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INTRODUCTION 
 

Novel coronavirus (2019-nCoV)–associated pneumonia 

cases first appeared in Wuhan, Hubei Province, China, in 

December 2019 [1]. Whole-genome sequencing identified 

a novel coronavirus—severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) [2, 3]. In the following 

months, SARS-CoV-2 rapidly spread throughout China 

and the world. By May 26, 2020, SARS-CoV-2 had 

resulted in 84,543 infections and 4,645 deaths in China, as 

reported by National Health Commission of the People’s 

Republic of China. In addition, other countries reported 

5,468,627 confirmed cases and 345,544 deaths. The 

World Health Organization declared SARS-CoV-2 a 

public health emergency and named the virus Corona 

Virus Disease 2019 (COVID-19). 

 

Although the source of SARS-CoV-2 and its 

pathogenesis are still being studied, COVID-19 is a 

systemic disease that can lead to pneumonia, respiratory 

failure, and acute respiratory distress syndrome (ARDS) 

and has high morbidity and mortality. COVID-19 also 

affects the cardiovascular, renal, cerebrovascular, and 

blood coagulation systems. Genome sequencing of  

 

patients’ cerebrospinal fluid has identified the presence 

of SARS-CoV-2 in the brain, which is also seen in 

SARS and Middle East respiratory syndrome (MERS) 

infection [4]. Here, we review the pathophysiology of 

SARS-CoV-2 infection in patients with intracerebral 

hemorrhage (ICH).  

 

Characteristics of SARS-CoV-2 
 

Coronaviruses (CoVs), part of the subfamily 

Orthocoronavirinae in the family Coronaviridae of the 

order Nidovirales, are enveloped, nonsegmented, 

positive-sense, single-stranded RNA viruses [5]. Some 

CoVs are transmitted from animals to people and have 

gradually developed as pathogens of the respiratory, 

gastrointestinal, and central nervous systems in human. 

Examples include SARS, which caused an outbreak in 

2002, and MERS, which caused an outbreak in 2012, 

both of which affect the lower respiratory tract [6, 7]. 

Genome sequencing has identified 2019-nCoV as a 

Betacoronavirus. SARS-CoV-2 and two bat-derived 

SARS-like strains, ZC45 and ZXC21, form an 

independent clade within lineage B of the subgenus 

Sarbecovirus [8, 9]. The two bat SARS-related 

www.aging-us.com AGING 2020, Vol. 12, No. 13 

Review 

Pathophysiology of SARS-CoV-2 infection in patients with 
intracerebral hemorrhage 
 

Sisi Dong1, Peipei Liu2, Yuhan Luo3, Ying Cui3, Lilong Song3, Yingzhu Chen2 
 
1The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China 
2Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China 
3Department of Neurology, Clinical Medical College of Yangzhou, Dalian Medical University, Yangzhou 225001, 
Jiangsu, China 
 
Correspondence to: Yingzhu Chen, Peipei Liu; email: yzchendr@163.com, doclpp87@163.com  
Keywords: SARS-CoV-2, COVID-19, intracerebral hemorrhage, ACE2, Ang (1–7) 
Received: March 14, 2020     Accepted: June 5, 2020  Published: July 7, 2020 
 
Copyright: Dong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited. 
 

ABSTRACT 
 

Intracerebral hemorrhage (ICH) is associated with old age and underlying conditions such as hypertension and 
diabetes. ICH patients are vulnerable to SARS-CoV-2 infection and develop serious complications as a result of 
infection. The pathophysiology of ICH patients with SARS-CoV-2 infection includes viral invasion, dysfunction of 
the ACE2–Ang (1–7)–MasR and ACE–Ang II–AT1R axes, overactive immune response, cytokine storm, and 
excessive oxidative stress. These patients have high morbidity and mortality due to hyaline membrane 
formation, respiratory failure, neurologic deficits, and multiple organ failure. 

mailto:yzchendr@163.com
mailto:doclpp87@163.com


 

www.aging-us.com 13792 AGING 

coronaviruses closest to SARS-CoV-2, ZXC21 and 

ZC45, can infect suckling rats and cause brain tissue 

inflammation and pathological changes in the lung and 

intestine [10]. 
 

