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INTRODUCTION 
 

Biological age represents the main risk factor for most 

chronic human pathologies, which is why therapies 

slowing the aging progression and postponing the onset 

of age-driven disease manifestation have frequently 

been suggested as major interventions to improve 

human health span. Chronological age has long been 

utilized as a proxy for biological aging state, in recent 

years however, the heterogeneity of biological aging 

rates for individuals of the same chronological age has 

become increasingly apparent. The most prominent 

example for this decoupling has probably been 

delivered in the wake of the discovery of the  

 

“epigenetic clock” in both mouse and human tissues [1–

7], which revealed accelerated aging rates associated 

with various disease states and all-cause mortality [8–

11], and is measured by DNA methylation state.  

 

The notion of aging being a continuous process 

meanwhile remained. Lately though, this view has been 

questioned by reports on non-linearity and 

discontinuities in biological processes associated with 

aging and longevity. Early indications included the 

identification of two distinguishable phases in the aging 

progression of Drosophila melanogaster [12]. The 

transition to the second aging phase, marked by 

decreased motor activity and heightened inflammation, 
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ABSTRACT 
 

In recent years, reports of non-linear regulations in age- and longevity-associated biological processes have 
been accumulating. Inspired by methodological advances in precision medicine involving the integrative 
analysis of multi-omics data, we sought to investigate the potential of multi-omics integration to identify 
distinct stages in the aging progression from ex vivo human skin tissue. For this we generated transcriptome 
and methylome profiling data from suction blister lesions of female subjects between 21 and 76 years, which 
were integrated using a network fusion approach. Unsupervised cluster analysis on the combined network 
identified four distinct subgroupings exhibiting a significant age-association. As indicated by DNAm age analysis 
and Hallmark of Aging enrichment signals, the stages captured the biological aging state more clearly than a 
mere grouping by chronological age and could further be recovered in a longitudinal validation cohort with high 
stability. Characterization of the biological processes driving the phases using machine learning enabled a data-
driven reconstruction of the order of Hallmark of Aging manifestation. Finally, we investigated non-linearities in 
the mid-life aging progression captured by the aging phases and identified a far-reaching non-linear increase in 
transcriptional noise in the pathway landscape in the transition from mid- to late-life. 
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was accompanied by an exponentially increased 

mortality risk. Remarkably, this 2-phased model was 

able to reproduce a variety of experimental longevity 

curves [12]. More recently, evidence of the existence of 

non-linear switches, capable of extending model animal 

lifespan in vivo, has been presented concerning 

mitochondrial function, further implicating 

discontinuous biological processes in aging [13]. Not 

long ago now, the report of a mid-life switch involving 

a longevity-associated signaling pathway in aging 

human muscle and brain tissue was published [14]. 

Using gene and long non-coding RNA expression 

profiling, the authors observed that an age-related 

IGF-1/PI3K/mTOR-related RNA response signature 

was essentially lost with the start of the sixth decade of 

life. The report provides compelling evidence that 

discontinuous processes might be a previously 

overlooked feature of human aging as well and indicate 

that the progression of biological aging on a molecular 

level might be even more intricately regulated and 

complex than previously assumed. 

 

The different biological processes driving aging 

meanwhile are manifold. The Hallmarks of Aging [15] 

provide a description of nine common denominators of 

aging in different tissues and organisms, attempting a 

categorization of various biological pathways into 

conceptual cornerstones of aging. Based on extensive 

literature review, the authors not only grouped, but also 

postulated the order of emergence for the different 

hallmarks. While the theoretical depiction of these 

hallmarks is detailed and comprehensive, a data-driven 

characterization of their importance to the aging 

phenotype and the actual disentanglement of the timely 

order of their occurrence in in vivo human tissue have 

remained elusive. 

 

Recent years have seen a continuous decline in costs for 

genome-wide analyses, leading to an increasing 

feasibility of multi-omics profiling studies. 

Simultaneously monitoring multiple different omics 

levels in a living system holds great promises in 

generating a holistic understanding of phenotypical 

manifestations and might prove beneficial for aging 

research, as it has for the medical sciences. However, 

the integration of multi-omics data also brings 

tremendous novel statistical and computational 

challenges. These are related to the properties of many 

omics datasets, which include high dimensionality with 

often low sample counts, differing scales and 

distributions of measurements, as well as platform 

specific bias and technical noise [16]. In order to tackle 

these challenges and to uncover complementary 

information from multi-omics data, an increasing 

number of algorithmic approaches have been developed 

in the past years [17]. Network based methods such as 

similarity network fusion (SNF) offer an elegant 

solution to the problem, by transferring the feature-

patient data for each dataset into featureless patient-

patient space before their integration [18]. From every 

dataset a similarity network is created with patients 

represented as nodes and similarities between patients 

as edges. The separate networks are then integrated 

through an iterative fusion algorithm, which strengthens 

edges present in several data views, and finally 

converges into a fused network. This final network 

incorporates similarities from all omics data views and 

can be used for downstream analyses such as subtype 

identification through clustering.  

