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INTRODUCTION 
 

Gastric cancer is one of the most common human 

malignancies of the digestive system and ranks as the 

third leading cause of cancer-related death worldwide, 

particularly in East Asia [1, 2]. It is heterogeneous, and 

a recent study by The Cancer Genome Atlas (TCGA) 

developed a robust molecular classification system for 

gastric cancer [3]. Although the survival rate of early 

gastric cancer has continuously improved in recent 

years due to advancements in treatment techniques and 

regimens, the low rate of early diagnosis means that the 

best surgical window is missed in most patients [1]. For 

advanced-stage patients, immunotherapy is considered 

to be one of the most promising treatments. 

Unfortunately, immunotherapies based on dendritic 

cells (DCs), chimeric antigen receptor T cells (CAR-T 

cells) and immune checkpoints are not always effective 

due to tumor heterogeneity and the complicated tumor 

microenvironment (TME). Therefore, it is beneficial to 
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study the deviations in the immune cell landscape for 

designing personalized treatment regimens or exploring 

new drug targets for gastric cancer. 

 

Innate immunity is an important first line of defense 

against infectious agents and tumors and consists of the 

immunological barrier, immune cells, and immune 

molecules. Natural killer (NK) cells, macrophages, DCs, 

mast cells, eosinophils and neutrophils are the main innate 

immune cells. In cancer patients, tumor antigens can 

activate the body’s adaptive immune response as the 

primary and decisive force in the elimination of tumors. 

Adaptive immunity is composed of two important 

branches: T cell-mediated cellular immunity and 

antibody-mediated humoral immunity. Tumor-infiltrating 

immune cells (TIICs) are indispensable components of the 

TME and play important roles in tumorigenesis and 

progression. Thus, TIICs have been widely applied for the 

clinical prediction of cancer treatment [4–7]. Previous 

studies concerning alterations in the composition of 

immune cells in gastric cancer mainly rely on 

immunohistochemistry or flow cytometry [8–10], which 

only detect a few immune cell types at once and are 

limited by phenotypic markers and the number of 

samples. Moreover, TIICs may have diverse influences on 

tumor progression, invasion and metastasis in different 

cancer types or even in different patient subgroups. Thus, 

it is difficult to judge the clinical implications of TIICs 

based on limited detection data [11]. 

 

In recent years, large amounts of gene expression data 

for primary tumors from cancer patients have been 

collected. Newman et al. introduced CIBERSORT as an 

analytical method for characterizing the abundances of 

member cell types in a mixed cell population from their 

gene expression profiles [12]. Subsequently, this 

method has been further developed to estimate the 

composition of infiltrated immune cells in different 

types of cancer, such as breast cancer, lung cancer and 

renal cell carcinoma [4–6, 13, 14]. In addition, recent 

studies revealed that immune-related genes (IRGs) are 

closely related to TIICs and exhibit considerable 

promise in survival prediction for multiple cancers [15–

19]. However, the clinical relevance and prognostic 

significance of the immune cell composition and IRGs 

in gastric cancer remain under exploration. 

 

In this study, the aim was to estimate the clinical 

implications of the TIIC composition and IRGs in 

gastric cancer. The transcriptomic RNA-seq data were 

downloaded from the TCGA database [20, 21] and the 

immune cell composition and its prognostic value in 

gastric cancer were investigated. Subsequently, the 

expression and prognostic landscape of survival-

associated IRGs were comprehensively analyzed and a 

prognostic signature was successfully constructed as an 

independent predictor for gastric cancer patients. The 

results of this study could provide promising insight for 

further exploiting biomarkers for the diagnosis and 

individualized treatment of gastric cancer based on 

TIICs and IRGs. 

 

RESULTS 
 

Differences in adaptive immune cells 

 

The fraction of plasma cells was lower in gastric cancer 

than in normal tissue (P< 0.001, Figure 1D), but there 

were no significant differences in the fractions of total 

B cells, naive and memory B cells (Figure 1A–1C). 