SARS-CoV-2 contains a single positive-sense RNA 

genome and is around 60 to 140 nm in diameter [5]. The 

genome sequence of SARS-CoV-2 has 89% nucleotide 

identity with the bat SARS-like CoV ZXC21, 86.9% 

with the bat SARS-like CoV ZC45, and 82% with the 

human SARS-CoV [10–12]. The phylogenetic trees of 

SARS-CoV-2’s orf1a/b, spike, envelope, membrane, 

and nucleoprotein also cluster closely with those of the 

bat, civet, and human SARS coronaviruses [10, 11, 13]. 

However, the external subdomain of spike’s receptor 

binding domain in SARS-CoV-2 shares only 40% 

amino acid identity with other SARS-related 

coronaviruses [8, 10]. 
 

SARS-CoV-2, like SARS-CoV, manipulates angio-

tensin-converting enzyme 2 (ACE2) as the viral 

receptor and invades type 2 alveolar epithelial cells in 

the lower respiratory tract [11]. ACE2 inhibitors prevent 

SARS coronavirus from constant viral replication in 

Vero E6 cells [14]. The receptor binding domain on the 

S1 subunit of the SARS-CoV-2 spike protein (S 

glycoprotein) and the transmembrane domain of ACE2 

are implicated in SARS-CoV-2 infection [2, 15].  
 

A majority of the earliest confirmed patients infected 

with SARS-CoV-2 were exposed to wild animals sold 

in the Huanan Seafood Wholesale Market. Although it 

is difficult to pinpoint the exact source or the 

intermediate host of the novel coronavirus, the first 

cluster of pneumonia cases suggests that person-to-

person transmission via the respiratory route occurred 

[16]. The digestive system is also hypothesized to be a 

route of SARS-CoV-2 transmission.  
 

ICH patients are vulnerable to SARS-CoV-2 

infection and develop serious complications as a 

result of infection 
 

The general population is susceptible to SARS-CoV-2 

infection. As of February 11, 2020, the Chinese Center 

for Disease Control and Prevention had identified 

72,314 cases of COVID-19, including 55,239 confirmed 

patients, 16,186 suspected infections, and 889 infections 

without any symptoms [17]. 87% of the patients are 

between 30 and 79 years old. Clinical symptoms at the 

beginning of COVID-19 infection include chills, fever, 

cough, fatigue, myalgia, dyspnea, and diarrhea. Chest 

computed tomography (CT) images show ground-glass 

opacity in both lungs and, in severe cases, progressive 

consolidation of multiple lobular and subsegmental 

tracts. However, many infected patients are asympto- 

matic and have normal chest CT scans. Asymptomatic 

patients with SARS-CoV-2 infection, as well as those 

with atypical neurologic manifestations such as 

headache, dizziness, nausea, and vomiting, contribute to 

misdiagnosis and delayed treatment. According to the 

Chinese Center for Disease Control and Prevention, 

81% of the 72,341 patients diagnosed with COVID-19 

had mild disease, and the mortality rate was 

approximately 2.3%. However, the fatality rate 

increased to 8.0% in people age 70 to 79 years old and 

14.8% in those age 80 or older. Infected patients with 

underlying diseases also had higher fatality rates: 10.5% 

in patients with cardiovascular disease, 7.3% for 

diabetes, 6.0% for hypertension, and 5.6% for cancer. A 

review of the clinical features of 138 confirmed patients 

in Zhongnan Hospital of Wuhan University confirmed 

that ICU patients were obviously elder and were more 

likely to have underlying diseases, as well as having 

higher risk for poor outcome [18]. Therefore, the worst 

complications and outcomes occur in older patients and 

those with chronic diseases, such as pulmonary disease, 

diabetes, hypertension, heart failure, atherosclerosis, 

cerebrovascular disease, and cancer. Patients with 

severe SARS-CoV-2 infection develop pneumonia and 

extrapulmonary pathological changes. Complications in 

patients with severe infection include hypoxemia, 

pulmonary edema, ARDS, postviral bacterial super-

infection, septic shock, metabolic acidosis, blood 

coagulation dysfunction, and multiple organ damage. A 

retrospective, single-center study of 99 cases of 

COVID-19 in Wuhan Jinyintan Hospital revealed that 

severe patients had high levels of alanine amino-

transferase (ALT), aspartate aminotransferase (AST), 

myocardial zymogram, blood urea nitrogen and serum 

creatinine, all of which were implicated with multiple 

organ damage. Biopsy samples of tissues from patients 

with SARS-CoV-2 indicate impairment of alveolar 

epithelial cells and pneumocytes in both lungs, 

exudation of extracellular fluid in alveolus, infiltration 

of lymphocytes and macrophages, and formation of 

hyaline membrane, indicating ARDS, which also occurs 

in SARS and MERS coronavirus infection [19, 20].  

