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INTRODUCTION 
 
Microglial cells, which reside in the central nervous 
system, remove accumulating debris from the brain and 
are pivotal for maintaining tissue homeostasis, neuronal 
integrity, and network functioning [1]. Moreover, 
microglial activation triggers neuroinflammatory 

reactions and boosts neuronal death, which are the main 
pathological features of various neurodegenerative 
diseases [2, 3]. In addition, microglial activation and the 
expression of inflammatory mediators in the brain, 
including cytokines and chemokines, are considered  
key events in the pathogenesis of mood and cognition 
dysfunction [4, 5]. Upon stimulation, microglia  
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ABSTRACT 
 
Sirtuin 1 (SIRT1) has been reported to be involved in the mechanisms underlying longevity and has also been 
indicated as a valuable regulator of age-related neurological disorders. Some natural products increase SIRT1 
activity and stimulate deacetylation of various proteins. In the present study, SIRT1 overexpression by genetic 
modification or treatment with SIRT1 activators significantly inhibited the secretion of nitric oxide and 
expression of inducible nitric oxide synthase, cyclooxygenase 2, and proinflammatory mediator—interleukin 
1β—in microglia. SIRT1 activation also decreased the levels of K379 acetyl-p53 and the protein inhibitor of 
activated Stat 1 expression in microglial cells. In addition, it dramatically promoted M2 polarization of 
microglia, which enhanced cell motility and altered phagocytic ability. We also used minocycline, a well-known 
inhibitor of microglial activation, to study the mechanism of SIRT1 signaling. Minocycline treatment decreased 
neuroinflammatory responses and promoted M2 polarization of microglia. It also reduced the acetyl-p53 level 
in the brain tissues in an inflammatory mouse model. Our findings demonstrated that SIRT1 participates in the 
maintenance of microglial polarization homeostasis and that minocycline exerts regulatory effects on SIRT1 
activation. Therefore, our results indicate that SIRT1 activation may be a useful therapeutic target for the 
treatment of neuroinflammation-associated disorders. 
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change morphologically to larger ameboid cells and 
could be polarized to an inflammatory or  
anti-inflammatory phenotype under the influence of 
either a proinflammatory or anti-inflammatory 
microenvironment, designated as M1- or M2-activated 
microglia, respectively [3, 6]. Activated M1-polarized 
microglia can produce proinflammatory mediators such 
as inducible nitric oxide (NO) synthase (iNOS), 
cyclooxygenase 2 (COX-2), proinflammatory cytokines, 
and elevated secretions of neurotoxic factors, and thus 
contribute to brain inflammation, which might lead to 
neuronal degeneration [3, 5]. By contrast, the activation 
of M2-polarized microglia can produce anti-
inflammatory mediators such as interleukin (IL)-4, IL-
13, arginase 1 (ARG1), and chitinase-like-3 (Ym-1); 
stimulate secretions of neurotrophic factors to inhibit 
inflammation; and facilitate cell migration and 
phagocytic activity to clean debris [3, 5]. Development 
of compounds to modulate the shift of M1/M2 
phenotypes has been suggested as a useful therapeutic 
strategy for neurological and psychiatric disorders with 
inflammatory components [7, 8]. 
 
The expression of heme oxygenase (HO)-1, an 
oxidative and cytoprotective enzyme, is upregulated 
during oxidative stress, cellular injury, and diseases [9–
11]. Induction of HO-1 expression exerts an anti-
inflammatory effect on macrophages [12–14]. HO-1 
activation is considered as a potential therapeutic target 
for neuroinflammation and neurodegenerative diseases 
[9]. We previously reported that activation of the 
endogenous antioxidative enzyme, HO-1, exerts an anti-
neuroinflammatory effect on microglial cells [15–18] 
and astrocytes [19], and that increased HO-1 expression 
protects neurons against neurotoxin-induced cell death 
[20]. In addition, early evidence [21] and our previous 
report [16] showed that enhancement of HO-1 
expression can polarize macrophage/microglia toward 
the M2 phenotype. 
 
SIRT1 (Sirtuin 1), also called the silent information 
regulator 2 protein, belongs to the sirtuin family of class 
III histone deacetylases (HDAC) and has recently been 
implicated in age-related diseases, including metabolic, 
cardiovascular, and neurodegenerative diseases [22]. 
Studies on resveratrol, a natural polyphenol that 
activates SIRT1, have implicated SIRT1 as a key 
regulator of energy and metabolic homeostasis [23, 24]. 
Our previous study also indicated that melatonin 
increased the SIRT1 expression level in glioblastoma, 
and further reduced the expression of cell adhesion 
molecules [25]. Emerging evidence suggests that SIRT1 
plays a critical role in alleviating microglial activity. 
SIRT1 overexpression in microglia protected cells 
against Aβ toxicity in primary cortical cultures [26]. 
Moreover, SIRT1 deficiency in microglia contributes to 

cognitive decline in aging and neurodegeneration [27, 
28]. SIRT1 has been reported to modify several 
transcriptional factors such as forkhead box O 1, p53, 
and nuclear factor κB [29–31]. Upregulated expression 
of p53 has been observed in both neurons and microglia 
in the brains of patients with Alzheimer disease (AD) 
[32, 33] and is associated with tau phosphorylation [34]. 
In addition, increased transcription-dependent p53 
activity in microglia has been associated with the 
secretion of inflammatory cytokines and synaptic 
degeneration in neurons [35]. Overall, SIRT1 may be a 
useful therapeutic target for microglial 
neuroinflammation-associated disorders. 
 
