulnerability is associated with 
hyperfunction of inflammatory cells that, in response to 
COVID-19 infection, causes cytokine storm, hyper-
coagulation and damage of the lung and distant organs. 
 
The COVID-19 vulnerability syndrome is an aging-
related disease, strictly dependent on biological age, 
associated with other age-related diseases, and 
exemplified by hyper-functional response to infection. 
 
Inflamm-aging and immunosenescence 
 
With hundreds of cell types acting in concert, the 
immune system is so complex that we cannot discuss 
age-related alterations without oversimplification. The 
most noticeable alteration is that memory T and B cells 
replace naive T and B cells [62]. (This seems natural 
since life-long exposure to pathogens replaces naïve 
cells by memory cells). Replacement of naïve immune 
cells decreases adaptive responses to novel antigens 
such as SARS-CoV-2. In contrast, immune protection 
by memory T cells from viral re-infection with known 
pathogens is usually increased with age [62]. 
 
Immune responses are roughly divided into (a) innate 
responses, carried mostly by neutrophils, macrophages 
and NK cells, which react to pathogen rapidly and 
nonspecifically, and (b) adaptive responses, carried by T 
and B lymphocytes, which are delayed, slower and 
specific (e.g., antigen-specific clonal expansion of T  
and B lymphocytes and antibody production by B 
lymphocytes) [63–65]. In the elderly, immune responses 
to SARS-CoV-1/2 are “stuck in innate immunity,” with 
insufficient progression to adaptive immunity [37]. 
However, decline in adaptive response, such as antibody 
production, plays little role in COVID-19 mortality. It is 
hyper-functional innate immunity, hyper-inflammation, 
cytokine storm and hyper-coagulation that lead to organ 
failure and death. In agreement, hyper inflammatory 
response rather than high virus numbers leads to death of 
SARS-CoV-infected old nonhuman primates [66]. 
 
Aging is associated with diseases of immune hyper-
function such as autoimmune disorders with paradoxical 
increase in certain signaling pathways and cytokine 
levels [67–69]. 
 
In the elderly, innate immune cells are in a state of 
sustained activation, producing pro-inflammatory cyto-
kines [67, 70–72]. Increased pro-inflammatory activity 
by the innate immune system, especially by monocytes/ 
macrophages, is a state of alertness and hyper-reactivity 
on the cost of potential age-related inflammatory diseases 
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[67, 70–72]. Whereas some functions are decreased, 
others are increased. According to the inflamm-aging 
concept, innate immune system overtakes adaptive 
immune system in aging. Cause-effect relationships are 
bi-directional: immunosenescence (namely, a decrease in 
adaptive response) is a cause and consequence of 
inflamm-aging [67, 70–72]. 
 
We can consider inflamm-aging as an example of 
hyper-function. While some functions are decreased, 
others are increased. Hyper-function is damaging. (In 
analogy, increased electric power, without an adaptor, 
would damage a laptop). Damaging hyper-functions can 
lead to loss of function and cellular exhaustion. And 
vice versa, loss of function may cause compensatory 
hyper-functions of another components. 
 
Cellular senescence as a continuation of growth 
 
Cellular senescence is a continuation of cellular growth, 
when actual growth is completed [73, 74]. In 
proliferating cells, cellular mass growth is balanced by 
cell division. Cells grow in size and then divide. When 
the cell cycle is blocked (e.g., p21 and p16), then 
growth-promoting pathways such as mTOR and MAPK 
drive conversion to senescence (geroconversion) [24, 74, 
75]. During geroconversion, cells become hypertrophic 
and “fat”. Cellular functions increase: hyper-secretion 
and lysosomal hyper-function are manifested by SASP 
and beta-Gal staining. Hyper-activated growth-
promoting pathways cause compensatory resistance to 
growth factors/insulin, permanent loss of re-proliferative 
potential [74]. Rapamycin, everolimus, pan-mTOR  
and MAPK inhibitors slows down geroconversion, 
maintaining reversible quiescence instead of senescence 
[73, 76–88]. 
 
Geroconversion is a continuation of cellular growth  
[73, 74]. Similarly, aging is a continuation of 
developmental growth (see Figure 1 in ref. [89]). 
When the developmental program is completed, it 
becomes a quasi-program of aging. As discussed in 
detail, chronically activated nutrient-sensing and 
growth-promoting pathways drive age-related diseases, 
culminating in organismal death [24, 26]. 
 