 

In an effort to further explore the discontinuities in the 

aging progression using multi-omics methodology, we 

generated gene expression and DNA methylation data 

from ex vivo samples of aging skin. Skin represents an 

extraordinarily well-suited tissue for studying aging, 

owing to its well-documented aging phenotype and the 

ease of sampling using well-established non- or 

minimally invasive procedures. Using similarity 

network fusion, we integrated and clustered the 

multi-omics data to identify discrete stages along the 

aging progression. We validated the latent stages using 

DNA methylation age, the detection of Hallmark of 

Aging signals, and using a longitudinal validation 

cohort. Finally, we deployed machine learning to 

elucidate the order of Hallmark of Aging manifestation 

throughout the aging phases, and characterized the 

phases regarding pathway importance, which 

subsequently revealed a distinctly non-linear decrease in 

pathway enrichment at the mid- to late-life transition 

from aging phase 3 to phase 4. 

 

RESULTS 
 

Identification of latent age-associated molecular 

stages 

 

To identify distinct stages in aging skin tissue, we 

examined 86 female subjects between 21 and 76 years. 

Subjects were chosen so that all ages were represented 

evenly and were required to be in good health. From 

each subject we sampled epidermal tissue from the 

subject’s volar forearms via the suction blister method. 

31 of the original subjects were further re-invited for a 

longitudinal second measurement, which took place 

three years later (Figure 1). From the epidermal samples 

we generated gene expression and DNA methylation 

data, which were computationally integrated using the 

similarity network fusion approach. The resulting 

network, incorporating information from both 

transcriptomes and methylomes, was then used to 

identify hidden subtypes via unsupervised spectral 

clustering. The clustering revealed four distinct 
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subgroups in our data with roughly equal sizes of 22 

(cluster 1), 20 (cluster 2), 18 (cluster 3) and 26 (cluster 

4) subjects, that captured the multi-omics similarity 

structure between the samples more clearly than either 

chronological or DNA methylation (DNAm) age 

(Figure 2A-2C). Association analysis to subject 

metadata showed that the clusters were significantly 

associated with chronological age (p = 5.8e-12, Figure 

3A), whilst not being confounded by BMI (p = 0.71, 

Supplementary Figure 1A).  

 

Latent stages associate more strongly with DNAm 

age rather than chronological age 
 

As the unsupervised and purely data-driven clustering 

had identified groupings with strong association to 

chronological age, we explored the possibility that the 

clusters might capture hidden stages in the aging 

progression. We hypothesized that if this were so, the 

groupings ought to be more strongly associated with the 

actual biological aging state of our subjects, rather than 

their chronological age. To test this, DNAm ages of all 

subjects were calculated as previously described [19], to 

serve as a proxy measure for biological age 

(Supplementary Figure 1B). The comparison revealed a 

stronger association of the identified stages to DNAm 

age (p = 3.9e-13) as opposed to chronological age (p = 

5.2e-12), strengthening the hypothesis that the clusters 

captured multi-omics aging stages.  

 

Aging phase outliers are also biological age outliers 

in the sense of DNAm age 
 

As subjects within the phases still presented 

considerable variation in chronological age, and the 

most proven approximation to biological age available 

to date is through the use of DNAm age, we further 

explored if the chronological outliers in the different 

aging phases were also outliers in the sense of DNAm 

age. We defined individuals as outliers for every aging 

phase (Figure 3B) if their chronological age either 

exceeded the 3rd quartile by at least one third of the 

interquartile range (“young-like”) or subceeded the 1st 

quartile by said amount (“old-like”). Analysis of the 

deviation of chronological to DNAm ages revealed that 

phase outliers were indeed biologically significantly 

younger (mean/median = -3.8/-4.5 y) or older 

(mean/median = +4.2/+4.3 y) than average and also 

than each other respectively (Figure 3C). Association 

testing using age-adjusted logistic regression models 

further revealed that subjects assigned to the “old-like” 

