
 

www.aging-us.com 14456 AGING 

INTRODUCTION 
 

Lung cancer is one of the main tumors endangering 

human health [1]. According to the authoritative Chinese 

cancer epidemiological survey data, the number of people  

 

diagnosed with lung cancer in China reached 733000 in 

2015, the number of lung cancer deaths was 610000, 

which ranks first in cancer [2]. Especially, non-small cell 

lung cancer (NSCLC) is the most common type with high 

clinical incidence rate [3]. Currently, surgical resection is 
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ABSTRACT 
 

Background: The cisplatin resistance of non-small cell lung cancer (NSCLC) patients results in low response rate 
and overall survival rate. Exosomes contribute to pathological processes of multiple cancers. 
Objective: In this study, we explored the function and mechanisms of exosomal miR-103a-3p derived from 
cancer-associated fibroblast (CAF) in cisplatin resistance in NSCLC. 
Results: MiR-103a-3p was highly expressed in CAFs and CAF exosomes, and exosomal miR-103a-3p derived 
from CAFs in NSCLC. CAFs exosomes co-cultured with NSCLC cells promoted miR-103a-3p expression both in 
NSCLC cells and its exosomes. Functional experiments showed that exo-miR-103a-3p derived from CAFs 
promoted cisplatin resistance and inhibited apoptosis in NSCLC cells. Pumilio2 (Pum2) bound with miR-103a-3p 
in cytoplasm and nucleus, and facilitated packaging into CAF-derived exosomes in NSCLC cells. Further analysis 
showed Bak1 was a direct target of miR-103a-3p, and miR-103a-3p accelerated cisplatin resistance in NSCLC 
cells via Bak1 downregulation. In vivo tumorigenesis assay showed CAF-derived exosomal miR-103a-3p 
enhanced cisplatin resistance and inhibited cell apoptosis in NSCLC. 
Conclusion: Our study revealed that CAFs-derived exosomal miR-103a-3p promoted cisplatin resistance by 
suppressing apoptosis via targeting Bak1, which provided a potential therapeutic target for cisplatin resistance 
in NSCLC. 
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the first choice for most lung cancer patients. But because 

of the occult nature of the disease, most patients are in 

the middle and late stage of tumorigenesis or primary 

metastasis at the time of diagnosis [4]. For the patients 

who are not suitable for surgical treatment, cisplatin-

based radiotherapy and chemotherapy has become the 

main means of clinical treatment [4]. However, the 

resistance of patients to cisplatin results in low response 

rate and overall survival rate [5]. Therefore, finding an 

effective method to reverse cisplatin resistance in 

NSCLC and exploring its related molecular mechanism 

has become an urgent scientific problem to be solved. 

 

Exosomes are nanoscale vesicles produced by 

endocytosis, fusion and exudation in various cells, 

which contain proteins, lipids, genes, coding RNAs, 

non-coding RNAs and other active biomolecules. Thus, 

exosomes play an important role in physiological and 

pathological processes [6]. Exosomes of lung cancer 

cells released of TGF-β and IL-10 into the tumor 

microenvironment, which improved the migration 

ability and promoted metastasis in lung cancer cells [7]. 

In addition, bone marrow mesenchymal stem cell 

(BMMSC) derived exosomal miR-144 could inhibit the 

development of NSCLC, and the potential mechanism 

might be a downregulation of CCNE1 and CCNE2 [8]. 

Exosomes can be also secreted by cancer-associated 

fibroblasts (CAFs), which involves in the process of 

tumor metastasis and chemoresistance of cancer cells 

[9, 10]. In breast cancer, CAFs secreted exosomes 

containing miR-181d-5p into tumor environment, 

thereby facilitating the EMT process, which possibly 

modulated through CDX2/HOXA5 axis [11]. In 

addition, CAFs-derived miR-98-5p promoted the 

proliferation of ovarian cancer cells, and promoted 

cisplatin resistance in nude mice [12]. MiR-103a-3p is a 

highly conserved RNA. Yet, the function of miR-103a-

3p in cell-cell communication between CAFs and 

NSCLC cells and the underlying mechanism remains 

unclear. 