These results suggest that the ability of B cells to 

differentiate into plasma cells is inhibited in gastric 

cancer, which may affect antitumor immunity. For T 

cell subpopulations, the fractions of activated memory 

CD4
+
 T cells and Tregs increased in gastric cancer 

compared with normal tissue (P<0.01, Figure 2D, 2F), 

while the resting memory CD4
+
 T cell fraction 

decreased in gastric cancer tissue (P<0.05, Figure 2C). 

However, the proportions of total T cells, CD4
+
 T cells, 

CD8
+
 T cells, δγ T cells and follicular helper T (Tfh) 

cells showed no great changes (Figure 2A, 2B, 2E, 2G, 

2H). Thus, it is unlikely that a T cell-mediated 

antitumor immune response occurs in gastric cancer 

patients. 

 

Differences in innate immune cells 

 

The fractions of total DCs, resting DCs and monocytes 

were lower in gastric cancer than in normal tissue 

(P<0.05 or P<0.001, Figure 3B, 3C, 3G). The fractions 

of total and resting mast cells were strongly decreased 

in gastric cancer compared to normal tissue(P<0.001, 

Figure 4B, 4C), whereas the activated mast cell fraction 

increased slightly (P<0.05, Figure 4D). The total 

macrophage fraction increased significantly in gastric 

cancer compared with normal tissue (P<0.001, Figure 

4A), which contributed to the incremental increases in 

the M0 and M1 macrophage fractions (P<0.001, Figure 

4E, 4F). The M2 fraction decreased in cancer tissue 

(P<0.001, Figure 4G). Correspondingly, the ratio of 

M2/M1 was lower in gastric cancer than that in normal 

tissue (Figure 4H). In addition, resting NK cells, 

activated NK cells, activated DCs, eosinophils and 

neutrophils did not differ between tumor and normal 

tissues. 

 

Immune cell composition and its prognostic 

significance in different stages of gastric cancer 

 

The composition of TIICs in different stages of gastric 

cancer was analyzed and is shown in Figure 5A and 

Supplementary Table 2. The results illustrated that 
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TAMs (31.94%), resting memory CD4
+
 T cells 

(16.49%), CD8
+
 T cells (13.45%) and Treg cells 

(6.81%) were abundant in gastric cancer, whereas naive 

CD4
+
 T cells (0.01%), eosinophils (0.43%), δγ T cells 

(0.34%), monocytes (0.77%) and memory B cells 

(1.18%) were sparse. From stage I to IV, the fraction of 

δγ T cells continuously increased, whereas the 

proportions of activated NK cells and M0 macrophages 

 

 
 

Figure 1. Fractions of B cells and plasma cells in gastric cancer and normal tissue. CIBERSORT was applied to analyze the fractions 

of TIICs, and each dot represents one sample. The mean±SD for each cell subtype including total B cells (A), naive B cells (B), memory B cells 
(C) and plasma cells (D) was calculated and compared using one-way ANOVA. ***P<0.001. 

 

 
 

Figure 2. Fractions of T cells in gastric cancer and normal tissue. CIBERSORT was applied to determine the fractions of TIICs, 
and each dot represents one sample. The mean±SD for each cell subtype including total T cells (A), total CD4+ T cells (B), resting memory 

CD4+ T cells (C), activated memory CD4+ T cells (D), CD8+ T cells (E), Tregs (F), δγ T cells (G) and Tfh cells (H) was calculated and compared 
using one-way ANOVA. *P<0.05; **P<0.01. 
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Figure 3. Fractions of NK cells, DCs, eosinophils, neutrophils and monocytes in gastric cancer and normal tissue. CIBERSORT 

was applied to analyze the fractions of TIICs, and each dot represents one sample. The mean±SD for each cell subtype including total NK cells 
(A), total DCs (B), resting DCs (C), activated DCs (D), eosinophils (E), neutrophils (F), and monocytes (G) was calculated and compared using 
one-way ANOVA. *P<0.05; ***P<0.001. 