Minocycline, a broad-spectrum tetracycline antibiotic, 
is a highly lipophilic molecule with antioxidant and 
neuroprotective activities [36, 37]. Minocycline easily 
crosses the blood-brain barrier and is a specific 
microglial inhibitor [38]. Results of both laboratory and 
clinical studies show that minocycline exerts its anti-
inflammatory actions by modulating microglial 
activation [39, 40] and the subsequent release of 
cytokines and chemokines [41–43], lipid mediators of 
inflammation [44], and NO release [45]; thus, it reduces 
the transcription of proinflammatory mediators in many 
neurological disorders [46–49]. In this study, we used 
minocycline to further evaluate the regulatory 
mechanisms of neuroinflammation and microglial 
polarization in SIRT1 activation. 
 
RESULTS 
 
SIRT1 activation suppresses proinflammatory 
cytokine expressions in microglial cells 
 
The neonatal (BV-2) and adult (IMG) mouse microglial 
cells were used to study the anti-neuroinflammatory 
mechanisms of SIRT1 activation. BV-2 microglial cells 
stimulated with the SIRT1 activator, CAY compound, 
showed significant dose-dependent increase in SIRT1 
activity (Figure 1A). In addition, cells treated with 
another SIRT1 activator, SRT1720 (SRT), further 
confirmed this phenomenon (Figure 1A). To determine 
the effect of SIRT1 activation on proinflammatory 
cytokine expression, cells were treated with a SIRT1 
activator (CAY), followed by LPS or PGN stimulation. 
As shown in Figure 1B, treatment with CAY abrogated 
LPS-induced IL-1β expression. Moreover, 
administration of CAY significantly inhibited LPS- or 
PGN-induced iNOS and COX-2 expressions (Figure 
1C). Treatment with another SIRT1 activator, SRT, also 
attenuated LPS-induced iNOS and COX-2 expressions 
(Figure 1C). In adult mouse microglial cells, such 
attenuation of LPS-induced iNOS and COX-2 
expressions was mediated via SIRT1 activation (Figure 
1D). Furthermore, SIRT1 overexpression effectively 
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reduced the LPS-enhanced iNOS and COX-2 
expressions in adult mouse microglia (Figure 1E). In 
addition, treatment with PGN and LPS increased NO 
production by approximately three- to six-fold. 
Moreover, the SIRT1 activator effectively antagonized 
LPS- or PGN-induced enhancement of NO production 
(Figure 1F). The attenuation effects of SIRT1 activation 
(Figure 1G) and overexpression (Figure 1H) were also 
observed in adult mouse microglial cells. In addition, 
SIRT1 activators at the concentration itself did not 
affect cell viability or NO production. These results 
suggest that SIRT1 activation effectively inhibits 
neuroinflammatory responses in microglial cells. 

SIRT1 activation decreases p53 acetylation and 
PIAS1 expression in microglial cells 
 
Next, we investigated whether SIRT1 activation leads to 
p53 deacetylation in microglial cells. When microglia 
were treated with a SIRT1 activator (CAY or SRT), a 
time-dependent decrease in p53 acetylation at lysine 
379 levels was observed (Figure 2A). As shown in 
Figure 2C, EX527, a SIRT1 activity inhibitor, 
dramatically reversed the attenuation effect of the 
SIRT1 activator on the K379 acetylated p53. We then 
examined whether SIRT1 was involved in the p53 
deacetylation in microglia. Transfection with SIRT1

 

 
 

Figure 1. Activation of SIRT1 suppresses neuroinflammatory responses in microglia. (A) BV-2 microglial cells were incubated with 
various concentrations (5 or 7.5 μM) of SIRT1 activator (CAY) or SRT1720 (SRT; 1 μM)—for 24 h. Whole-cell lysate proteins were extracted 
and assessed using a fluorogenic SIRT1 assay kit to detect SIRT1 activity. (B) BV-2 microglial cells were pretreated with SIRT1 activator (5 μM) 
for 30 min, followed by stimulation with LPS (100 ng·mL−1) for 6 h. Relative mRNA levels of IL-1β were analyzed by real-time PCR and 
normalized with the levels of β-actin mRNA. (C) BV-2 microglia were pretreated with SIRT1 activator CAY compound (5 μM) or SRT (1 μM) for 
30 min before stimulation with either LPS (100 ng·mL−1) or PGN (10 μg·mL−1) for 24 h. (D) Adult mouse microglia (IMG) were pretreated with 
CAY compound (5 μM) for 30 min before stimulation with LPS (100 ng·mL−1) for 24 h. (E) IMG cells were transfected with empty vector or 
wild-type SIRT1 for 24 h before stimulation with LPS (100 ng·mL−1) for 24 h. Whole-cell lysate protein was extracted and iNOS and COX-2 
protein levels were assessed by western blot analysis. Culture media from BV-2 (F) or IMG (G and H) microglial cells were harvested to 
determine the nitrite content by the Griess reaction. The results represent the mean ± SEM of n = 3–4. * p < 0.05; compared with the control 
group, # p < 0.05; compared with LPS or PGN treatment groups. 
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siRNA abrogated SIRT1 expression (Figure 2D) and 
attenuated the acetyl-p53 levels in microglial cells 
(Figure 2E). Our previous study results have showed 
that PIAS1 is a regulator of the inflammatory process in 
microglia [50]. Treatment of microglial cells with CAY 
downregulated PIAS1 expression in a time-dependent 
manner (Figure 2B). Transfection with SIRT1 siRNA 
abrogated the inhibition of CAY-induced PIAS1 
expression in microglia (Figure 2E). Moreover, 
transfection with wild-type SIRT1 increased SIRT1 
levels but reduced the expression levels of PIAS1 and 
acetyl-p53 (Figure 2F). We further examined whether 
SIRT1 activation is required for anti-inflammatory 
responses in microglia. In the presence of trichostatin A, 
an HDAC inhibitor, the inhibitory effects of SIRT1 