 

In this study we revealed the novel function of miR-

103a-3p in the crosstalk between CAFs and NSCLC 

cells that promotes cancer progression by inhibiting 

apoptosis. This study reveals a novel way for prevention 

and treatment of NSCLC. 

 

RESULTS 
 

Exosomal miR-103a-3p derived from CAFs in 

NSCLC 

 

Firstly, we isolated CAFs from NSCLC cancer tissue 

and normal fibroblasts (NFs) from para-carcinoma 

tissue. And we found the specific markers for 

fibroblasts were significantly increased in CAFs (Figure 

1A, 1B). Then, we performed qRT-PCR analysis to 

determine miR-103a-3p level in NFs, tumor cells (TCs) 

 

 
 

Figure 1. CAFs secreted exosomal miR-103a-3p in NSCLC. (A) Immunofluorescence staining and (B) Western blot for α-SMA, FAP, and 

FSP1 expression of NFs and CAFs. (C) qRT-PCR analyzed the expression of miR-103a-3p in TCs, NFs and CAFs. (D) TEM of exosomes isolated 
from TCs, NFs and CAFs. (E) The expression of CD63, Alix, and Tsg101 in exosomes was detected by western blot. (F) The expression of miR-
103a-3p in exosomes form TCs, NFs and CAFs was tested by qRT-PCR. *p<0.05. 
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and CAFs. It showed that miR-103a-3p level was the 

highest in CAFs (Figure 1C). Furthermore, exosomes in 

NFs, TCs and CAFs were isolated. TEM data showed 

the morphology of exosomes (Figure 1D), and exosomes 

markers were detected by western blot (Figure 1E). 

Interestingly, the expression of miR-103a-3p was the 

highest in CAF exosomes compared with NF and TC 

exosomes (Figure 1F). These data indicated exosomal 

miR-103-3p (exo-miR-103a-3p) derived from CAFs. 

 

Exo-miR-103a-3p suppressed apoptosis and 

promoted cisplatin resistance in NSCLC cells 

 

To verify whether CAF exosomes could enter NSCLC 

cells, we isolated CAFs exosomes and co-cultured with 

NSCLC cell lines NCI-H1650 and NCI-H1299. Then 

the exosomes of NCI-H1650 and NCI-H1299 were 

isolated and captured by TEM photos (Figure 2A), and 

exosomes markers were detected by western blot 

(Figure 2B). As well, we used PKH-26 to label CAF 

exosomes, and PKH-26 positive exosomes were 

detected in NCI-H1650 and NCI-H1299 cells after 6 

hours of co-culture with CAF exosomes (Figure 2C), 

which indicated that CAF exosomes entered NCI-

H1650 and NCI-H1299 cells and promoted the 

expression of exo-miR-103a-3p. 

 

To evaluate the role of exo-miR-103a-3p in apoptosis and 

cisplatin resistance in NSCLC cells, we isolated exosomes 

from NFs and CAFs transfected miR-103a-3p or AMO-

miR-103a-3p or its NC, then NCI-H1650 and NCI-H1299 

cells were incubated with NF or CAF exosomes. And we 

found that miR-103a-3p expression was significantly 

upregulated upon incubation with exosomes from CAFs 

with miR-103a-3p overexpression but not with CAFs with 

AMO-miR-103a-3p (Figure 2D). Functionally, we 

performed CCK8 assay to estimate cell viability upon 

cisplatin treatment. It showed that NCI-H1650 and NCI-

H1299 cells became insensitive to cisplatin with 

exosomes from CAFs, especially CAFs transfected with 

miR-103a-3p (Figure 2E). On the contrary, sensitivity to 

cisplatin was increased when incubated with exosomes 

from AMO-miR-103a-3p transfected CAFs. In addition, 

CAFs exosomes incubation decreased the expression of 

apoptosis related protein Bax, Caspase-3 and Caspase-9, 

and exosomes from miR-103a-3p transfected CAFs 

 