 

 
 

Figure 4. Fractions of macrophages and mast cells in gastric cancer and normal tissue. CIBERSORT was applied to analyze the 
fractions of TIICs, and each dot represents one sample. The mean±SD for each cell subtype including total macrophages (A), 
total mast cells (B), resting mast cells (C), activated mast cells (D), M0 macrophages (E), M1 macrophages (F), M2 macrophages 
(G) and for the M2/M1 ratio (H) was calculated and compared using one-way ANOVA. *P<0.05; ***P<0.001. 
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continuously declined. In addition, the fractions of Tfh 

cells, Treg cells, resting DCs and resting mast cells 

increased in stage II and then decreased as the stage 

advanced. The proportions of naive CD4
+
 T cells and 

eosinophils suddenly increased in stage IV disease. 

 

To further investigate the prognostic value of TIICs, 

Cox regression analysis was applied to analyze the 

associations between overall survival (OS) and immune 

cell subfractions in different stages of gastric cancer. As 

shown in Figure 5B, a higher proportion of Tfh cells 

indicated prolonged OS (hazard ratio (HR)=0.61, 95% 

confidence interval (CI) 0.42~0.90, P<0.05), especially 

in stages III and IV, whereas worse OS was associated 

with relatively high fractions of M2 macrophages 

(HR=1.47, 95% CI 1.12~1.94, P<0.05), resting DCs 

(HR=1.40, 95% CI 1.06~1.84, P<0.05) and monocytes 

(HR=1.42, 95% CI 1.07~1.87, P<0.05). In stage I 

tumors, immune cells had little influence on the OS. In 

stage II tumors, relatively poor OS was correlated with 

an increased fraction of M0 macrophages (HR=2.05, 

95% CI 1.12~3.78, P<0.05). In stage III tumors, 

prolonged OS was associated with a relatively high 

proportion of Tfh cells (HR=0.62, 95% CI 0.41~0.94, 

P<0.05). In stage IV tumors, an increased number of 

CD8
+
 T cells was significantly associated with 

prolonged OS (HR=0.20, 95% CI 0.09~0.46, P<0.01). 

Therefore, the correlation between TIICs and OS 

displayed great diversity among different stages. 

 

Identification of differentially expressed IRGs 

 

As IRGs can reflect the immune status of cancer 

patients, we extracted IRGs with differential expression 

in gastric cancer patients from transcriptomic RNA-seq 

data for further analyses. First, Wilcoxon signed-rank 

test was applied to identify differentially expressed 

genes (DEGs) between gastric cancer and normal tissue. 

The results showed that a total of 6749 DEGs were 

screened, including 5601 upregulated and 1148 

downregulated genes (Figure 6A, 6C). Among these 

DEGs, we further identified 345 differentially expressed 

IRGs, including 198 upregulated and 147 

downregulated IRGs (Figure 6B, 6D). 

 

Characterization of hub IRGs 

 

To create a valuable prognostic signature, univariate 

Cox analysis was conducted to screen IRGs associated 

with the OS of gastric cancer patients. In total, 100 

genes were found to be significantly associated with 

clinical outcomes (P<0.05). Then, Gene Ontology (GO) 

enrichment analysis of these survival-associated IRGs 

showed that “positive regulation of ERK1 and ERK2 

cascade”, “positive regulation of cytosolic calcium ion 

concentration” and the “inflammatory response” were 

the three most significant biological process terms; the 

“extracellular region”, the “extracellular space” and 

“integral component of plasma membrane” were the 

three most significant cellular component terms; and 

“growth factor binding”, “growth factor activity”, and 

“peptide hormone binding” were the three most 

significant molecular function terms (Table 1). 

Cytokine-cytokine receptor interaction was found to be 

the most frequently enriched Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway (Figure 7). 

Furthermore, 29 hub IRGs were ascertained to be 

differentially expressed in gastric cancer and closely 

related to the OS (Figure 8A). A forest plot of hazard 

ratios indicated that most of these hub IRGs were high-

 

 
 

Figure 5. Composition of TIICs (A) and a bubble heat map showing the associations between OS and immune cell subfractions (B) in different 

stages of gastric cancer. The red and blue colours in the heatmap represent negative and positive correlations, respectively, between TIICs 
and OS, while bubble size indicates the level of statistical significance. 
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risk factors (Figure 8B). Owing to the potential 

prognostic significance of these hub IRGs, their 

molecular characteristics related to genomic alterations 

were further analyzed. The results showed that these 

hub IRGs were unstable in gastric cancer and missense 

mutations were the most commonly occurring type 

(Figure 9). 