 

ICH accounts for 20% to 30% of strokes in China and is 

associated with high mortality and morbidity, with most 

survivors experiencing neurologic and cognitive 

impairment. The physiological status go to the bad with 

age and elder persons have higher possibility to develop 

underlying diseases, consisting of hypertension, 

diabetes, and dysfunction of blood coagulation, all of 

which are interact with the occurrence and development 

of ICH [21]. Hypertension is the mainly risk factor of 

ICH, as well as amyloid angiopathy, hemangioma, 

arteriovenous malformations, coagulopathy, and 

cerebroma [22]. Therefore, ICH is associated with old 

age and underlying conditions such as hypertension and 
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diabetes. ICH patients, susceptible to SARS-CoV-2 

infection, are prone to develop serious complications 

and need ICU admission.  

 

ICH exerts mass effect and causes primary physical 

damage that is dependent on the location, volume, and 

expansion of the hematoma. Secondary injury is caused 

by brain edema, the inflammatory cascade, and hematoma 

decomposition products. After the interaction between 

SARS-CoV-2 and the ACE2 receptor, some infected 

patients rapidly develop elevated blood pressure, which 

brings about severe cerebral changes, including activated 

microglia, accumulated ferritin, damaged neurons, and 

impaired neurologic function [23]. One report describing 

41 cases of COVID-19 indicated that prolonged 

prothrombin time, elevated D-dimer, and severe platelet 

reduction occur in ICU patients with SARS-CoV-2 

infection [24]. Then ICH patients may develop blood 

coagulation dysfunction as a result of infection. The high 

levels of thrombin is a trigger of early perihematomal 

brain edema; thrombin affects a variety of cells, including 

microglia, neurons, and brain endothelial cells, and 

destroys the blood–brain barrier (BBB) [25]. Low platelet 

activity is a marker of severe ICH, and platelet transfusion 

in the acute phase can limit hemorrhage volume and 

attenuate poor outcomes [26]. The BBB inhibits cerebrum 

invasion, regulates substantial exchange, and maintains 

homeostasis in the center nervous system. The viral 

invasion and breakdown of the BBB results in 

immunocyte recruitment in the central nervous system. 

Overactivation of the immune response and pro-

inflammatory factors can lead to cellular apoptosis and 

necrosis, endothelial impairment, brain edema, and 

neuronal loss. In detail, the pathophysiology of ICH 

patients with SARS-CoV-2 infection includes viral 

invasion, dysfunction of the ACE2–Ang (1–7)–MasR and 

ACE–Ang II–AT1R axes, overactive immune response, 

cytokine storm, and excessive oxidative stress. 

 

SARS-CoV-2 brain invasion and ACE2 
 

The renin-angiotensin system (RAS) consists of the 

protease renin, angiotensinogen, angiotensin-converting 

enzyme (ACE), and angiotensin II. The local brain RAS 

includes angiotensinogen, peptidases, angiotensins, and 

specific receptor proteins that play specific roles in 

development of cerebrovascular disease [27, 28]. 

ACE2, a homologous enzyme of ACE, is secreted by 

endothelia and smooth muscle cells. A study pointed 

that SARS-CoV-2 can manipulate all but mouse ACE2 

as the entry receptor in the ACE2-expressing cells, 

which might permit the viral invasion and replication in 

multiple organs. ACE2 is found in arterial and venous 

endothelial cells and arterial smooth muscle cells in 

most organs, including oral and nasal mucosa, naso-

pharynx, lung, stomach, small intestine, colon, skin, 

lymph nodes, thymus, bone marrow, spleen, liver, 

kidney, and brain [14, 29].  
 