group were also significantly more likely to have 

reported frequent sun bathing in the questionnaires (p = 

0.0336), delivering evidence of photoaging factoring 

into aging phase assignment. We further repeated the 

analysis using age estimates from a transcriptomic clock 

[19], which on average showed lower accuracy than its 

DNAm counterpart (Supplementary Figure 1C), in 

concordance with previous reports [19]. Association 

testing of phase outlier status to transcriptomic age 

revealed the same trends observed with DNAm age, 

albeit in this case without reaching statistical 

significance (Supplementary Figure 1D). Notably, the 

correlation of the two biological age markers was lower 

than their respective correlations to chronological age 

(Supplementary Figure 1E), indicating that the clocks 

capture at least partly independent features of aging, 

again underlining the importance of multi-omics 

approaches for aging research. 

 

Aging phases show improved detection of Hallmark 

of Aging signals 
 

The Hallmarks of Aging (HoA) describe nine main 

biological motives and processes that are believed to be 

driving the aging progression. We hypothesized that if  

 

 
 

Figure 1. Study and analysis setup. Workflow diagram depicting the two-stage longitudinal study setup and the main steps of multi-
omics data generation, integration and analysis. 
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the identified aging phases captured stages of biological 

aging, this ought to be reflected in gene expression 

patterns related to the known aging cornerstone 

processes, as summarized by the HoA. We therefore 

generated lists of genes involved in each of the nine 

HoA, by selecting GO and Reactome pathways which 

captured the essence of the respective hallmarks and 

combining them to novel gene sets (Supplementary 

Figure 2A). We then used the sets to test if the aging 

phases allowed better detection of HoA-enrichment 

signals than chronological age groups. ANOVA 

analyses using gene set enrichment scores indeed 

showed stronger discrimination based on aging stage for 

all HoA gene sets (Figure 3D). This further extends the 

evidence of the phases capturing biological multi-omics 

age to the level of gene expression. 

 

Longitudinal validation of aging phases over three-

year period 
 

To assess if the phases could be longitudinally 

reproduced, 31 subjects from the original cohort were 

re-invited three years later for a second measurement. 

To assess the aging phase of the new samples, a random 

forest classification model was built on both expression 

and methylation features from data of the original 

cohort. The classifier demonstrated high accuracy 

(AUC = 0.95) in discriminating between the four phases 

in repeated cross-validation on the original data 

(Supplementary Figure 2B) and was subsequently used 

to predict the aging stages of all subjects at the second 

time point. For most subjects the aging phase did not 

change within the 3-year-period, indicating high 

stability of the identified groupings (Figure 3E). This 

finding is not unexpected, considering the time span of 

only three years past since original sampling, relative to 

the much larger average phase windows with a standard 

deviation of between 8.2-11.5 chronological years. 

Nonetheless five subjects could be observed migrating 

from one aging phase to another, all of them 

transitioning naturally along the age gradient to the next 

phase (Figure 3E). Notably, four of these five subjects 

were previously classified as chronological outliers  

at the upper end of their age phase (Supplementary 

Figure 2C). 

 

Data-driven ranking of the Hallmarks of Aging 

along the phases reveals distinct succession patterns 
 

In order to identify the most important biological 

motives driving the aging phases, we resorted to the use 

of machine learning models. For this we implemented a 

method based on classifiers that learn to distinguish 

between aging phases, whilst taking advantage of 

biological pathway information in the training process. 

The workflow consisted of a stepwise training of 

classifiers only on subsets of genes annotated to 

pathways to predict aging phase from gene expression. 

By restricting the training to these genes, the cross-

validated accuracies of these classifiers allow the 

assessment of how well a given gene set enables the 

differentiation between aging phases, thus resulting in a 

score for each pathway’s relevance. This score can 

intuitively be interpreted as a measure of how important

 

 
 

Figure 2. Multi-omics similarity between subjects in the integrated network. (A) Heatmap visualization showing similarities 
between subjects in the fused multi-omics similarity network generated from gene expression and methylation data, with subjects ordered 
by increasing chronological age. (B) Same heatmap visualization of multi-omics similarity as in (A), with subjects ordered by increasing DNAm 
age. (C) Same heatmap visualization of multi-omics similarity as in (A) and (B), with the subjects ordered by the identified aging phases. 
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or predictive a gene set is to the grouping of interest. In 

order to derive a data-driven ranking of the Hallmarks of 

Aging along the aging phases, we performed this pathway 

predictivity analysis using the aforementioned HoA gene 

sets, calculating 100 permutations for each pathway 

model. The predictivity scores revealed a clear patterning 

of the HoA along the four phases that allowed a grouping 

of the hallmarks using hierarchical clustering (Figure 4A). 