 
 

Figure 2. CAFs secreted exo-miR-103a-3p to suppress apoptosis of NSCLC cells. (A) TEM images of exosomes isolated from NSCLC 

cell lines NCI-H1650 and NCI-H1299. (B) Western blot for CD63, Alix, and Tsg101 in exosomes from NCI-H1650 and NCI-H1299 cells. (C) 
Immunofluorescence staining of PKH-26 labelled CAF exosomes in NCI-H1650 and NCI-H1299 cells. DAPI indicates nucleus. Exosomes from 
NFs and CAFs transfected miR-103a-3p or AMO-miR-103a-3p or its NC were isolated, then NCI-H1650 and NCI-H1299 cells were incubated 
with NF or CAF exosomes. (D) qRT-PCR analyzed the expression of miR-103a-3p NCI-H1650 and NCI-H1299 cells. (E) CCK8 was used to test 
viability of NCI-H1650 and NCI-H1299 cells. (F, G) The expressions of apoptosis related protein Bax, Caspase3 and Caspase9 were analyzed by 
western bolt. (H, I) The number of apoptotic cells was calculated by flow cytometry. *p<0.05 vs NF exo or, CAF-miR-NC exo or CAF-AMO-miR-
NC exo, # p<0.05 vs CAF-miR-NC exo or CAF-AMO-miR-NC exo. 
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further inhibited NCI-H1650 and NCI-H1299 apoptosis 

(Figure 2F), while exosomes from AMO-miR-103a-3p 

transfected CAFs incubation abolished the anti-

apoptotic effect of CAFs exosomes incubation (Figure 

2G). The results of cytometry also proved that forced 

expression of miR-103a-3p inhibited apoptosis upon 

cisplatin treatment (Figure 2H), while knockdown of 

miR-103a-3p exhibited a pro-apoptotic role (Figure 2I). 

Together, exo-miR-103a-3p secreted by CAFs 

suppressed apoptosis and promoted cisplatin resistance 

in NSCLC cells. 

 

Pumilio2 facilitated miR-103a-3p packaging into 

CAF-derived exosomes 

 

To investigate whether miR-103a-3p was specifically 

packaged into exosomes, we used the database  

of RBP specificities at a threshold of 0.8 

(http://rbpdb.ccbr.utoronto.ca/) to search the NA-

binding proteins (RBPs) of miR-103a-3p. As shown in 

Figure 3A, we only predicted that Pumilio2 (Pum2) 

could bind to miR-103a-3p. Next, we constructed 

siRNA of Pum2 to silence Pum2 expression in CAFs, 

and found a remarkable decrease of Pum2 mRNA and 

protein expression in si-Pum2 transfected CAFs (Figure 

3B, 3C). As well, we found si-Pum2 transfection didn’t 

alter miR-103a-3p expression (Figure 3D), but si-Pum2 

inhibited miR-103a-3p expression in CAF exosomes 

(Figure 3E). Moreover, miRNA pull-down assays 

showed that Pum2 bound with miR-103a-3p in the 

cytoplasm and exosomes but not in the nucleus, 

However, mutant miR-103a-3p with a mutated 

matching sequence could not bind with Pum2 (Figure 

3F). To test the role of Pum2 on miR-103a-3p 

packaging from CAFs, we co-cultured NCI-H1650 or 

NCI-H1299 with CAFs transfected with si-Pum2 and 

Cy3 labeled miR-103a-3p. The fluorescence intensity of 

Cys-miR-103a-3p was high in NCI-H1650 or NCI-

H1299 SGC7901 cells, but si-Pum2 in CAFs blocked 

the transport of cys-miR-103a-3p from CAFs to 

NSCLC cells (Figure 3G). These data suggested that 

Pum2 contributed to miR-103a-3p packaging in CAF-

derived exosomes and facilitated miR-103a-3p transport 

from CAFs to NSCLC cells. 