Pathologists obtained human brain tissue from autopsies 

and research on the staining for ACE2; endothelial and 

smooth muscle cells of cerebrum were stained [14]. The 

barrier between plasma and brain cells is formed by 

brain capillary walls and glial cells and the barrier 

between plasma and cerebrospinal fluid is formed by 

choroid plexus. The expression of ACE2 in endothelial 

and smooth muscle cells allow viral invasion and 

replication in the blood-brain barrier. The BBB 

breakdown includes swelling of endothelial cells, 

necrosis, apoptosis, inflammatory injury and systemic 

vasculitis. Genome sequencing of patients’ cerebro-

spinal fluid confirmed SARS-CoV-2 infection in the 

brain [17]. The infected patients with atypical 

neurologic manifestations such as headache, dizziness, 

nausea, and vomiting are important signs for SARS-

CoV-2 brain invasion. In addition, autopsies from 

patients with SARS infection have detected SARS-CoV 

particles and genomic sequence in cerebral neurons, as 

well as in T lymphocytes and monocytes in the 

circulating blood of multiple organs [30]. After 

intranasal inoculation of MERS-CoV in transgenic 

mice, study of brain tissues indicated viral invasion. 

Mice infected with the JHM and A59 strains of murine 

hepatitis virus (MHV) manifest an acute encephalo-

myelitis and gradually develop demyelinating disease as 

a result of persistent viral stimulation. In addition to 

pulmonary disease, coronaviruses also cause patho-

logical changes in the cerebrum due to their 

neuroinvasive and neurotropic properties [31]. 
 

SARS-CoV-2 and the dysfunction of the ACE2–

Ang (1–7)–MasR and ACE–Ang II–AT1R axes 
 

Angiotensin 1-7, which is transferred by endopeptidases, 

ACE2, and ACE from angiotensin I, binds to the Mas 

receptor and is an effective and protective vasodilator 

[32]. Mas receptors are distributed throughout the brain, 

including the medulla and forebrain, which are associated 

with cardiovascular regulation, and the hippocampus, 

amygdala, anterodorsal thalamic nucleus, cortex, and 

hypoglossal nucleus [33]. In contrast to the effects of Ang 

II in the brain, Ang-(1-7) regulates the cardiovascular 

reflex and mediates blood pressure by releasing nitric 

oxide (NO) and activating the PI3K-Akt-PKB pathway 

[34]. The interaction between Ang-(1-7) and the Mas 

receptor decreases reactive oxygen species (ROS) 

production by cleaving Ang II or inhibiting AT1 receptors 

[35]. Ang-(1-7) and the G-protein-coupled receptor Mas, 

which initiate the release of cytokines and activate and 

recruit leukomonocytes, reduce inflammation by the 

restraining Des-Arg9 bradykinin (DABK)-mediated 

pathway [36, 37]. The ACE2–Ang-(1-7)–Mas axis is a 
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protective regulator in the center nervous system; it 

regulates blood pressure and inhibits inflammatory injury, 

oxidative stress, fibrosis, and cellular apoptosis [38, 39]. 

Injection of Ang-(1-7) in the ventricle of rats reduces 

ICH-induced injury, resulting in limited hematoma 

expansion, decreased microglia, and neuronal recovery 

[40]. In addition, administration of Ang-(1-7) in mice with 

aneurysmal rupture inhibits the production of TNF-α and 

IL-1β and attenuates pathological damage [41]. The 

ACE2–Ang (1–7)–MasR axis and ACE–Ang II–AT1R 

axis counterbalance each other to maintain cerebral 

homeostasis [42]. Thus, pathological disruption of ACE2 

and Ang II can result in neurologic damage [43]. 
 

Infection and endocytosis of SARS-CoV-2 particles 

downregulate active ACE2 and Ang-(1-7) and increase 

Ang II. The subsequent inhibition of the ACE2–Ang (1–

7)–MasR axis and overactivation of the ACE–Ang II–

AT1R axis underlie the progressive pathological 

deterioration in the cerebrum seen in patients with SARS-

CoV-2. Disruption of the ACE–Ang II–AT1R axis 

contributes to rapidly elevated blood pressure [44]. 

Stimulation and production of Ang II in local brain, which 

binds to AT1 receptors, activates the inflammatory NF-κB 

pathway and superoxide production by activating 

nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase [45]. Increased ROS production damages brain 

tissue, which is full of polyunsaturated fatty acid. In 

addition, overactivation of ACE–Ang II–AT1R is partly 

responsible for brain inflammation and cellular apoptosis 

and necrosis, leading to endothelial impairment, brain 

edema, and neuronal injury. Administration of brainc Ang 

II receptor inhibitor attenuated acute inflammatory 

responses in an animal model with bacterial infection 

[46]. The brain inflammation with positive feedback seen 

in ICH patients with SARS-CoV-2 infection, which is 

postulated to be a result of dysfunction of the ACE2–Ang 

(1–7)–MasR and ACE–Ang II–AT1R axes, results in 

excessive oxidative stress and elevated cytokines, 

chemokines, and toxic substances, which lead to neuronal 

injury, cell death, brain edema, and neurologic deficits. 