Strikingly, the hallmarks clustered almost in the exact 

constellations postulated in their original description [15], 

namely into primary hallmarks (genomic instability, 

telomere attrition, epigenetic alterations and originally 

loss of proteostasis), antagonistic or secondary hallmarks 

(cellular senescence, deregulated nutrient sensing and 

mitochondrial dysfunction) and integrative hallmarks 

(altered intercellular communication and stem cell 

exhaustion). Our analysis did however reveal a divergence 

in the classification of the proteostasis-hallmark, which 

clustered more strongly with the group of integrative 

hallmarks. Examination of the HoA predictivity patterns 

based on the newly generated classification revealed that 

the predictivity peaks for the respective hallmark classes 

extracted through our analysis (Figure 4B) also precisely 

match the temporal manifestation sequence postulated in 

the original description of the hallmarks as well [15]: 

Namely, primary hallmarks peaked in aging phases 2

 

 
 

Figure 3. Biological age validation of the identified phases. (A) Boxplot showing chronological age distributions among the four 
identified aging phases. (B) Chronological age outliers among the aging phases, denoted as “old-like” for subjects that appeared to 
prematurely cluster into a higher aging phase, and “young-like” for subjects that were classified into a lower aging phase relative to their 
chronological age. (C) Boxplot showing the deviation of DNAm from chronological age based on aging phase outlier status, revealing a 
divergence in DNAm aging rate for aging phase outliers. Statistical significance determined using pairwise T-tests. (D) Hallmark of Aging signal 
strengths in gene expression data, comparing chronological age groups to the biological aging phases. Shown are the adjusted p-values from 
Anova comparisons, testing the segregation of the groupings among gene set enrichment scores. Figure adapted from the original Hallmark 
of Aging publication [15]. (E) Longitudinal validation after three-year period. The chord diagram shows aging phase classification of re-invited 
subjects at both time points, with phase transitions highlighted in red. 
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and 3, followed by a sharp drop in predictivity 

thereafter. Meanwhile the importance of the secondary 

hallmarks increased notably in aging phase 3. The 

integrative hallmarks, postulated to be emerging as a 

consequence of primary and secondary manifestation, 

increased slowly along the phases, while peaking in the 

late aging phases 3 and 4, again in concordance with the 

original postulation [15]. To our knowledge this is the 

first data-driven validation of the overarching sequence 

in which these cornerstones of aging manifest in human 

tissue.  

 

Pathway predictivity analysis reveals a distinctly 

non-linear loss in pathway predictivity in old-age 
 

As our analyses on the succession of the HoA already 

indicated a distinct shift in predictivities towards phase 

4 of the identified aging stages, and in light of the recent 

publication of a sharp loss of signature identity for 

longevity-associated mTOR-signaling in human tissue 

around 60 years [14], we decided to expand our 

pathway analysis and explore the mid-to-late-life 

transition in more detail. For this we utilized the 

hallmark gene sets defined by the Broad Institute into 

the analysis, a set of conserved and highly refined gene 

sets created to improve pathway inference by reducing 

variance and gene overlap [20]. The predictivity 

analysis using these gene sets revealed a number of 

pathways that showed distinctly non-linear predictivity 

patterns along the four aging phases (Figure 5A). 

Notably, the most prominent global pattern was a sharp 

loss in predictivity observed in the transition from aging 

phase 3 to aging phase 4 in many pathways. In line with 

the loss of predictivity in nutrient sensing signaling 

hallmark observed in the HoA analysis and recent 

reports [14], mTOR-related signaling was among the 

pathways undergoing this distinct transition in the 

transition from phase 3 to phase 4 (Figure 5B), which, 

biological age outliers aside, matches the chronological 

age threshold of 60 identified in recent reports [14]. 

 

 
 

Figure 4. Characterization of Hallmark of Aging predictivity within the aging phases. (A) Hierarchical clustering of the nine 
Hallmarks of Aging based on their gene set predictivity analysis along the four aging phases. Predictivity was determined using cross-validated 
random forest classifiers, trained to distinguish each of the aging phases from the others. (B) Predictivity of the Hallmark of Aging gene sets 
along the four aging phases, grouped into primary, secondary and integrative hallmarks. Statistical testing was performed using one-sided 
Wilcoxon tests. All predictivity scores were derived from 100 permutations. 
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Other pathways exhibiting this pattern included 

oxidative phosphorylation and fatty acid metabolism, 

and notably also DNA repair pathways (Figure 5B). 