activation on LPS-induced iNOS and COX-2 
expressions (Figure 2G) and nitrite production (Figure 
2H) were alleviated. These results demonstrate that 
SIRT1 activation decreases PIAS1 expression level and 
deacetylates the K379 acetylated p53, which may 
participate in the regulation of inflammatory responses 
in microglia. 
 
SIRT1 activation promotes microglial M1/M2 
polarization 
 
We have previously demonstrated that HO-1 induction 
is important for maintaining inflammatory homeostasis. 
We further investigated whether SIRT1 activation in 
microglia induces HO-1 expression. When microglia

 

 
 

Figure 2. SIRT1 decreases lysine 379 acetylation of p53 in microglial cells. (A) BV-2 microglia were stimulated with CAY (5 μM) or 
SRT (1 μM) for the indicated time periods. The expression of K379 acetylated p53 was determined by western blot analysis. (Β) Microglial 
cells were stimulated with the SIRT1 activator, CAY (5 μM), for the indicated time periods (2–24 h). The expression of PIAS1 was determined 
by western blot analysis. (C) Microglial cells were treated with 10 μM EX527 (a SIRT1 inhibitor) for 30 min, followed by treatment with the 
SIRT1 activator, CAY (5 μM), for 24 h. Whole-cell lysate proteins were extracted and subjected to western blot analysis to assess lysine 379 
acetylated p53. (D) After transfection of microglial cells with siRNA against SIRT1 or control for 24 h, the cells were lysed, proteins were 
extracted and the subjected to western blot analysis to assess SIRT1 expression. (E) Microglial cells were transfected with either siRNA 
against SIRT1 or control for 24 h, and then treated with CAY compound for another 24 h. Whole-cell lysate proteins were extracted and 
subjected to western blot analysis to assess acetylated p53, SIRT1, and PIAS1 expression. Similar results were obtained from at least three 
independent experiments. (F) IMG cells were transfected with empty vector or wild-type SIRT1 for 24 h, and the expression levels of SIRT1, 
PIAS1, acetyl-p53, and p53 were determined by western blot analysis. (G) After preincubation with TSA (10 nM) for 30 min, the SIRT1 
activator, CAY (5 μM), was added for another 30 min before stimulation with LPS (100 ng·mL−1) for 24 h. The expression of iNOS and COX-2 
was determined by western blot analysis, and the medium was collected to measure nitrite production (H). The results are presented as 
mean ± SEM of n = 3–4. * p < 0.05, compared with the control group; #, p < 0.05, compared with the LPS treatment group. **, p < 0.05 
compared with the CAY plus LPS treatment group.  
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were treated with CAY or SRT, a time-dependent increase 
in HO-1 levels was observed (Figure 3A). Similarly, 
treatment with an SIRT1 activator increased HO-1 
expression levels in adult mouse microglia (IMG; Figure 
3B). Moreover, transfection with wild-type SIRT1, as 
compared with an empty vector, increased HO-1 
expression level (Figure 3C). In addition, HO-1 expression 
was further enhanced by stimulation with a SIRT1 
activator after LPS administration in both BV-2 and IMG 
cells (Figure 3D). As shown in Figure 3E, transfection 
with SIRT1 siRNA abrogated CAY-induced elevation in 
HO-1 expression level. These results suggest that SIRT1 
activation induces HO-1 upregulation in microglia. 
 
Effects of minocycline on inflammation and SIRT1 
activation in microglial cells 
 
Our results support previous reports that minocycline 
effectively antagonizes LPS-induced nitrite production 
in both murine and adult mouse microglia (Figure 4A). 
Minocycline also effectively antagonized LPS-induced 
iNOS and COX-2 expressions in both murine and adult 
mouse microglial cells (Figure 4B and 4C). Our results 
also showed that LPS treatment caused a significant 
increase in mTOR and CREB phosphorylation in 
microglial cells, whereas administration of minocycline 
significantly abrogated LPS-enhanced protein 
phosphorylation (Figure 4D). We further examined 

whether minocycline induces p53 deacetylation and 
PIAS1 degradation of SIRT1 in microglial cells. As 
shown in Figure 5A, minocycline treatment promoted a 
time-dependent p53 deacetylation and PIAS1 
downregulation in microglia (Figure 5A). Moreover, 
transfection with SIRT1 siRNA abrogated minocycline-
induced p53 deacetylation (Figure 5B) and PIAS1 
downregulation (Figure 5C). Moreover, treatment with 
EX527, a SIRT1 activity inhibitor, dramatically negated 
the effect of minocycline-induced p53 deacetylation 
(Figure 5D). These results indicate that minocycline 
administration induces p53 deacetylation and PIAS1 
downregulation through SIRT1 activation. 
 