 

 
 

Figure 3. Pum2 mediated miR-103a-3p packaging into CAF exosomes. (A) RBPDB analysis of the specific interaction between miR-

103a-3p and RBP motifs (threshold 0.8). Two siRNAs of Pum2 were transfected into CAFs, and the silencing efficiency was calculated by (B) 
western blot and (C) qRT-PCR assay. qRT-PCR assay was used to test the expression of miR-103a-3p in (D) CAFs and (E) exosomes from CAFs. 
(F) Western blot analysis of Pum2 expression in samples derived by miRNA pulldowns performed with nuclear, cytoplasmic, or exosomal CAFs 
lysates, biotinylated poly(G) was used as a negative control. (G) H1650 and NCI-H1299 cells were co-cultured with CAFs transfected with Cy3-
miR-103a-3p and siRNA of Pum2 for 48 h. Fluorescence microscopy was used to detect red fluorescent signals. *p<0.05 vs si-NC. 

http://rbpdb.ccbr.utoronto.ca/
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Pum2 promoted cisplatin resistance via facilitating 

exo-miR-103a-3p secretion in NSCLC cells 

 

The exosomes were isolated from CAFs transfected 

Pum2 plasmid with or without AMO-miR-103a-3p, si-

Pum2 with or without miR-103a-3p, then were added 

into NCI-H1650 and NCI-H1299 cells. And we found 

that overexpression of Pum2 promoted miR-103a-3p 

level in NSCLC cells, while AMO-miR-103a-3p 

reversed Pum2 effect (Figure 4A). Similarly, si-Pum2 

inhibited miR-103a-3p expression, while miR-103a-3p 

removed si-Pum2 effect (Figure 4B). Followed 

functional experiments showed that incubation of 

exosomes from CAFs transfected with Pum2 plasmid 

 

 
 

Figure 4. Pum2 promoted exosomal miR-103a-3p secretion and cisplatin resistance in NSCLC cells. (A) qRT-PCR analyzed the 

expression of miR-103a-3p NCI-H1650 and NCI-H1299 cells incubated with CAFs transfected Pum2 plasmid with or without AMO-miR-103a-
3p. (B) qRT-PCR analyzed the expression of miR-103a-3p NCI-H1650 and NCI-H1299 cells incubated with CAFs transfected si-Pum2 with or 
without miR-103a-3p. (C, D) CCK8 was used to test viability of NCI-H1650 and NCI-H1299 cells. (E, F) The expressions of apoptosis related 
protein Bax, Caspase3 and Caspase9 were analyzed by western bolt. (G, H) The number of apoptotic cells was calculated by flow cytometry. 
*p<0.05 vs CAF-NC exo or CAF-si-NC exo, # p<0.05 vs CAF-Pum2 exo+AMO-miR-103a-3p or CAF-si-Pum2 exo+miR-103a-3p. 
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promoted cisplatin resistance and suppressed apoptosis 

in NCI-H1650 and NCI-H1299 cells, while AMO-miR-

103a-3p remitted Pum2 function (Figure 4C, 4E, 4G). 

Analogously, incubation of exosomes from CAFs 

transfected with si-Pum2 promoted cisplatin sensitivity 

and apoptosis in NCI-H1650 and NCI-H1299 cells, 

while AMO-miR-103a-3p relieved si-Pum2 effects 

(Figure 4D, 4F, 4H). 