Exceptions from this trend included interferon and 

interleukin signaling, which increased steadily in 

predictivity along the phases, in line with the 

inflammaging theory of aging [21, 22], and the 

previously observed patterns in the HoA analysis. Apart 

from these exceptions, statistical analysis of all pathway 

predictivity signals between aging phases 3 and 4 still 

revealed a significant decrease in pathway predictivity, 

that is replicated using gene set enrichment analysis, 

also showing a distinct loss in pathway enrichment in 

transition to phase 4 (Figure 5C). As this finding 

potentially points to an increase in transcriptional noise, 

we investigated whether there was a change in the 

transcriptional similarity between subjects with 

transition into aging phase 4. For this we calculated 

pairwise correlations between the full transcriptomes of 

all subjects. In line with the results from the pathway 

analysis, we observed a significant drop in 

transcriptional similarity in the transition from phase 3 

to phase 4. Notably, a similar effect can be observed in 

the methylation data, where a concomitant decrease in 

correlation between methylation profiles is observed 

(Figure 5D).  

 

Together these findings indicate a distinctly non-linear 

increase in biological noise in the transition from mid-

to-late-life, likely to contribute to the deterioration of 

human tissue function in old age. 

 

DISCUSSION 
 

In this study we applied network based multi-omics 

integration to investigate non-linearity in the in vivo 

human aging progression. Similarity network fusion has 

so far mostly seen use in cancer research, in other fields 

there have only been rare applications of this 

methodology so far. To the best of our knowledge this 

publication represents the first documented use of a 

network based multi-omics integration and cluster 

analysis in the context of aging. The four aging stages 

that we identified in the integrated similarity network 

were more strongly associated with measures for 

biological age as opposed to chronological age, 

demonstrating the use of unsupervised integration and 

clustering in approximating biological aging and 

elucidating discrete stages from multi-omics data in the 

process. 

 

To characterize the aging stages, we turned to the 

conceptual cornerstones that are believed to drive 

organismal aging, the so-called Hallmarks of Aging. 

For this we devised a novel approach to rank the gene 

sets according to their importance for the aging phases 

using machine learning methodology. The approach 

allowed us to validate the originally proposed 

classification of the hallmarks in a data-driven way and 

further to elucidate the order of their occurrence from 

the molecular data. The overall concordance of the data-

driven reconstruction of the order of hallmark 

manifestation to the postulated sequence of succession 

is striking. All hallmarks clustered according to the 

proposed classification into primary, antagonistic and 

integrative hallmarks, with the only notable exception 

being the loss of proteostasis hallmark, which somewhat 

deviated from its postulated order. Based on this, a 

reclassification of this hallmark might be advisable. To 

resolve this, further investigations greatly expanding the 

width of studied tissues will be required though. The 

order of succession reconstructed from our data matches 

the proposed order of primary, antagonistic or 

secondary and integrative hallmarks almost perfectly. 

The earliest recorded peak is observed for the primary 

hallmarks in aging phase 2 and is followed by a 

significant increase in predictivity in phase 3 for the 

secondary hallmarks. This also includes an increased 

importance of mitochondrial processes around mid-life, 

a finding that is especially interesting in light of recent 

reports that a mid-life intervention alleviating 

mitochondrial dysfunction is sufficient to significantly 

increase health span in model animals [13]. The 

integrative hallmarks and in particular altered 

intercellular communication, a hallmark strongly based 

on immune and inflammatory signaling pathways, 

slowly increases in predictivity and peaks in the late 

aging phases, supporting the inflammaging theory of 

aging [22, 23]. Inflammaging describes the process by 

which immunosenescence and thus reduced ability to 

deal with stressors lead to a chronic low grade 

proinflammatory state in aged tissue, in turn 

deregulating the immune response and increasing 

vulnerability to pathologies with inflammatory genesis 

or progression.  

 

The transitions to phase 3 and phase 4 were marked by 

various changes in the predictivity ranking of the 

hallmarks for each phase, indicating substantial 

rearrangements in the biological processes around 

mid-life. We investigated these transitions further by 

expanding our analysis to a wider range of conserved 

biological pathways. The analysis results showed a 

marked and global loss in pathway predictivity and 

pathway enrichment in the transition out of phase 3, 

indicative of an increase in transcriptional noise in 

aging phase 4. Pairwise correlation of all subjects 

further confirmed a significant deterioration of both 

transcriptomic and epigenetic patterning in the passage 

from aging phase 3 to aging phase 4. Chronological 

outliers aside, the onset of phase 3 exactly matches the 

median age at onset of menopause, which is around 51 



 

www.aging-us.com 12400 AGING 

 