 

Prognostic signature for gastric cancer patients 

 

To develop a prognostic indicator for the prediction of 

survival outcomes, LASSO Cox regression analysis 

was carried out, and ten hub IRGs were screened to 

construct a prognostic signature (Figure 10). Kaplan-

Meier plots indicated that the prognostic signature 

could predict the survival probability of gastric cancer 

patients (Figure 11A). The area under the receiver 

operating characteristic (ROC) curve was 0.786, 

indicating the moderate potential for survival 

prediction (Figure 11B). Further validation illustrated 

that the constructed prognostic model could separate 

the survival status of gastric cancer patients into high- 

and low-risk groups (Figure 12). The formula was as 

follows: [Expression level of CXCL3 * (-0.0067)] + 

[Expression level of NOX4 * 0.5146] + [Expression 

level of AEN * (-0.0610)] + [Expression level of 

CCL15 * 0.0420] + [Expression level of CCL21 * 

0.0012] + [Expression level of FAM19A4 * 0.1248] + 

[Expression level of RNASE2 * 0.0183] + [Expression 

level of IGHD2.15 * 0.0956] + [Expression level of 

NMB * 0.0432] + [Expression level of TRAJ19 * (-

0.1860)]. 

 

 
 

Figure 6. Differentially expressed IRGs in the gastric cancer cohort. Heatmap of DEGs (A) and differentially expressed IRGs (B). 

Volcano plot of DEGs (C) and differentially expressed IRGs (D). Blue and red dots represent DEGs, and black dots represent genes that were 
not differentially expressed. 
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Table 1. GO term enrichment analysis of survival-associated IRGs. 

Ontology ID Description P. adjust Count 

Biological 

process 

GO:0070374 positive regulation of ERK1 and ERK2 cascade 4.88E-10 12 

GO:0007204 positive regulation of cytosolic calcium ion concentration 1.15E-08 10 

GO:0006954 inflammatory response 1.88E-08 14 

GO:0008284 positive regulation of cell proliferation 2.67E-08 15 

GO:0030335 positive regulation of cell migration 1.78E-07 10 

GO:0000187 activation of MAPK activity 6.37E-07 8 

GO:0006935 chemotaxis 1.55E-06 8 

GO:0010595 positive regulation of endothelial cell migration 2.24E-06 6 

GO:0060326 cell chemotaxis 1.26E-05 6 

GO:0007200 
phospholipase C-activating G-protein coupled receptor signaling 

pathway 
1.36E-05 6 

Cellular 

component 

GO:0005576 extracellular region 3.20E-13 32 

GO:0005615 extracellular space 4.77E-11 27 

GO:0005887 integral component of plasma membrane 1.10E-07 23 

GO:0009986 cell surface 6.28E-07 14 

GO:0005886 plasma membrane 2.12E-05 36 

GO:0005623 cell 7.81E-05 6 

GO:0002116 semaphorin receptor complex 1.02E-03 3 

GO:0045121 membrane raft 2.13E-03 6 

GO:0043235 receptor complex 2.36E-03 5 

GO:0005768 endosome 1.72E-02 5 

Molecular 

function 

GO:0019838 growth factor binding 1.38E-07 6 

GO:0008083 growth factor activity 8.02E-07 9 

GO:0017046 peptide hormone binding 6.83E-06 5 

GO:0050431 transforming growth factor beta binding 5.09E-05 4 

GO:0008009 chemokine activity 7.63E-05 5 

GO:0019955 cytokine binding 8.72E-05 4 

GO:0005125 cytokine activity 1.63E-04 7 

GO:0004888 transmembrane signaling receptor activity 4.65E-04 7 

GO:0008201 heparin binding 8.69E-04 6 

GO:0005102 receptor binding 1.22E-03 8 

 

 
 

Figure 7. KEGG analysis of survival-associated IRGs. 
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Confirmation of the prognostic signature 

 

To verify whether the constructed prognostic signature 

could function as an independent predictor, univariate and 

multivariate Cox regression analyses were carried out and 

compared. The results showed that the prognostic signature 

was an independent predictor of the prognosis of gastric 

cancer patients after other parameters were adjusted, 

including age, sex, tumor grade and TNM stage (Figure 13). 