Hematoma expansion and brain edema contribute to 

physical pressure on neighboring structures, such as 

arterial vessels, the aqueduct of Sylvius, and the 

brainstem, leading to cerebral ischemia, obstructive 

hydrocephalus, cardiorespiratory dysfunction, intracranial 

hypertension, and even cerebral hernia. 
 

SARS-CoV-2, immune evasion and over-

activated immune responses 
 

Among hospitalized patients with SARS-CoV-2 

infection, general laboratory abnormalities include 

leukopenia and lymphopenia. These abnormalities 

indicate that both the viral burden and the reaction of 

immune system play a critical role in SARS-CoV-2 

invasion and replication. The immune system can 

inhibit coronavirus, clean up apoptotic cells, and 

promote tissue recovery in the cerebrum. Chemotactic 

factors help leukocytes migrate to the correct position to 

fight infection, and abnormal secretion can aggravate 

the cerebral immunopathology. Conversely, weak 

immune systems and insufficient immune responses are 

associated with viral survivors and rapid coronavirus 

invasion. Therefore, the relationship between SARS-

CoV-2 infection and the immune response needs to be 

investigated, with potential measures provided to 

interfere with viral dissemination, clear the virus, and 

reduce tissue impairment. 

 

After the internalization of coronavirus particles, host 

cells recognize the coronavirus and initiate an innate 

and adaptive immune response against the viral 

infection; the complement system is also activated. 

Interaction between cell-surface pattern recognition 

receptors (PRRs) and pathogen-associated molecular 

patterns (PAMPs), activation of proinflammatory 

signaling proteins and pathways, production and release 

of several inflammatory factors, and migration of 

immunocytes occur in the immune and inflammatory 

settings [36]. In addition, complementary autocrine and 

paracrine signaling ensures that the infected cells and 

surrounding uninfected cells express a series of 

interferon-stimulated genes (ISGs), which establish an 

antiviral microenvironment [47]. The PRRs in host cells 

that detect pathogens contain toll-like receptor (TLR), 

RIG-I-like receptors (RLRs), NOD-like receptors 

(NLRs), C-type lectin-like receptor (CLR), cytoplasmic 

DNA receptor (CDR), type I interferons (IFNs), and 

dendritic cells (DCs) and restrict viral pervasion with 

the help of macrophages, natural killer cells, T/B cells, 

and immune molecules [48]. The main function of 

macrophages is to phagocytose and digest cell debris 

and pathogens and activate lymphocytes or other 

immune cells in response to pathogens. Macrophages 

and DCs infected with feline infectious peritonitis virus 

(FIPV) inhibited the protective Th1 cell response by 

promoting the signaling pathway of IL-10 expression 

[49]. Natural killer cells are active in the response to 

numerous infectious diseases and regulate immune 

response by activating a series of cytokines including 

IL-12, IL-1β, IL-18, IL-23, and IFN-β, sometimes 

resulting in hypersensitivity reactions and autoimmune 

diseases [50]. B cell, CD4+ T cells, and CD8+ T cells, 

with migration and secretion features, exert important 

protective functions during adaptive immune responses 

in organisms. CD4+ helper T cells fight pathogens by 

activating T-cell-dependent B cells and supporting 

humoral and cellular immunity. Cytotoxic CD8+ T cells 

kill infected cells using a specific antigen response that 

corresponds with tissue damage [51]. Due to the 

antigenic stimulation and activation of antigen-
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presenting cells and Th cells, activated B cells 

differentiate into plasma cells and secrete pathogen-

specific antibodies to inhibit the effects of pathogens.  

 

Although SARS-CoV-2 is sensitive to cell-surface 

PRRs, immune evasion is achieved by defending 

intermediate products of viral replication from immune 

recognition, resulting in spread of SARS-CoV-2 and 

restricted immune responses, which are associated with 

lymphopenia [47, 52]. However, although immune 

evasion of SARS-CoV-2 temporarily restricts the innate 

immune response, subsequent overactivation or eruptive 

initiation of the immune system can occur, leading to 

multiple organ damage [53]. A hyperactivated immune 

response contributes to immunopathogenesis, tissue 

damage, and severe complications. The presence of 

lymphopenia in 2019-nCoV infection indicates that 

SARS-CoV-2 affects lymphocytes. Although the CD4+ 

and CD8+ T cell levels in peripheral blood are largely 

decreased, the function of lymphocytes is overactivated. 