SIRT1 activation promotes microglial M2 
polarization 
 
As shown in Figure 6A, SIRT1 activation increased the 
mRNA expression of M2 phenotype genes, including 
ARG1, IL-4, and IL-13. Furthermore, minocycline 
treatment increased the expressions of IL-4, IL-13, 
ARG1, and Ym-1 (Figure 6B). In addition, SIRT1 
overexpression effectively increased Ym-1 expression 
in adult mouse microglia (Figure 6C). As shown in 
Figure 6D, both ATP and CAY increased the migration 
activity of microglial cells. Furthermore, co-treatment 
with CAY and ATP further increased microglial cell 
migration (Figure 6D). Next, we determined whether 

 

 
 

Figure 3. Activation of SIRT1 induces HO-1 upregulation in microglial cells. (A) BV-2 microglia were stimulated with the SIRT1 
activator, CAY (5 μM) or SRT (1 μM), for the indicated time periods. (B) IMG cells were stimulated with the SIRT1 activator, CAY (5 μM), for 
the indicated time periods. (C) IMG cells were transfected with empty vector or wild-type SIRT1 for 24 h. (D) BV-2 (left panel) and IMG (right 
panel) microglial cells were treated with SIRT1 activator CAY (5 μM), LPS (100 ng·mL−1), or both CAY and LPS for 24 h. Whole-cell lysate 
proteins were extracted, and the HO-1 protein levels were determined by western blot analysis. (E) After transfection of BV-2 microglia with 
siRNA against SIRT1 or control for 24 h, the cells were treated with the SIRT1 activator for another 24 h. HO-1 and SIRT1 expression levels 
were analyzed by western blot analysis. Similar results were obtained from three independent experiments. 



www.aging-us.com 17995 AGING 

 
 

Figure 4. Inhibitory effects of minocycline on inflammatory responses in microglial cells. (A) Adult mice (IMG) and neonatal 
murine (BV-2) microglia were pretreated with minocycline (20 μM) for 30 min before stimulation with LPS (100 ng·mL−1) for 24 h. The cell 
culture medium was then harvested to determine the nitrite content by the Griess reaction. IMG (B) and BV-2 (C) microglia were pretreated 
with minocycline (20 μM) for 30 min before stimulation with LPS (100 ng·mL−1) for 24 h. Whole-cell lysates were subjected to western blot 
analysis for iNOS and COX-2 expression. (D) Cells were pretreated with minocycline (20 μM) for 30 min before stimulation with LPS (100 
ng·mL−1) for 90 min. Whole-cell lysate proteins were subjected to western blot analysis using antibodies against phospho-mTOR or phospho-
CREB. Similar results were obtained from at least three independent experiments. * p < 0.05, compared with the control group; # p < 0.05, 
compared with the only LPS group. 

 

 
 

Figure 5. Regulatory effects of minocycline on p53 deacetylation and PIAS1 degradation. (A) BV-2 microglial cells were stimulated 
with minocycline (20 μM) for the indicated time periods. The expression levels of lysine 379 acetylated p53 and PIAS1 were determined by 
western blot analysis. (B, C) Cells were transfected with siRNA against SIRT1 or control for 24 h, and then treated with minocycline for 
another 24 h. (D) After treatment with EX527 (10 μM) for 30 min, the cells were treated with minocycline for another 24 h. Whole-cell lysate 
proteins were extracted and subjected to western blot analysis to assess acetyl-p53, PIAS1, and SIRT1 expression. Similar results were 
obtained from at least three independent experiments.  
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SIRT1 activation affects microglial phagocytosis. By 
monitoring the degree of fluorescence intensity, 
populations of adult mouse or neonatal murine 
microglia that engulfed 0, 1, 2, 3, or 4 beads can be 
differentiated (as labeled in Figures 7A and 8A). LPS 
challenge significantly increased the phagocytic activity 
in both adult and neonatal mouse microglia (Figure 7A 
and 7D). As shown in Table 1, LPS stimulation 
increased the percentage of cells that engulfed ≥1 YG 
beads and elevated the fluorescence intensity as 
compared with the control groups in both adult and 
neonatal mouse microglial cells. In adult mouse 
microglia, SIRT1 activation by CAY decreased the 
population of cells that engulfed ≥1 fluorescent bead 
and mildly reduced the fluorescence intensity (Figure 
7B and Table 1). SIRT1 activation significantly induced 
microglial phagocytosis in the neonatal murine 
microglia (Figure 7E and Table 1). However, 
stimulation with a SIRT1 activator before LPS 
treatment dramatically attenuated LPS-induced 
phagocytic activity (Figure 7C), as indicated by the 
decreased percentage of cells and fluorescence intensity 
(Table 1). Moreover, treatment with an SIRT1 activator 
before LPS treatment in neonatal murine microglia 
effectively decreased the population of cells that 

engulfed fluorescent beads after LPS treatment and 
slightly reduced the fluorescence intensity as compared 
with the LPS group (Figure 7F and Table 1). 
 