 

Bak1 was a direct target of miR-103a-3p 

 

Targetscan prediction data showed that the 3’UTR of 

Bak1 possessed paired bases for miR-103a-3p (Figure 

5A). qRT-PCR analysis revealed that miR-103a-3p 

significantly inhibited Bak1 expression in NCI-H1650 

and NCI-H1299 cells, while AMO-miR-103a-3p 

increased Bak1 expression (Figure 5B). What’s more, 

CAF exosomes obviously suppressed Bak1 expression 

in NCI-H1650 and NCI-H1299 cells (Figure 5C). To 

investigate whether miR-103a-3p targeted on Bak1, we 

carried out dual-luciferase reporter assay in HEK293 cell 

line. miR-103a-3p inhibited the luciferase activity of WT 

Bak1, but not the mutant Bak1 (Figure 5D). Similarly, 

AMO-miR-103a-3p promoted the luciferase activity of 

WT of Bak1 rather than mutant of Bak1 (Figure 5D). As 

expect, CAF exosomes also effectively downregulated 

the WT Bak1 luciferase activity of (Figure 5E). 

Exo-miR-103a-3p accelerated cisplatin resistance in 

NSCLC cells via Bak1 downregulation 

 

To further elucidate the functional role of the Bak1 in 

miR-103a-3p promoting cisplatin resistance, NCI-

H1650 and NCI-H1299 cells were transfected with 

Bak1 or si- Bak1 and incubated with exosomes from 

CAFs transfected with miR-103a-3p or AMO-103a-3p, 

respectively. Followed functional experiments showed 

that overexpression of Bak1 promoted cisplatin 

sensitivity and apoptosis in NCI-H1650 and NCI-H1299 

cells (Figure 6A, 6C, 6E), while silencing of Bak1 

repressed cisplatin sensitivity and apoptosis in NCI-

H1650 and NCI-H1299 cells (Figure 6B, 6D, 6F). 

 

CAF-derived exosomal miR-103a-3p promoted 

NSCLC cisplatin resistance by suppressing apoptosis 

in vivo 

 

Finally, the nude mice were injected NCI-H1650 cells 

transfected with or without a mixture of CAFs 

transfected with miR-103a-3p or AMO-miR-103a-3p or 

NC, then intraperitoneally injected with either cisplatin 

(5 mg/Kg/ 5 days) or saline after 7days of cells injection. 

Tumors grew faster and bigger in the mice with CAFs-

miR-103a-3p, while CAFs-AMO-miR-103a-3p inhibited 

the growth rate and volume of tumors (Figure 7A). 

 

 
 

Figure 5. Bak1 was a direct target of exosomal miR-103a-3p in NSCLC cells. (A) Predicted miR-103a-3p target sequences in the 3′ 

UTRs of Bak1 genes. (B) Bak1 mRNA expression in NCI-H1650 and NCI-H1299 transfected with miR-103a-3p or AMO- miR-103a-3p at 48 h 
after transfection. (C) Bak1 mRNA levels in NCI-H1650 and NCI-H1299 cells at 48 h after incubation with CAF exosomes. (D) WT and mutant 
Bak1 luciferase plasmids were transfected into HEK293 cells with miR-103a-3p or AMO- miR-103a-3p. The luciferase activity was measured 
by dual-luciferase reporter assay system. (E) The effects of CAF exosomes on Bak1 reporter luciferase activity in HEK293 cells. *p<0.05 vs miR-
NC or AMO-miR-NC or NF exo. 
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The tumors were isolated at 30 days after injection, 

CAFs-miR-103a-3p significantly increased tumors 

weight, and CAFs-AMO-miR-103a-3p decreased 

tumors weight (Figure 7B). In addition, miR-103a-3p 

decreased the mRNA expression of Bak1 in tumor 

tissues, while AMO-miR-103a-3p showed the opposite 

effect (Figure 7C). Moreover, miR-103a-3p decreased 

the protein expression of Bak1 and apoptosis related 

genes, but AMO-miR-103a-3p played the opposite role 

(Figure 7D, Figure 8). 