 
 

Figure 5. Global loss in pathway predictivity in the transition from mid- to late-life. (A) Heatmap showing the changes in pathway 
predictivity along the identified aging phases. The predictivities shown are the average predictivities calculated from 100 permutations for 
every pathway. (B) Scatterplots visualizing the changes in predictivity along the aging phases for selected pathways, several of which show 
distinctly non-linear patterns. (C) Overall loss in pathway predictivity observed in the transition from aging phase 3 to phase 4 is also 
detectable using gene set enrichment analysis. (D) Pairwise Pearson correlation between all subjects based on transcriptional and DNA 
methylation patterns. 
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years for Caucasian women in industrialized countries 

[24–26], a period that is indeed known to have 

substantive effects on the biology of the female body 

through wide-reaching hormonal adjustments. This is 

particularly interesting as the menopausal transition has 

been shown to accelerate biological aging based on 

large-scale analyses of blood derived DNAm age [27]. 

This finding has thus far lacked mechanistic 

explanation, the significant mid-life shift and loss in 

predictivity we observed in the pathway landscape in 

the transition from phase 3 to post-menopausal phase 4 

might be a connected phenomenon and serve as starting 

point for further investigations into this matter. Notably, 

one of the hallmarks suffering a sharp loss in 

predictivity in this phase is the epigenetic alterations 

hallmark, linking the loss in transcriptional pathway 

state to an epigenetic age acceleration. Meanwhile, in a 

skin-specific context, the reports of accelerated skin 

aging following menopause are also manifold [28] and 

might equally be connected to our findings. A direct 

coupling between the identified aging phases 3 and 4 

and the menopausal transition might explain yet another 

interesting epidemiological finding: the fact that higher 

age at onset of natural menopause has frequently been 

associated with greater remaining life expectancy and 

reduced all-cause mortality [26, 29–31]. Considering 

menopause as a distinct stage in the natural aging 

progression would allow the interpretation that women 

entering it later (at a higher chronological age) are 

biologically younger or “young-like” in the sense of the 

outlier classification proposed earlier (Figure 3B and 

3C). The observed greater remaining life expectancy 

would then present itself as a plausible consequence of 

their lower biological age entering menopause. 

 

One of the pathways that notably lost predictivity at the 

beginning of aging phase 4 was PI3K-mTOR-signaling, 

a known longevity-associated pathway, whose 

regulation has recently been reported to be largely lost 

around the chronological age of 60 [14]. Among the 

other pathways affected by a similar decrease in 

pathway enrichment were also DNA repair pathways. 

This might present a finding with significant impact to 

health in aging phase 4 onwards, as these pathways are 

crucial for cancer protection, and mutations and 

dysregulation in these pathways have been identified 

numerous times as drivers of tumorigenesis. The 

observed loss in pathway enrichment in the transition to 

phase 4 could be a worrying sign of decreased 

safeguarding ability towards carcinogenesis in this later 

aging phase, which is especially relevant in the skin, a 

tissue that is frequently exposed to mutagenic solar 

irradiation. The transition to phase 4 happens to 

coincide with epidemiological observations that 

pinpoint a strongly increasing risk of developing cancer 

from the chronological age range of 60 upwards [32]. 

Naturally further studies will be required to evaluate if 

any causal relationship between aging phase and cancer 

risk exists indeed, but the overlap in the chronological 

age ranges is intriguing and might warrant further 

investigations (Supplementary Figure 2D).  

 

In summary, using multi-omics analysis we identified 

four aging phases in ex vivo human skin tissue of female 

participants over a wide age range. The phases appeared 

to be driven by actual biological age rather than 

chronological age, capturing distinct stages along the 

aging progression and allowed the data-driven 

reconstruction of the manifestation sequence postulated 

for the Hallmarks of Aging. Characterization of the 

mid- to late-life transition identified an extensive loss in 

pathway enrichment, with potential implications for 

life- and health-span in old age.  

 

MATERIALS AND METHODS 
 

Recruiting 
 

The study was performed in agreement with the 

recommendations of the Declaration of Helsinki and all 

test subjects provided written, informed consent. 

Subjects were recruited in the age range of 20 to 80 

years, with equal numbers of participants within each 

decade. Subjects were required to be female, in good 

health and belonging to phototypes II or III according to 

the Fitzpatrick scale [33], to limit non-age related 

variability in the data. Exclusion criteria included 

tattoos or scars in the test area, pigmentation disorders, 

pregnancy and medication such as anti-histamines or 

anti-inflammatory drugs within two weeks prior to 

study start. A detailed listing of exclusion criteria can be 

found in the Supplementary. Participants were further 

required to complete a self-assessment questionnaire on 

age, weight, height, smoker status, sun bathing habits, 

as well as food and drinking habits upon study start. 