Minocycline enhances phagocytic activity in 
microglial cells and inhibits LPS-induced 
inflammatory responses in a mouse model 
 
Minocycline treatment enhanced phagocytosis in both 
adult brain and neonatal murine microglia (Figure 8A 
and 8C). As shown in Table 2, minocycline 
administration increased the percentage of cells that 
engulfed ≥1 YG bead and increased the fluorescence 
intensity as compared with the control groups in both 
adult brain and neonatal murine microglial cells. As 
shown in Figure 8B and Table 2, minocycline 
pretreatment before LPS stimulation significantly 
attenuated LPS-induced microglial phagocytosis as 
indicated by the decreased cell population and low 
fluorescence intensity in adult mouse microglia. 
Unexpectedly, minocycline treatment before LPS 
stimulation increased the phagocytic activity in neonatal 
murine microglia (Figure 8D) as indicated by the 
increased cell population and fluorescence intensity 
relative to the LPS group (Table 2). To investigate the

 

 
 

Figure 6. Regulatory effects of SIRT1 on M2 polarization in microglia. BV-2 microglia were incubated with CAY (5 μM) (A) or 
minocycline (20 μM) (B) for the indicated time periods. (C) IMG cells were transfected with wild-type SIRT1 for 24 h. The expression levels of 
Ym-1, ARG1, IL-4, and IL-13 were determined by real-time PCR analysis. (D) Cells were pretreated with CAY (5 μM) for 30 min, followed by 
stimulation with ATP (300 μM) or no stimulation for 24 h. Transmigration activities were examined in vitro using a transwell insert system. 
The transmigrated cells were visualized by phase-contrast imaging (right panel). Results are expressed as means ± SEM of three independent 
experiments; * p < 0.05 compared with the control group. # p < 0.05 compared with the only ATP- or only CAY-treated groups.  
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anti-inflammatory effects of minocycline in vivo, we 
analyzed changes in protein levels in tissue samples 
from mouse cortices. The mice were treated with 
minocycline (50 mg/kg) once daily for 3 consecutive 
days, followed by a single injection of LPS for another 
24 h (Figure 9A). The mouse cortices were dissected 1 
day after the LPS injection and analyzed by western 
blotting. As shown in Figure 9B, the LPS injection 
alone increased the iNOS and acetyl-p53 expression. As 
expected, treatment with minocycline before LPS 
stimulation significantly inhibited the enhancement of 
LPS-induced inflammatory response. 
 
DISCUSSION 
 
Our findings indicate that SIRT1 activation reduces 
lipopolysaccharide (LPS)- or peptidoglycan (PGN)-
induced inflammatory responses that may be mediated 
by p53 deacetylation in microglial cells. In addition, 
SIRT1 activation also induces HO-1 expression and 
facilitates the shift of a microglial phenotype toward M2 
polarization. Moreover, administration of minocycline, 
an inhibitor of microglial activation, suppresses 
microglial activation partly through SIRT1 activation. 
Our results also showed that minocycline decreased the 
iNOS and acetyl-p53 levels in the brain tissue of an 
inflammatory mouse model. 
 
Currently, clinical trials are being conducted for SIRT1 
activators in the treatment of age-associated diseases and 

type 2 diabetes [51]. The SIRT 1 activator, SRT1720, 
exerts a neuroprotective effect that promotes neurological 
recovery and striatal lesion reduction in cerebral oxidative 
stress [52]. In addition, SIRT1 activation reduces p53 
acetylation and downstream signaling mediated by 17β-
estradiol in aging mice [53]. SIRT1 activation has also 
offers protection against subarachnoid hemorrhage by p53 
deacetylation-mediated oxidation and inflammatory 
response [54]. Omega-3 fatty acids activate SIRT1-
mediated inhibition of NF-κB stress response, suppressing 
microglial neuroinflammation [55]. In addition, inhibition 
of SIRT1 expression reduced p53 deacetylation and 
promoted the activation of p53-mediated increase in the 
expression levels of proinflammatory genes in the mouse 
brain [56]. p53 deacetylation by SIRT1 attenuates p53-
mediated cell death signaling and protects the brain from 
cerebral ischemic damage [57, 58]. In addition, Knockout 
of Sirt1 in brain endothelial cell affects blood brain barrier 
(BBB) integrity and loss increasing permeability [59]. Our 
present study results support previous reports that SIRT1 
activation in microglial cells significantly inhibits the 
expression of proinflammatory cytokines such as iNOS 
and IL-1β, and decreases p53 acetylation. 
 
p53 expression is also associated with neurodegenerative 
diseases such as AD and Parkinson’s disease (PD). p53 
expression in the human brain is associated with 
autosomal recessive forms of juvenile PD [60]. Moreover, 
increased p53 expression level has been observed in 
microglial cells in the brains of patients with AD 

 

 
 

Figure 7. Phagocytic activity of SIRT1 activated microglia. Flow cytometry was used to assess the phagocytic activity by quantifying 
the number of 1-μm fluorescent yellow-green latex beads (YG beads) engulfed by IMG (A–C) and BV-2 (D–F) microglia. Cells with or without 
LPS stimulation (100 ng·mL−1) (A and D), treated with SIRT1 activator CAY (5 μM) (B and E), or pretreated with CAY for 30 min before 24-h LPS 
stimulation (C and F), were incubated with YG beads for 1 h at 37°C. Each graph represents the results from at least 3 biological replicates. 
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Table 1. Quantitative data from flow cytometry analysis of phagocytosis activity between adult mice microglia and 
neonatal murine microglia subjected to CAY and LPS treatments. 