 

Validation of the associations of IRGs with TIICs 

 

To validate the relationships between IRGs and TIICs, 

TIMER was used to visualize the correlations between 

 

 
 

Figure 8. The hub IRGs in the gastric cancer cohort. (A) Identification of hub genes. (B) Prognostic value of hub genes. 
 

 
 

Figure 9. Mutation frequencies of hub IRGs. 
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the expression of hub IRGs and the infiltrating levels of 

B cells, CD8
+
 T cells, CD4

+
 T cells, macrophages, 

neutrophils and DCs in the TME. The results showed 

that most of the hub IRGs were significantly associated 

with the abundances of TIICs, especially C3AR1, 

CYSLTR1, PLXNC1, GHR, F2R, RNASE2 and GLP2R, 

which are shown in Figure 14. 

 

DISCUSSION 
 

Cancer is a genetic and immune-mediated disease, and 

tumor fate is shaped by the host immune system 

through the activation of innate and adaptive immune 

mechanisms, named cancer immunoediting [22]. In 

cancer patients, the balance between tolerance and 

immunity is influenced by a complex set of tumor, host 

and environmental factors [23]. Therefore, many efforts 

have been devoted to enhancing antitumor immunity by 

exploring immune cell-based vaccines, targeting 

immune checkpoints, or improving the immune 

microenvironment. Although immunotherapy is proven 

to be an effective therapeutic approach in a variety of 

cancers, only a subset of patients exhibit durable 

responses [23]. Gastric cancer has strong heterogeneity, 

 

 
 

Figure 10. LASSO coefficient profiles of hub IRGs. The coefficient profiles (A) and partial likelihood deviance (B) of hub IRGs. 
 

 
 

Figure 11. Prognostic value of the prognostic model. (A) Kaplan-Meier plot depicting the survival probabilities predicted by the 

prognostic model over time for the high- (red) and low-risk (blue) groups. (B) Survival‐dependent ROC analysis of the prognostic value of the 
prognostic model. 
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Figure 12. Discriminatory capability of the IRG-based prognostic signature. (A) Rank of the prognostic signature and distribution of 

the high- and low-risk groups. (B) Survival status of patients in the high- and low-risk groups distinguished by dotted lines. (C) Heatmap of 
IRGs used to construct the prognostic signature. 

 

 
 

Figure 13. Univariate (A) and multivariate (B) Cox regression analyses of the gastric cancer cohort. 
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and the treatment outcomes and prognosis are affected by 

tumor location, subtype, age, sex, etc. How to govern the 

strength and timing of antitumor responses are key 

problems that deserve careful consideration. 

 

Previous studies have proven that TIICs are highly 

relevant to tumorigenesis, invasion, and metastasis. The 

interactions between TIICs and tumor cells are considered 

to be directly associated with the physical destruction of 

the tumor cells, tumor burden reduction, and clinical 

prognosis improvement. An increasing number of studies, 

however, have suggested that tumor progression may be 

promoted by aberrant infiltration of immune cells [11]. 

Therefore, immune cells may play a dual role in 

stimulating antitumor immunity or promoting tumor 

development in cancer patients. In this study, the 

composition and prognostic value of TIICs in gastric 

cancer patients were analyzed based on the deconvolution 

of bulk gene expression data from a large set of samples. 

We found that there were considerable differences in TIIC 

compositions and that relatively high fractions of M2 

macrophages, resting DCs and monocytes indicated 

relatively poor OS for patients with gastric cancer. 