Flow cytometric analysis has indicated high levels of 

proinflammatory CCR4+CCR6+ Th17 in CD4+ T cells 

and cytotoxic granules in CD8+ T cells, which are 

associated with systemic inflammatory responses and 

toxic reactions [54, 55]. In addition, the depressed 

immune response also indicates the mechanism of 

immune evasion in SARS-CoV infection [56]. CD3+, 

CD4+, and CD8+ T lymphocytes were shown to be 

decreased in the acute phase of SARS-CoV infection, 

indicating lymphocyte deterioration and a suppressed 

immune system. Nine hours after the cellular infection 

of SARS-CoV in vitro, the incomplete viral replication 

of SARS-CoV led to low production of antiviral 

cytokines (IFN-α, IFN-β, IFN-γ, and IL-12p40), mild 

generation of proinflammatory cytokines (TNF-α and 

IL-6), and significantly elevated inflammatory chemo-

kines (MIP-1a, IP-10, and MCP-1) [57].  

 

Activation of the immune system in response SARS-

CoV-2 and subsequent signaling cascades lead to innate 

and adaptive immunity and proliferation of 

proinflammatory cytokines, neutralizing antibodies, and 

recruited lymphocytes, such as neutrophils and 

macrophages. However, surviving virus excessively 

stimulates immune cells with positive feedback and 

causes an inflammatory factor storm. A recent report of 

138 patients with SARS-CoV-2 at Zhongnan Hospital 

of Wuhan University indicated that adverse reactions in 

severe cases included neutrophilia, coagulation 

activation, and acute multiple organ injury and that 

these reactions were associated with higher con-

centrations of white blood cells and neutrophils, D-

dimer, creatine, aspartate aminotransferase, and high-

sensitivity troponin I [18]. Another report from Wuhan 

demonstrated that, compared with healthy people, 44 

patients with SARS-CoV-2 had higher immune 

cytokine counts, including IL-1b, IL-6, IL-12, IFN-γ, 

IP10, and MCP-1, resulting in systematic toxic organ 

changes and severe tissue damage [24]. Moreover, 

patients admitted to the ICU presented with higher 

levels of GCSF, IP10, MCP-1, MIP1A, and TNF-α [58].  

 

It is believed that the immune response that aims to kill 

SARS-CoV-2 also disrupts tissue homeostasis and 

induces immunopathological changes, which is similar 

to MERS-CoV and SARS-CoV infection [49]. In an 

analysis of 128 serum samples of SARS patients, T cell 

responses, especially CD8+ T cell responses, and 

antibody production were found to be major 

components of the immune response to SARS-CoV 

infection. The serological manifestation of memory 

phenotype (CD27+/CD45RO+) CD4+ T cells producing 

IFN-γ, TNF-α, and IL-2 and CD8+ T cells producing 

IFN-γ, TNF-α, and CD107a was correlated with severe 

disease. High concentrations of plasma IFN-γ, IL-1β, 

IL-6, IL-8, IL-12, IP-10, MCP-1, CXCL8, CXCL10, 

and CCL2 granules are a result of hyperactivated 

inflammatory signaling cascades and cytokine storm 

and are associated with the immunopathological 

changes and severity of SARS-CoV infection [59]. In 

SARS-CoV infection, neutrophils and chemokines such 

as IL-8 infiltrate the respiratory tract and generate 

myeloperoxidase and elastase, which causes 

deterioration of pulmonary tissue and function and leads 

to ARDS, respiratory failure, and admission to the ICU. 

A research investigated 27 serum samples of MERS-

CoV from patients from South Korea in 2015 [60]. 

They found that the CD8+ T cell response and 

proinflammatory factors are associated with severe 

disease, whereas CD4+ T cell response is associated 

with less severe disease. CD8+ T cells act on viral S 

protein in the early phase of MERS-CoV infection, 

whereas CD4+ T cells interact with E/M/N proteins in 

the later phase. The invasion of MERS-CoV in host 

cells triggers the Th1 and Th17 proinflammatory 

response and stimulates monocytes and lymphocytes, 

resulting in high levels of IFN-γ, TNF-α, IL-15, and IL-

17 and promoting activation of the MAPK, STAT3, and 

NF-κB signaling pathways. The downstream signaling 

protein and secreted inflammatory factors fight against 

the virus, even leading to tissue damage, via the 

production of IL-6, IL-1β, TGF-β, TNF-α, IL-8, and 

MCP-1. In addition, an elevated IL-10 level correlates 

with activated JAK-STAT pathway and indicates an 

anti-inflammatory effect [61].  