Age-related diseases are quasi-programmed. Aging is a 
common cause of age-related diseases, a sum of all age-
related diseases. They are diseases of hyper-function, 
secondary hypo-function and compensation reactions 
[25]; they are deadly manifestations of aging. 
 
From activation of cellular functions to systemic 
hyperfunctions, from diseases to organ damage and 
death, hyperfunction theory of quasi-programmed aging 
describes the sequence of events [26]. And as discussed 

in 2006, suppression of aging by gero-suppressants, 
such as rapamycin, will prevent and treat all age-related 
diseases [24]. This point of view is becoming widely 
accepted and, in recent literature, quasi-programmed 
model of diseases (2006) is called “geroscience 
hypothesis” [2, 90]. 
 
Figuratively, rapamycin rejuvenates immunity [91] 
 
If aging were functional decline due to accumulation  
of molecular damage, then it would be near to impossible 
to restore functions and rejuvenate the immune  
system. In contrast, if functional decline is secondary  
to hyperfunctions (see Figure 2 in ref. [89]), these 
hyperfunctions can be suppressed pharmacologically to 
restore lost functions. Typical drugs are inhibitors of 
their targets, rather than activators, so they decrease 
functions of their targets. By decreasing hyper-functions, 
which otherwise lead to secondary loss of functions, 
rapamycin may restore “lost” functions (Figure 4). 
 
Rapamycin improves vaccination against viruses such 
as influenza in old mice, monkeys and humans [92–
100]. Importantly, rapamycin increases pathogen-
specific but not graft-reactive CD8+ T cell responses 
[95, 101]. Therefore, rapamycin and everolimus can 
both be used to prevent donor organ rejection and 
improve adaptive immunity against new pathogens [96]. 
 
Differentiation is an increase of tissue-specific cellular 
functions. Terminally differentiated B, T, and NK cells 
can rapidly react to already known pathogens [102]. 
Decrease in naïve T and B lymphocytes (and thus 
diminished response to novel antigens) results in part 
from cellular hyper-differentiation in the immune 
system [64, 103]. Hyper-functional differentiation can 
be counteracted by rapamycin [98]. 
 
As another example, age-related exhaustion of stem cells 
is partially due to loss of quiescence caused by growth 
over-stimulation [92, 104–106]. In general, senescent 
cells characterized by hyper-proliferative drive coupled 
with cell cycle arrest [77]. In young mice, mTOR hyper-
activation causes senescence of hematopoietic stem cells 
(HSC) and decreases lymphopoiesis [92]. In old mice, 
rapamycin rejuvenates hematopoiesis, and improves 
vaccination against influenza virus [92]. 
 
Third, production of lymphoid cells may be decreased 
because of disruption of hypoxic niches due to 
adipocytes hyperplasia [56, 107]. Hypoxic niches can 
preserve HSC [108, 109] probably because hypoxia 
inhibits mTOR and cellular senescence [110]. In 
agreement, rapamycin preserves HSCs [92, 98, 111, 
112] reduces the proportion of memory cells and 
maintains a pool of naïve T cells [92, 98]. 
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Fourth, growth factor (GF)- and insulin-resistance is 
loss of function because cells cannot respond to 
GF/insulin. But it may be caused by over-activated 
mTOR, which via S6K/IRS feedback loop blocks 
insulin and GF signaling. Rapamycin abrogates the loop 
restoring signaling [113–118]. 
 
Anti-aging medicine 
 
A high prevalence of age-related diseases, often called 
“diseases of civilization,” is a success story of modern 
medicine. In the past, most people did not live long 
enough to develop age-related diseases and those who 
developed them died soon after. Due to medical 
advances, people survive to 85 on average, despite 
suffering from age-related diseases. Standard medicine 
preferentially extends life span, without necessarily 
affecting health span (see Figure 3 in ref. [119]). For 
example, defibrillation and coronary stenting can save 
life but not cure heart disease. It is anti-aging 
interventions that extend health span, delaying diseases, 
thus extending lifespan. Aging is a common cause of all 
age-related diseases. By suppressing aging, anti-aging 
interventions may delay all age-related diseases [119]. 
 