 

Macrophages are highly plastic cells that can be divided 

into classical M1 and alternative M2 phenotypes based on 

their function [7, 24]. It is generally accepted that M1 

macrophages participate in inflammatory reactions and T 

lymphocyte-medicated antitumor immunity, whereas M2 

macrophages have pro-tumorigenic properties [24]. Tumor 

associated macrophages (TAMs) are one type of main 

immune cells and mostly have an M2 phenotype. In gastric 

cancer, however, we observed increases in the M0 and M1 

macrophage fractions and decrease in the M2 macrophage 

fraction, leading to incremental increase in the M1/M2 

ratio, which seems to be a good tendency. Thorsson et al. 

considered that a relatively high M1/M2 ratio might 

reiterate the local proinflammatory state in patients with 

this phenotype [24]. Li et al. found that an acidic 

polysaccharide could reprogram TAMs into an M1 

phenotype to restore local immune surveillance in the 

TME [25]. However, an increased number of M0 

macrophages predicted relatively poor OS in stage II 

tumors, indicating that circulating macrophages can be 

recruited into tumors to alter the TME and promote tumor 

progression. Therefore, activation of macrophages with 

different properties in various microenvironments may 

reverse their function and our results further suggested that 

TAMs could be used as diagnostic and prognostic 

biomarkers in gastric cancer. 

 

Probst et al. revealed that resting DCs could induce 

peripheral CD8
+
 T cell tolerance through PD-1 and CTLA-

4 molecules, whereas activated DCs could efficiently 

prime naive, endogenous cytotoxic T lymphocyte (CTL) to 

expand and to develop effector functions [26, 27]. 

However, the immune microenvironment can promote 

selective development of regulatory DC subsets [28–30], 

and sometimes activated DCs stimulate the proliferation of 

Tregs [31, 32]. Thus, the functions of DCs are 

discrepancies in different subsets and may be affected by 

tumor-induced immunosup-pression microenvironment 

[28–30, 33, 34]. In addition, activated NK cells, 

eosinophils and neutrophils are important for antitumor 

immunity, and their accumulation and infiltration in tumor 

and peritumoral tissues are closely associated with 

prognosis. In this study, the proportion of eosinophils 

suddenly increased in stage IV tumors, but there was no 

significant difference between eosinophils and OS. A 

growing number of observations revealed that eosinophils 

could make a great difference to tumor initiation and 

progression, but they could also display regulatory 

functions towards other immune cells or direct cytotoxic 

functions against tumor cells depending on the milieu [35–

37]. Thus, it is worthy of eosinophil research to understand 

how they operate in the TME, which will hopefully 

unearth new clues for cancer immunotherapy. 

 

Furthermore, we found that relatively high proportions of 

Tfh cells and CD8
+
 T cells strongly predicted prolonged 

OS in advanced gastric cancer. The fractions of plasma 

cells and resting memory CD4
+
 T cells decreased, while 

those of activated memory CD4
+
 T cells and Tregs 

increased in gastric cancer. The proportion of naive CD4
+
 

T cells increased in stage IV tumors, but there was no 

significant influence on the OS of gastric cancer patients. 

Previous studies indicated that the abundance of naive 

CD4
+
 T cells is often correlated with poor prognosis of 

cancer patients [38, 39]. Our observation might suggest 

that the function of DCs was impaired to activate naive 

CD4
+
 T cells in the advanced patients. Thus, it may be 

difficult to stimulate the T cell-mediated antitumor 

immune response in patients with advanced-stage gastric 

cancer, which may be related to the poor prognosis and 

high mortality of advanced patients.  

 

The TME is correlated with the proliferation, invasion, 

metastasis and immune escape of tumor cells, in which 

tumor cells can induce immunosuppression by mimicking 

immune cells through IRG expression [33, 40]. The 

TCGA database provides abundant information on DEGs 

in various cancers and survival outcomes. Recent studies 

integrated the expression profiles of survival-associated 

IRGs with clinical information to develop individualized 

prognostic signatures for cancer patients and elucidated 

that the relationships between immune-based signatures 

and immune cell infiltration could reflect the status of the 

immune microenvironment [15, 16, 41–45]. Thus, the 

investigation of IRGs is particularly critical to provide 

more prognostic information and predict responses to 

therapy. By applying Wilcoxon signed-rank test and 

univariate Cox analysis, 29 hub IRGs that were 
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Figure 14. The correlation between the hub IRGs and TIICs. The expression levels of C3AR1 (A) CYSLTR1 (B) PLXNC1 (C) GHR (D) F2R 