 

Tissue sample preparation 
 

The suction blister method applied in this study has 

been approved by the Ethics Commission of the 

University of Freiburg (general approval Dec 8, 2008; 

Beiersdorf AG No. 28857). Three suction blisters of 7 

mm diameter were taken from the volar forearms of all 

subjects as previously described [34].  

 

Nucleic acid extraction 
 

Tissue samples were suspended in the respective lysis 

buffers for DNA or RNA extraction and homogenized 

using an MM 301 bead mill (Retsch). DNA was then 

extracted using the QIAamp DNA Investigator Kit 

(Qiagen) according to manufacturer’s instructions. RNA 
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was extracted using the RNeasy Fibrous Tissue Mini 

Kit (Qiagen) according to manufacturer’s instructions. 

 

Transcriptome sequencing 
 

Transcriptome libraries were prepared using TruSeq 

Library Prep Kit (Illumina) and sequencing performed 

at 1x50 bp on Illumina’s HiSeq system to a final 

sequencing depth of 100 million reads per sample. 

Sequencing data was processed using a custom pipeline 

including Fastqc v0.11.7 [35] for quality control, 

Trimmomatic v0.36 [36] for trimming and Salmon 

v0.8.1 [37] for mapping and read quantification.  

 

Array based methylation profiling 

 

Methylation profiling was performed using Illumina 

450k (first time point) and EPIC (second time point) 

arrays. In order to ensure comparability of 

measurements, EPIC arrays were computationally 

reduced to include only probes present on the original 

450k array using the minfi package [38] in R [39]. 

Methylation data was processed in minfi using the 

funnorm normalization method. 

 

Similarity network fusion and clustering 
 

Prior to integration, the gene expression (log2 

transformed transcripts per million) and CpG 

methylation data (M values) were batch corrected using 

the Combat algorithm [40] implemented in the sva 

package [41], following a feature selection step via 

filtering by median absolute deviation, retaining 10 % 

of the most informative features. The data was then 

integrated as previously described [18] using parameter 

settings of k = 10 (number of neighbors), t = 20 (number 

of iterations) and alpha = 0.5 (hyperparameter). 

Clustering on the fused network was performed via 

spectral clustering as previously described [18]. 

Measures used for the selection of cluster numbers were 

the eigen-gap statistic and rotation cost as proposed in 

the original method description [18], as well as visual 

inspection using heatmaps. 

 

Age clock analyses 
 

Analyses of DNAm and transcriptomic age were 

performed as previously described [19]. DNAm age was 

calculated from M values, whereas transcriptomic age 

was predicted based on log2 transformed transcripts per 

million. 

 

Hallmark of aging gene sets 
 

The HoA gene sets were generated from GO [42]  

and Reactome [43] gene sets by manually selecting 

matching pathways assigned to the nine Hallmarks of 

Aging [15]. A detailed list of genes annotated to each 

hallmark is provided in the Supplementary Material in 

.gmt format.  

 

Enrichment analyses 

 

Enrichment analyses were performed using the PLAGE 

algorithm based on singular value decomposition as 

described in [44] and implemented in the GSVA [45] R 

package.  

 

Classification model to predict aging phase in 

longitudinal validation 
 

To predict aging phase of re-invited subjects at the 

second time point, a random forest classifier was trained 

on the samples from the original cohort. Features were 

selected as the top 50 hits derived from differential gene 

expression analysis using DESeq2 [46] and differential 

methylation analysis using limma [47] from pairwise 

aging phase comparisons. The model was trained within 

the machine learning framework mlr [48], using the 

algorithm implemented in the original randomForest 

package [49]. Adjusted model hyperparameters 

included ntree = 1000 and    mtry features . Accuracy 

of prediction was calculated as the area under the 

receiver operating characteristic curve (AUC) for 

multi-class comparisons, as implemented in the pROC 

package [50], and was derived from 5 x 5-fold repeated 

cross-validation. 