As a well-known example, low calorie diets such as 
calorie restriction, intermittent fasting, and low 
carbohydrate diets extend both health and lifespan. 
Figuratively, low calorie diets prolong life by improving 
health. Nutrients and obesity activate growth-promoting 
pathways (e.g., mTOR), thus accelerating development 
of quasi-programmed (age-related) diseases. Obesity is 

associated with all age-related diseases from cancer to 
Alzheimer’s and from diabetes to sarcopenia. COVID-
19 vulnerability is also associated with obesity [9, 19, 
20, 22]. According to hyperfunction theory, obesity 
accelerates aging and all age-related conditions 
including COVID-19 vulnerability. 
 
Diabetes is one of main risk factors of death in COVID-
19 [5, 6, 12, 13, 15, 21]. Can type 2 diabetes, an age-
related disease, be reversed? In remarkable studies, it 
was shown that a brief course (6-8 weeks) of very low 
calorie diets (VLCDs) can reverse type II diabetes. In 
one study, VLCD reversed diabetes in 46% of patients 
with up to a 6-year history of diabetes [120]. VLCD is 
most effective for its prevention and at early stages of 
diabetes [121]. This anti-aging modality is so simple 
that remission can be achieved at home by health-
motivated individuals [122]. Simultaneously, it treats 
other age-related diseases such hypertension [123]. 
Obesity is associated with other diseases of hyper-
function from diabetes and sarcopenia to cancer and 
Alzheimer’s’ disease. Since age-related diseases are 
predictors of COVID-19 mortality, VLCD in theory 
may decrease COVID-19 vulnerability. 
 
Rapamycin and everolimus as anti-aging drugs 
 
In the soil of Easter Island, a complex bacteria produces 
anti-fungal antibiotic rapamycin to suppress yeast 
growth but, as a by-product, it also suppresses yeast 
aging (quasi-programed aging is a continuation of 
growth). Approved for human use in 1999, Rapamycin 

 

 
 

Figure 4. Rejuvenating immunity by inhibiting hyperfunction. (A) Specific hyper-functional cells (or signaling pathways) can inhibit 
some other cell types (or pathways) that are needed for proper anti-viral response and immunization. (B) By inhibiting hyper-functional cells 
or pathways, rapamycin can reactivate “loss-of-function” otherwise suppressed by hyper-functional cells or pathways. 
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(Sirolimus) and its close analog Everolimus are widely 
used in several diseases including cancer and organ 
transplantation. Hundreds of clinical trials (and twenty 
years of clinical practice) have ensured their safety and 
good tolerability especially in healthy older adults [119]. 
 
Currently, several anti-aging clinics prescribe rapamycin 
out of label to prevent age-related diseases and slow 
aging. Hundreds of recent reviews discussed rapamycin 
and everolimus in detail, so I will just emphasize a few 
points: 
 
1. Crucial prediction of hyper-function theory of 

quasi-programmed aging in 2006 was that 
rapamycin will slow aging, extend healthspan and 
lifespan and decrease all age-related [124]. It has 
been confirmed: it extends lifespan in animals from 
worm to mammals. In some strains of short-lived 
mutant mice, it extends life span two fold [98, 125]. 

 
2. Rapamycin slows geroconversion to cellular 

senescence in cell culture [74]. 
 
3. mTOR is a potential therapeutic target in chronic 

obstructive pulmonary disease COPD [126], [127]. 
Rapamycin (sirolimus) is already approved and 
successfully used in lymphangioleiomyomatosis 
(LAM), a progressive, cystic lung disease, associated 
with inappropriate activation of mTOR [128]. Long-
term daily use of rapamycin improves lung function 
without causing serious side effects (and of course 
no even minor side effects in the lung, given that 
rapamycin improves lung function) [128]. 

 
4. Despite widespread misunderstanding, rapamycin 

and everolimus do not cause diabetes. In contrast, 
they prevent diabetic complications in animals with 
diabetes (see for references [129]). In rodents, in 
some conditions they may cause symptoms of 
starvation pseudo-diabetes similar to prolong 
fasting and ketogenic diet [129]. Although, the 
Johnson study found a slight but significant 
correlation between Medicare billing for insulin and 
the use of rapamycin in renal transplant patients, 
this correlation was mechanistically explained by 
interaction of rapamycin with two other drugs used 
in the same patients [130, 131]. In cancer patients, 
everolimus may cause reversible hyperglycemia as 
a mild, infrequent and reversible side effect after 
several weeks of daily high doses of everolimus and 
rapamycin [132]. Mechanistically, everolimus 
decrease insulin production, not causing insulin 
resistance [132]. If anything, everolimus and 
rapamycin can be considered to treat complications 
of type II diabetes and prevent hyperinsulinemia 
and obesity ([129] and references within). What 

actually contributes to type 2 diabetes is excess of 
nutrients (and especially carbohydrates), which 
activate mTOR and cause hyperinsulinemia and 
insulin resistance. 