(E) RNASE2 (F) and GLP2R (G) and their associations with the infiltration levels of immune cells. 
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differentially expressed in gastric cancer and significantly 

associated with the OS were identified. Then, LASSO 

Cox regression analysis was conducted and ten hub IRGs 

were ascertained to construct the formula for prognostic 

model. The AUC of the ROC curve reached 0.786. The 

correlations of OS with age, sex, tumor grade, TNM stage 

and the risk score were analyzed and demonstrated the 

favorable clinical viability of the constructed model. Thus, 

an independent predictor was successfully modelled for 

outcome prediction, which could provide practical 

guidance to adjust treatment strategies and improve the 

antitumor immune responses of gastric cancer patients. 

 

In summary, the present study includes several in silico 

analyses on the gene expression profiles of 374 unrelated 

tumor samples from gastric cancer patients with known 

clinical follow-up data. First, CIBERSORT was applied 

to estimate the relative proportions of 22 types of 

immune cells in these tumor samples. Both innate and 

adaptive immune cells were changed to various degrees 

in gastric cancer samples compared to normal tissue 

samples and among different tumor stages. Second, 

prognostic analysis showed that relatively poor OS was 

associated with relatively high fractions of M2 

macrophages, resting DCs and monocytes, whereas an 

increased number of CD8
+
 T cells was significantly 

associated with prolonged OS. Third, we calculated the 

prognostic value of IRGs and built an independent 

predictor for gastric cancer patient outcome prediction. 

Ultimately, we substantiated the significant correlation 

between hub IRGs and TIICs and further confirmed the 

research significance of our analyses. These results may 

be helpful for improving immunotherapeutic regimens or 

enhancing antitumor immunity in gastric cancer patients. 

 

MATERIALS AND METHODS 
 

Data acquisition 

 

Transcriptomic RNA-seq data for gastric cancer 

samples were downloaded from the TCGA database, 

including data for 374 primary gastric cancer and 32 

normal tissues. Mutation data and clinicopathological 

information were also collected, including age, sex, 

tumor grade, TNM stage and OS. The primary tumor 

characteristics and clinical information are showed in 

Supplementary Table 1. A list of IRGs was derived 

through the Immunology Database and Analysis Portal 

(ImmPort) database (https://www.immport.org/) [46]. 

 

Composition analyses of immune cells 

 

CIBERSORT, a deconvolution algorithm [5, 12], was 

applied to estimate the relative proportions of 22 types of 

TIICs in gastric cancer using normalized gene expression 

data. These TIICs included resting memory CD4
+
 T cells, 

activated memory CD4
+
 T cells, Tfh cells, Tregs, γδ T 

cells, CD8
+
 T cells, naive CD4

+
 T cells, naive B cells, 

memory B cells, plasma cells, resting NK cells, activated 

NK cells, macrophages (M0, M1 and M2), resting DCs, 

activated DCs, resting mast cells, activated mast cells, 

eosinophils, neutrophils and monocytes. The immune cell 

profiles for each sample and the mean values for gastric 

cancer and normal tissue were calculated. A set of 

reference gene expression values (a “signature matrix” of 

547 genes) considered a minimal representation for each 

cell type was used to infer cell type proportions in data 

from a bulk tumor sample with mixed cell types using 

support vector regression. The algorithm was performed 

using the LM22 signature matrix with 1000 permutations. 

P values were calculated by a one-way ANOVA to 

compare gastric cancer and normal tissue. 

 

For evaluation of the different stages of gastric cancer, the 

compositions of the 22 types of TIICs were compared 

after each dataset was processed by a weighted average 

method. At the same time, Cox regression analysis was 

performed to judge the prognostic value of TIICs. The 

package language R (v3.3.2) and Bioconductor 

(https://www.bioconductor.org/) were used for statistical 

analyses. The HR and 95% CI were determined, and 

P<0.05 was considered statistically significant. 