 

Therefore, decreased lymphocytes and the induction of 

cytokine storm are potent indicators of severe COVID-

19 infection. In a study of 228 patients with SARS, 

patients with severe disease had high levels of IL-6 and 

reduced concentrations of IL-8 and TGF-β in the acute 

phase, which correlated with disease severity [62]. The 
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cytokine profiles caused by excessive immune response 

lead to ARDS and multiple organ failure, contributing 

to the mortality of patients with COVID-19 [63]. 

Plasma exchange can clear inflammatory factors, block 

cytokine storms, and reduce the damage caused by the 

inflammatory response. 

 

SARS-CoV-2 and cytokine storms in ICH 

patients 
 

After mechanical injury by ICH, activated microglia 

migrate to the position of damage. Although M1 

microglia help clear necrotic substances, they also 

generate inflammatory cytokines and contribute to BBB 

breakdown and brain edema. Triggered inflammatory 

cascades, including production of IL-1β, TNF-α, ROS, 

chemokines, and prostaglandins, damage the BBB [64]. 

Due to increased BBB permeability, mobilized 

neutrophils in the perihematomal region generate ROS 

and release a series of granules, such as collagenase, 

myeloperoxidase, and elastase. Neutrophils can 

stimulate nearby microglia, regulate immune response, 

and exaggerate adverse effects on brain tissue via 

production of IL-8, IL-6, TNF-α, and IL-1β, resulting in 

neuronal loss and brain edema. Persistently high 

neutrophil levels in peripheral blood predict poor 

prognosis in ICH patients. In addition, neutrophils are 

important mediators in the recruitment of monocytes 

[65]. The reactive astrocytes gather around the 

hematoma and induce MMP-9 [66]. Elevated MMP-9 

activity is associated with perihematomal edema, BBB 

disruption, and neural loss [67]. CD8+ cytotoxic T cells 

and CD4+ Th cells increase in the perihematomal region 

and contribute to neuronal apoptosis and endothelial 

injury. Due to physical damage and BBB impairment, 

inflammatory cells infiltrate the hematoma, stimulate 

the production of cytokines and chemotactic factor with 

active feedback, and initiate cellular apoptosis via NF-

κB inflammatory signaling pathways and downstream 

molecules [68]. Intercellular adhesion molecule-1, IL-

1β, TNF-α, chemokines, MMP-9, inducible nitric oxide 

synthase, free radicals, COX-2, and PLA2 participate in 

NF-κB activation. Inflammatory cells contain recruited 

neutrophils and monocytes and resident microglia and 

astrocytes. Active cytokines can stimulate the 

complement system to form the membrane attack 

complex and generate C3a and C5a, resulting in direct 

tissue injury and augmented immune response. 

Infiltration of blood substances affects microcirculation, 

contributing to hypoxia and producing ROS. 

Hemoglobin and iron are cytotoxic and cause oxidative 

and proinflammatory changes that further brain injury, 

probably in conjunction with oxygen free radicals [69]. 

Oxidative stress, excitotoxicity, and cellular necrosis 

and apoptosis result in neuronal injury, brain edema, 

and cell death [70]. 

However, there is limited information about the innate 

immune responses in the center nervous system after 

SARS-CoV-2 brain invasion in ICH patients. In a lab 

study, the serum samples of SARS-CoV-2 patients were 

IgM positive in the early stage of infection and 

subsequently became IgG positive, indicating a humoral 

response [11]. Because SARS-CoV-2 invades the brain 

via ACE2 receptor in ICH patients, viral pathogenicity 

and replication destroy the blood–brain barrier and 

induce dynamic immune responses. SARS-CoV-2 

infection may disturb the activation and inhibition of 

related signaling cascades, leading to stimulation of the 

innate immune system, recruitment of lymphocytes, 

secretion of toxic substances, and cytokine storm with 

positive feedback circulation. 