 Adult mice microglia Neonatal murine microglia 
% total FITC mean % total FITC mean 

control 39.5±1.0 20099.4±888.7 14.8±1.33 13842.5±258.2 
LPS 41.3±1.6* 25809.4±186.8** 22.1±2.05* 15254.9±615.2* 
CAY 32.3±1.4* 18611.5±794.4 17.5±0.92* 15831.3±467.9* 

CAY+LPS 25.2±2.2## 20784.9±1021.7## 19.2±1.03# 15140.6±370.1 
 

[32, 33], but a p53 knockout mouse model of AD 
displayed reduced tau phosphorylation [61]. In addition, 
inhibition of p53-mediated pathways attenuated 
microglial-triggered neurotoxicity induced by β-
amyloid exposure [62]. Furthermore, inhibition of p53 
expression in microglia causes less neurotoxicity in 
response to proinflammatory stimuli [62, 63]. 
Moreover, p53 deficiency promotes microglial anti-
inflammatory responses [64]. Inhibition of microglial 
p53 activation suppresses microglial inflammatory 
responses and exerts a neuroprotective effect [35]. 
Thus, inhibition of p53-mediated transcription in 
microglia prevented neurotoxicity, which suggests that 
targeting p53-mediated pathways in microglia may have 
therapeutic benefits for patients with CNS injury and 
diseases exacerbated by inflammatory responses [65]. 

The M2-phenotype microglial cells strongly elicit 
phagocytosis of debris to prevent secondary 
inflammatory responses and promote tissue 
regeneration than the M1-phenotype microglial cells 
[66]. p53 deficiency in microglia increased the 
microglial phagocytic activity and was associated with 
anti-inflammatory functions [64]. SIRT1 activation 
alters microglial polarization, which attenuated 
experimental traumatic brain injury by omega-fatty acid 
supplementation [67]. Moreover, induction of SIRT1 
expression in microglia reverses LPS-induced 
polarization from the M1 to M2 phenotype [68]. 
Furthermore, minocycline treatment enhances the 
phagocytosis of beta-amyloid fibrils to attenuate 
neuroinflammatory response [69]. Minocycline 
treatment also reversed the M1 response to M2 in rats 

 

 
 

Figure 8. Effects of minocycline on phagocytosis in microglia. Phagocytosis of 1-μm fluorescent YG beads by IMG and BV-2 microglia 
was analyzed by flow cytometry. (A, C) Cells with or without minocycline treatment (20 μM), or (B, D) those pretreated with minocycline for 
30 min before LPS stimulation for 24 h, were incubated with the YG beads for 1 h at 37°C before flow cytometry analysis. Each graph 
represents data from at least 3 biological replicates. 
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Table 2. Quantitative data from flow cytometry analysis of phagocytosis activity between adult mice microglia and 
neonatal murine microglia subjected to minocycline and LPS treatments. 

 Adult mice microglia Neonatal murine microglia 
% total FITC mean % total FITC mean 

control 42 ±2.1 18785.9±234 14.6±2.6 14306.2±664.4 
minocycline 46 ±2.1* 20210.6±316.1* 23 ±4.5* 16385.8±1252.9* 

LPS 45.8±4.9 25308±412.2 20.5±2.8 15418 ±867.4 
minocycline+LPS 41 ±5.7# 22467.3±410.5# 28.7±2.4# 17124.3±738.2# 

 

subjected to chronic, unpredictable mild stress, which is 
associated with behavioral normalization [70]. Our results 
support those of previous studies which showed that both 
SIRT1 activation or minocycline treatment elevated the 
expression levels of M2 macrophage genes and 
phagocytic activity. In a diabetic animal model, 
minocycline treatment inhibited histone acetylation in 
retinal cells [71] which contributed to the beneficial 
effects of diabetic retinopathy treatment [72]. The results 
from this mouse model further support previous findings 

that minocycline-antagonized LPS-induced inflammation 
could be attributed to the induction of SIRT1 activity and 
the subsequent deacetylation of p53 by SIRT1 (Figure 9). 
In addition, we found some differences between adult 
mouse and neonatal murine microglia in their response to 
minocycline treatment (Figure 8B and 8D). Our results 
support previous report that primary adult microglia, 
rather than neonatal murine microglia, may share 
phenotypic characteristics with the novel immortalized 
adult microglial cell line IMG [73]. 