 

 
 

Figure 6. miR-103a-3p promotes cisplatin resistance in NSCLC cells by inhibiting Bak1. NCI-H1650 and NCI-H1299 cells were 
transfected with Bak1 or si- Bak1 and incubated with exosomes from CAFs transfected with miR-103a-3p or AMO-103a-3p, respectively.  
(A, B) CCK8 was used to test viability of NCI-H1650 and NCI-H1299 cells. (C, D) The expressions of apoptosis related protein Bax, Caspase3 and 
Caspase9 were analyzed by western bolt. (E, F) The number of apoptotic cells was calculated by flow cytometry. *p<0.05 vs CAF-miR-103a-3p 
exo+NC or CAF-AMO-miR-103a-3p exo+si-NC. 
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Figure 7. In vivo role of exo-miR-103a-3p in regulating apoptosis and chemo-sensitivity of NSCLC tumors. The nude mice were 
injected NCI-H1650 cells transfected with or without a mixture of CAFs transfected with miR-103a-3p or AMO-miR-103a-3p or NC. These mice 
were then injected with either cisplatin (5 mg/Kg/ 5 days) or saline after 7days of cells injection. (A) Alterations of tumor diameters in each 
group. (B) Weight measurements of the tumors. (C) qRT-PCR analyzed Bak1 mRNA levels in tumors. (D) The protein expression of Bak1 and 
apoptosis related protein Bax, Caspase3 and Caspase9 were analyzed by western bolt. *p<0.05. 

 

 
 

Figure 8. Hypothesis diagram illustrates function and mechanism of exosomal miR-103a-3p from CAFs in NSCLC progress. 
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DISCUSSION 
 

NSCLC has the highest incidence rate of lung cancer 

[13], which mainly treated with cisplatin-containing 

regimens in clinical chemotherapy [14]. However, the 

therapeutic effect of these regimens is not satisfactory, 

mainly due to cisplatin resistance [15]. At present, there 

is no new drug that can effectively reverse the cisplatin 

resistance of NSCLC, and it has become a focus to 

alleviate cisplatin resistance in NSCLC process. 

 

MiRNA is a kind of endogenous non-coding small 

molecule RNA, which is 19 to 24 nucleotides long and 

exists widely in eukaryotes [16]. Studies have shown 

that miRNA and its mediated signaling pathways are 

directly involved in the regulation of multiple cellular 

biological pathways and cisplatin responses in NSCLC 

[17]. It was showed that overexpression of miR-34a in 

A549 cells increased the sensitivity to cisplatin and 

decreased drug resistance-related proteins significantly 

[18]. The proliferation, invasion and metastasis of 

cancer is a long-term and complex process involving 

multiple factors and mechanisms [19]. The formation of 

NSCLC microenvironment can promote the rapid 

growth of lung cancer cells and increase the invasion 

and metastasis ability of tumor cells [20]. It was showed 

that exosomes from the supernatant of A549 cell culture 

of lung cancer increased cancer progression and 

decreased apoptosis level [21]. In present study, we 

isolated CAFs and CAF exosomes from NSCLC tissues. 

Interestingly, exosomal miR-103a-3p derived from 

CAFs in NSCLC. Our data indicated CAFs secreted 

exosomes containing microRNA in NSCLC, which was 

similar with other studies. It has been shown that CAFs 

could secret exo-miR-522 in gastric cancer [22]. 

 

Apoptosis usually occurs during normal cell 

development and maintains homeostasis [23]. Abnormal 

apoptosis can activate proto-oncogenes and promote the 

survival of tumor cells [24]. The tumor suppressor gene 

p53 is a regulatory factor of cell apoptosis [25]. TP53 

mutation or deletion can promote the formation of 

various tumors [26]. Considering the treatment status of 

NSCLC and the important role of apoptosis in tumor 

development, we wondered exo-miR-103a-3p effects in 

cisplatin resistance and apoptosis of NSCLC. We 

isolated CAFs exosomes and co-cultured with NCI-

H1650 and NCI-H1299 cells, and found that CAF 

exosomes entered NCI-H1650 and NCI-H1299 cells and 

promoted the expression of exo-miR-103a-3p. Notably, 

exo-miR-103a-3p derived from CAFs promoted cisplatin 

resistance and inhibited apoptosis in NSCLC cells. 