 

Analysis of DEGs 

 

The Wilcoxon signed-rank test was used to screen DEGs 

between gastric cancer and normal tissue based on the 

RNA-seq data. The false discovery rate (FDR)<0.05 and 

log2|fold change|>1 were set as the thresholds to define 

DEGs. Then, the identified DEGs were used to screen 

differentially expressed IRGs. Univariate Cox analysis 

was performed to estimate the associations between IRGs 

and the OS of gastric cancer patients. The HR was 

determined, and P<0.05 was considered significant. Then, 

GO and KEGG enrichment analyses were conducted to 

analyze the functions and potential molecular mechanisms 

of the screened IRGs. The intersection between 

differentially expressed IRGs and survival-associated 

IRGs was used to define hub IRGs. In addition, the 

genetic alterations in these hub genes were analyzed 

through cBioPortal (http://www.cbioportal.org/) [47, 48]. 

 

Construction of a prognostic signature 

 

The identified survival-associated IRGs were selected 

for multivariate LASSO Cox analysis to develop a 

prognostic signature. Kaplan-Meier analysis was used 

to plot the survival probability, and ROC analysis was 

performed to assess the validity of the prognostic 

signature. Gastric cancer patients were divided into 

high- and low-risk groups, and the prognostic value of 

the prognostic signature was assessed in the patients. 

https://www.immport.org/
https://www.bioconductor.org/
http://www.cbioportal.org/
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Finally, univariate and multivariate Cox regression 

analyses of age, sex, tumor grade, TNM stage and the 

risk score were performed to verify whether the 

constructed prognostic signature was an independent 

predictor. TIMER was used to validate and visualize the 

relationships of hub IRGs and TIICs, including B cells, 

CD4
+
 T cells, CD8

+
 T cells, neutrophils, macrophages 

and DCs. TIMER is a web resource that incorporates 

10,009 samples across 23 cancer types from the TCGA 

database to evaluate the clinical impacts of different 

TIICs on diverse cancer types. The Gene analysis in 

TIMER can be conducted to analyze the correlation 

between a given immune cell type and the expression of 

a selected gene [49, 50]. 
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Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Primary tumor characteristics and clinical information. 

 

Supplementary Table 2. Composition of TIICs in different stages of gastric cancer. 

TIICs Gastric cancer Stage I Stage II Stage III Stage IV 

Naive B cells 0.060435 0.04518 0.064665 0.06292 0.056648 

Memory B cells 0.011808 0.00851 0.010541 0.013629 0.008848 

Plasma cells 0.013114 0.01596 0.012274 0.011375 0.019927 

CD8+ T cells 0.134547 0.126714 0.137343 0.143324 0.115744 

Naive CD4+ T cells 0.0001 0 0 0 0.000989 

Resting memory CD4+ T cells 0.164883 0.163031 0.151987 0.167391 0.190702 

activated memory CD4+ T cells 0.043826 0.045551 0.038578 0.04878 0.038844 

T follicular helper cells 0.02115 0.016063 0.023463 0.023315 0.019258 

Treg cells 0.068071 0.065053 0.076524 0.070416 0.054654 

Gamma delta T cells 0.003393 0.001758 0.002024 0.003686 0.003976 

Resting NK cells 0.017307 0.023442 0.014708 0.01532 0.025292 

Activated NK cells 0.019013 0.023218 0.020494 0.019989 0.007192 

Monocytes 0.007745 0.007451 0.006625 0.007135 0.007901 

M0 macrophages 0.128218 0.163447 0.137092 0.115204 0.122443 

M1 macrophages 0.073627 0.063678 0.072022 0.079088 0.070016 

M2 macrophages 0.117545 0.108058 0.116887 0.113737 0.122498 

Resting dendritic cells 0.021736 0.010988 0.027527 0.022215 0.019511 

Activated dendritic cells 0.013182 0.013092 0.014284 0.013338 0.013465 

Resting mast cells 0.031781 0.021085 0.034657 0.033436 0.025814 

Activated mast cells 0.028294 0.047219 0.023785 0.021637 0.044962 

Eosinophils 0.004262 0.003541 0.002269 0.00221 0.00769 

Neutrophils 0.015961 0.026962 0.012249 0.011856 0.023628 

 