 

 
 

Figure 9. The protective effect of minocycline prevents LPS-induced acetylation of p53 in a mouse model. (A) Schematic 
representation of the protocol for minocycline and LPS administration. Mice were treated with either minocycline (50 mg·kg−1) or vehicle, 
once daily for three consecutive days, before a single intraperitoneal injection of LPS (20 mg·kg−1). LPS was administered to mice on the third 
day 1 h after minocycline administration. (B) The mice were sacrificed, and their brain cortex were dissected 1 day after LPS injection and 
analyzed by western blot to assess the presence of the indicated proteins. (C) The schema of the regulatory mechanism of minocycline on 
SIRT1 and p53 in microglial polarizations. 
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The protein inhibitor of activated stat (PIAS) 1 was 
initially identified as a suppressor of interferon-
dependent transcription [74]. We previously reported 
that PIAS1 degradation is involved in microglial 
activation and proinflammatory expression [50]. Both 
PIAS1 and PIASy promote the SUMOylation and 
transcriptional activity of p53 [75, 76]. Moreover, 
controlling the activity of both p53 and PIASy regulate 
Ras-induced senescence and apoptosis [76]. 
SUMOylation of p53 contributes to endothelial 
inflammation and atherosclerotic plaque formation [77]. 
Moreover, PIAS3 overexpression blocked the HO-1 
expression induced by IL-6 in HepG2 cells [78]. In this 
study, our observations showed that SIRT1 activation or 
minocycline treatment induced PIAS1 degradation in 
microglia. However, further study is required to identify 
the detailed mechanism of regulatory effect of PIAS1 
on neuroinflammation. 
 
In conclusion, SIRT1 activation inhibits LPS- or PGN-
induced inflammatory responses mediated by p53 
deacetylation. SIRT1 activation also facilitates microglial 
M2 polarization and induces HO-1 expression, PIAS1 
degradation, migration, and phagocytosis of microglial 
cells. Therefore, our results indicate that SIRT1 activation 
may be a useful therapeutic target for the treatment of 
neuroinflammation-associated disorders owing to its 
function in the modulation of inflammatory homeostasis 
that could contribute to anti-neuroinflammatory effects. 
Our results also provide new insights into the effects of 
minocycline treatment on SIRT1 expression in the 
maintenance of M1/M2 polarization homeostasis of 
microglia (Figure 9C), which are useful to identify a novel 
therapeutic target for neuroinflammation-associated 
disorders. 
 
MATERIALS AND METHODS 
 
Materials 
 
CAY10591 and SRT1720 were purchased from 
Cayman Chemicals (Ann Arbor, MI, USA). Primary 
antibodies against β-actin, CREB (sc-25785), and NF-
κΒ p65 (sc-7151) were purchased from Santa Cruz 
Biotechnology (Santa Cruz, CA). Antibodies against 
phospho-AMPKThr172 (#2535), acetyl-p53Lys379 (#2570), 
phospho-p53Ser15, phospho-mTORSer2448, and phospho-
CREBSer133 (#9198) were purchased from Cell Signaling 
Technology. The primary antibodies against iNOS 
(610431) and p53 were purchased from BD 
Transduction Lab (Lexington, KY, USA). The primary 
antibody against COX-2 (aa 570-598) was purchased 
from Cayman Chemicals (Ann Arbor, MI, USA). 
Antibodies against α-tubulin (T5168), acetylated 
tubulinLys40 (T7451), HDAC6, EX527 (E7034), and 
TSA (T8552) were purchased from Sigma Aldrich (St. 

Louis, MO). Antibodies against HO-1 were purchased 
from Enzo Life Sciences, Inc. (Farmingdale, NY, USA). 
Antibodies against β-actin (ab6267) and SIRT1 
(ab50517) were purchased from Abcam (Cambridge, 
MA, USA). 
 
Animal experimental procedures 
 
All animal experiments were approved by the Animal 
Care Committee of China Medical University 
(Taichung, Taiwan; 2017-138). The animals were 
manipulated in accordance with the Animal Care and 
Use Guidelines of China Medical University (Taichung, 
Taiwan). Eight-week-old male imprinting control region 
(ICR) mice were purchased from the National 
Laboratory Animal Center (Taipei, Taiwan). The 
animals were housed in a temperature- and humidity-
controlled environment and given access to food and 
water ad libitum. The mice were acclimated to their 
environment for 7 days before the experiments. 
 
Tissue preparation 
 
Eight-week-old mice received intraperitoneal injections of 
vehicle or minocycline (50 mg·kg−1) once daily for three 
consecutive days before a single intraperitoneal injection 
of LPS (20 mg·kg−1). On the third day, 1 h after 
minocycline administration, LPS was administered to the 
mice. The cortex was collected 24 h after LPS injection.  
 
Microglial cells 
 
Adult mouse microglia cell line (IMG) derived from 
adult brain was obtained from Harvard School of Public 
Health (Boston, MA, USA). IMG cells express a 
microglial-specific marker, fully recapitulate the 
morphological and functional characteristics of brain 
microglia, and share phenotypic attributes with primary 
adult microglia [73].  
 
The neonatal murine microglial cell line, BV-2, tested 
positive for macrophage antigen complex (MAC)-1 and 
-2 antigens. Currently, BV-2 cells are used as a model 
system because they retain most of the morphological, 
phenotypical, and functional properties described for 
freshly isolated microglial cells [79]. BV-2 cells were 
cultured in Dulbecco’s modified Eagle medium with 
high glucose (4.5 g·L−1), 10% fetal bovine serum (FBS), 
and penicillin/streptomycin (100 U·mL−1) at 37°C in a 
humidified incubator with 5% CO2 and 95% air. 
 