 

Exosome transport is an effective way to regulate signal 

transduction and biological functions of receptor cells 

[27]. And Exosome packaging microRNAs requires the 

involvement of regulatory factors, hnRNPA1 accelerated 

exosomal miR-196a packaging in head and neck cancer 

[28]. In present study, we found that RNA binding 

protein Pum2 bound with miR-103a-3p and facilitated its 

packaging into CAF-derived exosomes in NSCLC cells. 

Pum2 has been showed to play a key role in cancer 

development. LncRNA TUG1 bound with Pum2 and 

then promoted cervical cancer progression [29]. As well, 

Pum2 regulated the stemness of breast cancer cells via 

binding with miR-376a [30]. Further exploring showed 

the pro-apoptosis gene Bak1 was a direct target of miR-

103a-3p, and miR-103a-3p accelerated cisplatin 

resistance in NSCLC cells via Bak1 downregulation. In 

vivo tumorigenesis assay showed CAF-derived exosomal 

miR-103a-3p enhanced cisplatin resistance and inhibited 

cell apoptosis in NSCLC. 

 

It has been proved that miRNA is involved in the 

occurrence and development of cancers, cisplatin 

resistance of chemotherapy drugs and the sensitivity of 

patients to radiotherapy and gene therapy. It indicates 

that miRNA can improve the current treatment status of 

NSCLC patients and bring good news for their 

treatment and prognosis. Unfortunately, the current 

studies on miRNA regulation of cisplatin resistance in 

NSCLC are mostly limited to the candidate target level, 

and there is a lack of exploration on elucidating the 

cisplatin resistance mechanism at the miRNA 

expression network level. It is hoped that further 

research and exploration are needed. 

 

MATERIALS AND METHODS 
 

Clinical samples 

 

Fresh cancer tissue samples and para-carcinoma tissue 

samples were taken from 15 NSCLC patients 

undergoing surgical procedures at the First Affiliated 

Hospital of Xinxiang Medical University. All of the 

patients or their guardians provided written consent, and 

the Ethics Committee of the First Affiliated Hospital of 

Xinxiang Medical University. 

 

CAFs and exosome isolation 

 

CAFs and NFs were isolated from cancer and para-

carcinoma tissues of NSCLC patients, which were 

identified by specific makers α-SMA, FAP and FSP1. We 

collected the culture medium after 48 hours. Several 

centrifugations were performed to purify exosomes. 

Briefly, we centrifuged the supernatant at 300 g, 2,000 g 

and 10,000 g for 10 minutes, respectively. And  

then, supernatant was filtrated and purified by ultra-

centrifugation at 100,000 g. CAFs-derived exosomes were 

analyzed using exosome marker protein CD63, Tsg101 

and ALIX via Western blot. 
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Transmission electron microscopy (TEM) 

 

TEM was used to identify exosomes structures. 

Exosomes were stained by by 2% phosphotungstic acid 

for 5 min, and then observed by transmission electron 

microscope. 

 

Cell culture and treatment 

 

The NCI-H1650 and NCI-H1299 lines were purchased 

from the Science Cell Laboratory. Cells were cultured 

in PRIM 1640 (GIBCO, USA) supplemented with 10 

% fetal bovine serum (Cromwell, USA) and 100 

μL/mL penicillin and streptomycin (Sigma-Aldrich, 

USA) and placed at 37° C with 5% CO2. 2 μg plasmid 

or 500 nM si-RNA/microRNA/antisense morpholino 

oligonucleotide (AMO)-microRNA or its NC was 

transfected into cells with LipofectamineTM 2000 

(Invitrogen, Carlsbad, CA, USA), respectively. 10 μM 

cisplatin was added into medium for cisplatin 

treatment. As for co-culture assay, we used transwell 

membranes in 12-well plates. CAFs or NFs were plated 

into the upper chamber, and NCI-H1650 and NCI-

H1299 was cultured in lower chamber. 