 

Neurologic biopsies of patients with SARS-CoV-2 

infection demonstrate congestion, brain edema, and 

partial neuronal degeneration, similar to the effects 

seen with SARS and MERS infection. ACE2 receptors 

are distributed throughout the synaptic membrane of 

the brain, and center nervous system autopsies of 

SARS patients demonstrated infiltration of monocytes 

and lymphocytes in blood vessels, hydrocephalus, 

demyelination of the nerve myelin sheath, and neuronal 

degeneration, which is associated with aggravation of 

the pathological changes seen in ICH patients [19]. 

After SARS-CoV infection in K18-hACE2 mice, viral 

particles and antigens were found in the neurons of the 

brain. Upregulation of cytokines and chemokines con-

tributes to BBB impairment, gliocyte hyperplasia, 

neuronal damage, and brain edema as a result of 

cellular oxidative damage, necrosis, and apoptosis [71]. 

Some patients with severe MERS-CoV infection 

manifested neurological symptoms, including epilepsy, 

dystaxia, paralysis, and conscious disturbance. 

Magnetic resonance imaging performed in hospitalized 

patients with MERS indicated acute alterations in the 

white matter and the subcortical areas of the frontal, 

temporal, and parietal lobes [72]. In MERS, excessive 

production of proinflammatory cytokines and 

chemokines leads to rapid increases of RIG-I, MDA5, 

PKR, MYD88, TNF-α, IL-1β, CCL2, CCL5, and 

CXCL10 in the brain [73]. MHV affects oligo-

dendrocytes and impairs the myelin sheath via 

immunologic injury. Although MHV-JHM infection in 

brain tissue initiates an immune response and activates 

inflammatory signaling cascades to clear the virus, 

MMP secretion, immunocyte migration, and increased 

chemokines and cytokines are associated with BBB 

breakdown and demyelination [49]. Impairment of 

brain microvascular endothelial cells (BMECs) in vitro 

by MHV3 infection is a result of downregulation of 

zona occludens protein 1 (ZO-1), VE-cadherin, and 

occludin, which leads to elevated BBB permeability 

[74]. In addition, stimulation and recruitment of 
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macrophages and/or microglia in the white matter 

contributes to demyelination in MHV-JHM-infected 

mice. Although immune responses help clear patho-

gens, excessively inflammatory signaling cascades, 

influx of cytokines and chemokines, a large volume of 

recruited immune cells, and toxic substances in the 

center nervous system indicate a poor prognosis.  

 

Whereas SARS-CoV-2 invasion and replication in brain 

cause direct damage, indirect deterioration is associated 

with the immune response. Immune mediator 

dysfunction and autoimmune reactions prolong the 

immune response and exacerbate tissue damage. 

Neutrophils, natural killer cells, macrophages, and 

lymphocytes proliferate and produce IL-1α, IL-1β, IL-6, 

IL-12, TNF-α, IFN-γ, and CXCR2. Migrated 

neutrophils swallow viral particles; generate a series of 

antibacterial peptides, proteases, and ROS to kill the 

virus; and introduce tissue damage. ROS, superoxide 

anion, and NADPH oxidase cause excessive oxidative 

stress. Elevated neutrophil-to-lymphocyte ratio (NLR) 

has been shown to be a marker of severe SARS-CoV-2 

infection in the early phase.  

 

An overactivated immune system affects both virus and 

host cells. As SARS-CoV-2 combines with ACE2 

receptors, the immunopathological injury in center nerve 

system is the result of the explosive cytokine storm [75]. 

ACE2 is highly expressed in arterial and venous 

endothelial cells and arterial smooth muscle cells in 

brain. The impairment and contraction of vascular 

endothelial cells, due to the out of control inflammatory 

response, lead to increased permeability of the capillary 

wall and diffusion of substances from vessels into the 

interstitial space. Brain tissues with ACE2 receptors are 

attacked the extreme immune response, eventually 

leading to neurologic deficits and bad outcomes. 

 

CONCLUSIONS 
 

Patients with COVID-19 who present with neurologic 

symptoms need early diagnosis, isolation, and 

treatment. When new neurologic symptoms occur in 

hospitalized patients, such as ataxia, focal motor 

deficits, and conscious disturbance, cerebrospinal fluid 

examination and SARS-CoV-2 nucleic acid and gene 

sequencing should be performed. ICH patients with 

SARS-CoV-2 infection are prone to develop 

neurological complications and have poor outcomes. 

Because there is no specific treatment for the virus, 

airborne precautions and isolation of identified and 

suspected infected patients is crucial. 
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