Western blot analysis 
 
Cells were treated with CAY10591 and SRT1720 for 
the indicated time periods, washed with cold phosphate-
buffered saline (PBS), and lysed with a lysis buffer for 
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30 min on ice. Protein samples from the lysate were 
separated by sodium dodecyl sulfate polyacrylamide gel 
electrophoresis and blotted onto polyvinylidene fluoride 
membranes. The membranes were then blocked with 
5% nonfat milk and probed with the relevant primary 
antibody. After several PBS washes, the membranes 
were incubated with secondary antibodies. The target 
proteins on the blots were visualized by enhanced 
chemiluminescence using Kodak X-OMAT LS film 
(Eastman Kodak, Rochester, NY). Quantitative data 
were obtained by computing the densitometric values 
using ImageQuant software (Molecular Dynamics, 
Sunnyvale, CA). 
 
Nitric oxide assay 
 
Production of NO was assayed by measuring the stable 
nitrite levels formed as a result of nitric oxide 
metabolism in the culture medium, which was prepared 
as described previously [80].  
 
RNA extraction and quantitative real-time 
polymerase chain reaction (PCR)  
 
Total RNA was extracted from cells using TRIzol 
reagent (Invitrogen, Carlsbad, CA, USA) and quantified 
using a BioDrop spectrophotometer (Cambridge, UK). 
Target mRNA levels were detected using quantitative 
real-time PCR. The reverse transcription (RT) reaction 
was performed using 2 μg of total RNA that was 
converted to cDNA using the Invitrogen RT Kit and 
amplified using the oligonucleotide primers. The 
threshold was set within the linear phase of target gene 
amplification to calculate the cycle number at which the 
transcript was detected (denoted as CT). 
 
Cell transfection 
 
Small interfering RNA (siRNA) si-GE-NOME duplexes 
targeting mouse SIRT1 were acquired from Dharmacon, 
and microglia were transfected with 2 μL of 
DharmaFECT Reagent #1 with 20 nM si-GENOME 
siRNA (Dharmacon/Thermoscientific). The microglia 
were seeded in a six-well plate at 70% confluency 24 h 
before transfection. The mixture of siRNA and 
DharmaFECT was added to 1.6 mL complete microglia 
growth media supplemented with 10% FBS and added 
to the cells. The cells were incubated with the 
transfection mixture for 48 h before the experiment. 
 
Transmigration assay 
 
Transmigration assays were performed using Costar 
Transwell inserts (Costar, NY; pore size, 8 μm) in 24-well 
plates as described previously [64]. Approximately 1 × 
104 cells in 200 μL of serum-free medium were placed in 

the upper chamber, and 300 μL of the same medium 
containing ATP was placed in the lower chamber. The 
plates were incubated for 24 h at 37°C in 5% CO2, and 
then the cells were stained with 0.05% crystal violet and 
2% methanol. Non-migrating cells on the upper surface of 
the filters were removed by scraping with a cotton swab. 
The cell number in three fields of each well was counted 
under a microscope at 100× magnification. Images of the 
migrating cells were observed and acquired using a digital 
camera and light microscope. 
 
Phagocytosis assay  
 
Cells were incubated with carboxylate-modified 
polystyrene fluorescent yellow-green latex beads (YG 
beads; Cat# L4655; Sigma Aldrich) at 37°C to permit 
phagocytosis. After exposure to YG beads, microglial cells 
were washed thoroughly and analyzed for yellow-green 
fluorescence by flow cytometry. The cells were seeded 
into four 6-well tissue culture plates (5 × 105 cells/well). 
They were allowed to grow for 16 h at 37°C/5% CO2, 
followed by treatment with SIRT1 activator or LPS for 
another 24 h before the assay. Eighty-five μL) of YG 
beads were diluted in 8.5 mL aliquots of pre-warmed 
(37°C) growth media. Media was removed from the cells 
and 1 mL of YG bead-containing media was added to each 
well. The cells were immediately incubated at 37°C for 1 
h. The remaining steps were strictly performed on ice. To 
remove non-internalized beads, the cells were washed with 
PBS. After washing, the cells were incubated with PBS 
containing 2 mM ethylenediaminetetraacetic acid (EDTA) 
for 10 min at 4°C. Thereafter, the cells were removed from 
the dish by trypsin treatment and transferred to 1.5 mL 
Eppendorf vials. They were centrifuged at 300 × g for 6 
min at 4°C. The supernatant was discarded and the cell 
pellets were washed twice with ice-cold PBS and 
resuspended in PBS containing 2 mM EDTA. The cell that 
phagocytosed the YG beads were quantified by flow 
cytometry. 
 
Statistical analysis 
 
Statistical analysis was performed using GraphPad Prism 
6.0 (Graph Pad Software Inc, San Diego, CA, USA). The 
values are presented as mean ± standard error of the mean. 
The significance of the difference between the 
experimental group and control groups was assessed using 
Student’s t-test. Statistical comparisons of more than 2 
groups were performed using one-way analysis of 
variance with Bonferroni post hoc test. Differences were 
considered to be significant if the p-value was <0.05. 
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