 

qRT-PCR 

 

RNA isolation, reverse transcription and quantitative 

expression were carried according to manufacturer’s 

instructions. All the kits were purchased from Vazyme, 

and gene expression was calculated using 2-ΔΔCt 

method. 

 

Protein isolation and western blot 

 

Total protein was collected from cells with RIPA lysis 

Mix. Western blotting assay was performed as 

previously described [12]. Briefly, 60 μg protein 

extractions were loaded via SDS-PAGE and transferred 

onto nitrocellulose membranes (absin, China), then 

incubated with primary antibodies for 2 hrs at 

temperature, then plated at 4° C overnight, the 

membranes were incubated in 5% non-fat milk blocking 

buffer for horizontal mode 3 h. After incubation with 

secondary antibodies, the membranes were scanned 

using an Odyssey, and data were analyzed with 

Odyssey software (LI-COR, USA). 

 

Immunofluorescence staining 

 

Cells were plated in a 24-well cell culture plate. After 

transfection, cells were washed by PBS and fixed with 4% 

paraformaldehyde. Cells were permeabilized with 0.2% 
Triton-X-100 solution in PBS. Next, we blocked cell 

using goat serum. Then, the cells were incubated antibody 

at 4° C overnight followed with FITC-conjugated goat 

anti-mouse antibodies incubation for 1h. After three 

washes with PBS, we incubated cells by DAPI. 

 

Biotin miRNA pull-down assay 

 

The solution of exosomes was incubated with miR-

103a-3p containing a biotin modification overnight. 

And agarose beads were added into the solution and 

mixed for 4 h. The precipitates were separated and 

detected by western blotting analysis. 

 

Luciferase assay 

 

psiCHECK-2 luciferase reporter plasmid was inserted 

with the wildtype Bak1 3’UTR or mutant 3’UTR 

sequences, then were transfected with reporter vectors 

into HEK293 cells. The cells were collected after 48 h 

post-transfection and lysed to detect the luciferase 

activity (Promega, USA). 

 

CCK8 assay 

 

Cells were seeded in 96-well cell plates, and added 

CCK-8 solution (Vazyme, China) at 48 h. 2 hours later, 

measure the OD value at 450 nm. 

 

In vivo tumor growth assay 

 

Nude mice were purchased from Guangdong provincial 

experimental animal center for medicine. The nude 

mice were injected NCI-H1650 cells transfected with or 

without a mixture of CAFs transfected with miR-103a-

3p or AMO-miR-103a-3p or NC. cisplatin (5 mg/kg/ 5 

days) or saline were intraperitoneally injected into mice 

after 7days of cells injection. Tumor size was measured 

every five days. After 30 days of injection, mice were 

intraperitoneally injected with 3% pentobarbital sodium 

and were killed by excessive anesthesia with a dose of 

90 mL/kg, and the tumors were removed for follow-up 

study. 

 

Cell apoptosis assay 

 

Cell apoptosis was calculated by Annexin V apoptosis 

kit (Beyotime, China), and the operating procedure was 

according to the kit instructions. Briefly, 5×105 

cells/mL were centrifuged and resuspended in with 

Annexin V-FITC and PI solution in darkness for 15 

min. Then, Binding Buffer was mixed into the 

resuspension and detected with instrument. Cell 

apoptosis level was detected within 1 h. 

 

Statistical analysis 

 

Significant differences were calculated using two-tailed 

t-test through Graphpad 7.0 and SPSS 22.0. 
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