 

Pathway predictivity analysis 
 

Pathway predictivity was assessed using random forest 

pathway classifiers, constructed using the gene sets 

generated in this study and using the Hallmark Process 

[20] gene sets downloaded from the Molecular 

Signatures Database v6.2 [51]. The models were trained 

by restricting the molecular data to that of genes 

annotated within a given hallmark and trained to predict 

the aging phase of every sample. Predictivity was 

determined as the accuracy of correct classification 

derived from 5 x 5-fold repeated cross-validation for 

each pathway model, giving insight on how well genes 

within the gene set allow a discrimination between the 

phases and was thus used as a measure of importance of 

the respective pathway. Samples were stratified with 

respect to the target variable in the cross-validation 

process in order to avoid unbalanced proportions in any 

fold that might lead to bloated accuracy measures. 

Hyperparameters of all models were adjusted to ntree = 

1000 and    mtry number of genes in pathway . To 

determine the predictivity of the HoA stratified for each 

of four aging phases, the classifiers were separately 
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trained in a one-against-all type of setup, learning to 

distinguish a phase from all the others. Modeling 

parameters and cross-validation were chosen as 

described above, and results for the four phases were 

aggregated afterwards. 

 

General data analysis and visualization 
 

Data analysis in R further included the usage of the 

package data.table [52], dplyr [53] and Hmisc [54] for 

data handling and general purpose functions, as well as 

the packages ggplot2 [55], ggpubr [56], ggsci [57],  

circlize [58] and pheatmap [59] for data visualization. 

Workflow diagrams were built using draw.io [60]. 
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SUPPLEMENTARY MATERIALS 

 

 
Recruiting appendix – inclusion and exclusion 

criteria  

 

A detailed list of inclusion and exclusion criteria for the 

recruitment process is given below: 

 

Inclusion criteria: 
- Caucasian female subjects 

- phototype II and III 

- age: 20 to 85 years 

- BMI between 18 and 25 

- in good general health and mental condition 

- healthy, intact skin on the test areas 

- willing and capable to sign an informed 

consent document  

 

Exclusion criteria: 
- underweight or obesity (see BMI inclusion 

criteria) 

- use of anti-histamines and corticoid-containing 

creams on the test sites in the last 4 weeks 

before the start of the study 

- medication with anti-inflammatory or anti-

coagulation agents (e.g. Ibuprofen, Aspirin, 

ASS, diuretics and thiazides, Marcumar) or 

antibiotics within 2 weeks prior to study start 

- pregnancy, breast-feeding 

- tattoos and/or scars on the test areas 

- unusual scarring (e.g., hypertrophic scarring/ 

keloid formation) 

- usage of self-tanning products within 14 days 

prior to study start 

- pigmentation disorders 

- abnormal reaction to sun 

- hormonal diseases, not even in the 

past/childhood (diseases of the thyroid, growth 

disorders, hypo- or hyperfunction of the 

hypophysis, hormone replacement therapy, 

etc.) 

- chronic (e.g. atopic dermatitis, psoriasis) or 

acute skin disease on the test sites 

- physical and/or cosmetic treatments on the test 

sites within the last 14 days before the start of 

the study and/or during the study 

- cancer in the past 10 years 

- skin cancer generally 

- severe disease (e.g. concerning cardiac / 

circulatory system, liver, kidney, lung), severe 

diabetes mellitus and/or chronic infectious 

disease (e.g. hepatitis, HIV) 

- proven allergy to ingredients of cosmetics, 

patches, or intolerance reactions after the 

application of cosmetic products 

- illness associated with fever (≥ 38.5°C) for at 

least 24 h within the last 7 days before the start 

of the study 
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Supplementary Figures 
 

 

 

 

 
 

Supplementary Figure 1. (A) Boxplots showing the distribution of BMI within the identified aging phases, with no apparent bias 
detectable. (B) Relationship between chronological and DNAm age. (C) Relationship between chronological and transcriptomic age. (D) 
Boxplot showing the deviation of transcriptomic from chronological age based on aging phase outlier status. Statistical significance 
determined using pairwise T-tests. (E) Relationship between DNAm and transcriptomic age. 
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Supplementary Figure 2. (A) Sizes of the Hallmark of Aging gene sets generated from GO and Reactome pathways. (B) Receiver operating 
characteristic curve, showing the accuracy of classification of the random forest model trained on expression and methylation features to 
predict aging phases of the re-invited subjects at the longitudinal second time point. TPR and FPR rates were determined using 5 x 5-fold 
repeated cross-validation on the original data. (C) Classification of re-invited subjects into the respective aging phases, with transitioning 
subjects marked in red, distributed along their chronological age. Only re-invited subjects are shown. (D) Cancer incidence rate (aggregated 
SEER statistics from 1976-2016 for the United States of America), with the observed chronological age range of aging phase 4 in this study 
marked in blue. 