 
Potential applications of rapamycin/everolimus 
to COVID-19 
 
As soon as COVID-19 epidemic started, it become clear 
that COVID-19 vulnerability is an aging-dependent 
condition and the use of rapamycin (Sirolimus) was 
immediately suggested by independent researchers [1, 
3, 133–137]. These proposals were based on a mixture 
of several rationales, which need to be clearly 
distinguished. In theory, there are at least three 
independent applications of rapamycin and everolimus 
for COVID-19. Currently, they all are still hypothetical. 
 
1. Anti-aging effect (Figure 5). By decreasing 

biological age and preventing age-related diseases, a 
long-term rapamycin therapy may in theory decrease 
COVID-19 mortality rate in the elderly. Anti-aging 
application is especially important because it is 
beneficial regardless of COVID-19. After all, 
mortality rate from aging and its diseases is 100%, 
causing more than 2 million deaths in the USA 
annually. Continuous use of rapamycin is expected 
to improve health, decrease age-related diseases and 
extend healthy lifespan, rendering individuals less 
vulnerable, when infected with the virus. 

 

 
 

Figure 5. Prevention of COVID-19 vulnerability by staying 
young. Hypothetical graph in the absence of COVID-19. COVID-
19 vulnerability (log scale) increases exponentially with age (blue 
line). The line ends at age 120, a maximum recorded age for 
humans. In theory, a continuous rapamycin treatment would 
slow down an increase of the vulnerability with age (red line). The 
increase is still logarithmic but at a different slope, because 
rapamycin slows the aging process. The maximum lifespan, in the 
absence of COVID-19, is extended because the 100% natural 
death threshold is achieved later. 
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2. Rejuvenating immunity. As we discussed in section 
“Figuratively, rapamycin rejuvenates immunity” 
[91], mTOR inhibitors can improve immunity to 
viral infections, improve immunization and 
vaccination to some viruses such as flu [92–100, 
111, 112, 138]. In addition, viruses such as flu 
[139] and coronavirus (MERS-CoV) [140] depend 
on mTOR activity for replication. Currently, 
however, there are no data regarding COVID-19. 
Although aimed to evaluate safety, Phase 1 clinical 
trial “Sirolimus in COVID-19 Phase 1 (SirCO-1)” 
may reveal anti-viral effects too 

 https://clinicaltrials.gov/ct2/show/NCT04371640. 
 
3. Potential suppression of cytokine storm and hyper-

inflammation (Figure 1). As we discussed in the 
section “Cytokine storm is a hyperfunction”, 
cytokine storm and hyper-inflammation is a main 
cause of death in COVID-19 pneumonia [36–40, 
42, 45, 135, 141–143] Rapamycin, an anti-
inflammatory agent, inhibits hyper-functions, 
cellular senescence and decrease secretion of 
cytokines ([74, 81, 144]. Rapamycin inhibits the 
Jak2/Stat4 signaling pathway [145] and reduces IF-
γ and TNF-α levels [112]. Rapamycin (Sirolimus) 
treatment improves outcomes in patients with 
severe H1N1 pneumonia and acute respiratory 
failure and was associated with improvement in 
virus clearance, and shortened ventilator days 
[146]. Clinical trial “Sirolimus Treatment in 
Hospitalized Patients With COVID-19 Pneumonia 
(SCOPE)” has been started 

 https://clinicaltrials.gov/ct2/show/NCT04341675. 
 
Disclaimer 
 
This review is intended for a professional audience, to 
stimulate new ideas and to aid the global efforts to 
develop effective treatments for COVID-19 disease. 
This article does not represent medical advice or 
recommendations to patients. The media should 
exercise caution and seek expert medical advice for 
interpretation, when referring to this article. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 
 
 

 
 

Supplementary Figure 1. The mortality risk with COVID-19 superimposed on background annual risk. Annual risk of death 
(hazard) for England and Wales, 2016–2018, from Office for National Statistics. https://medium.com/wintoncentre/how-much-normal-risk-
does-covid-represent-4539118e1196. 
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