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INTRODUCTION 
 

As a common metabolic bone disease, osteoporosis 

(OP) has become a tremendous public health burden 

on society. Along with existing patterns of OP caused 

by imbalances between osteoclasts and osteoblasts, 

recent evidence has suggested that increased 

accumulation of bone marrow adipose tissue (MAT) 

occurred at the expense of bone development, which in 

turn suppressed osteogenic rejuvenation and hemato-

poiesis [1–4]. Aging or senescent bone marrow 

mesenchymal stem cells (BM-MSCs) may show a 

superior tendency of moving toward adipocytes more 

than osteoblasts [3]. Although, these molecular 

mechanisms have been fully identified, only a few 

drugs have been identified for the treatment of 

osteoporosis, while outcomes produced by these drugs 

are not satisfactory and are often accompanied by 

serious side effects. Therefore, it is essential to 

identify potential therapeutic targets for osteoporosis. 

 

Celastrol is an active ingredient isolated from the 

outside covering of the root of the conventional 

Chinese medicinal plant, thunder god vine [5], and 

has been shown to exert anti-tumor [6], anti-viral [7], 

antioxidant stress [8], anti-inflammation [9], immuno-

suppressive [10] and other activities. Previous reports 

have shown that Celastrol has been extensively 

utilized to treat rheumatoid arthritis [11], chronic 

obstructive pulmonary disease [12], systemic lupus 

erythematosus [13], obesity [14], insulin resistance 

[15] and nonalcoholic fatty liver disease (NAFLD) 

[16]. However, the effects of Celastrol on osteo-

porosis remain undefined. 

 

In this study, we found that Celastrol could regulate 

BM-MSCs fate and bone-fat balance in OP and 

skeletal aging by inducing PGC-1α, thereby 

expanding the spectrum of traditional OP treatment 

methods available in both experimental and clinical 

settings. 
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ABSTRACT 
 

Celastrol has recently been identified as a prospective new treatment for obesity and several metabolic 
complications. However, the effect of Celastrol in osteoporosis (OP) remains unknown. In this study, we 
demonstrated that Celastrol promotes osteoblast differentiation and prevents adipocyte differentiation in bone 
marrow mesenchymal stem cells (BM-MSCs) in vitro. Mechanistically, Celastrol was able to control the 
differentiation of BM-MSCs by stimulating PGC-1α signaling. Moreover, administration of Celastrol could alleviate 
bone loss and bone marrow adipose tissue (MAT) accumulation in ovariectomized (OVX) mice and aged mice. 
Together, these results recommended that Celastrol could regulate BM-MSCs fate and bone-fat balance in OP and 
skeletal aging by stimulating PGC-1α, which might act as a possible therapeutic target for OP and for the prevention 
of skeletal aging. 
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RESULTS 
 

Celastrol promoted the osteogenic differentiation of 

BM-MSCs in vitro 

 

In recent years, research on Celastrol has become 

increasingly popular due to the therapeutic effects of 

this active ingredient. In order to investigate the impacts 

of various dosages of Celastrol on the osteogenic 

differentiation of BM-MSCs, first a Cell Counting Kit-8 

(CCK-8) assay was performed to evaluate the cyto-

toxicity of Celastrol. The result of CCK-8 assay 

recommended that Celastrol did not influence cell 

viability at concentrations of 0.25, 0.5 and 1.0 μM 

(Figure 1A, P=0.8264). Next, the BM-MSCs were 

cultured in an osteogenesis induction medium with 

different concentrations of Celastrol. The osteogenic 

differentiation capacity of BM-MSCs increased in a 

dosage-dependent manner, as demonstrated using 

Alizarin Red staining (Figure 1B, 1C, P<0.0001 (Figure 

1C)). Moreover, osteoblast differentiation markers, 

alkaline phosphatase (ALP) activity and bone gamma-

carboxyglutamic acid-containing protein (BGLAP) 

secretion also increased, compared with that of control 

cells (Figure 1D, 1E; P<0.000 1 (Figure 1D), P<0.0001 

(Figure 1E)). Moreover, mRNA levels of the osteoblast 

transcription factors, Osterix and Runx2, were rapidly 

elevated due to Celastrol treatment in a dosage-

dependent manner (Figure 1F, P<0.0001). Together, 

these results recommended that Celastrol induced the 

osteogenic differentiation of BM-MSCs in vitro. 

 

Celastrol inhibited the adipogenic differentiation of 

BM-MSCs in vitro 
 

In order to investigate the impact of different 

concentrations of Celastrol on the adipogenic 

differentiation of BM-MSCs, the cells were cultured in 

an adipogenic induction medium supplied with different 

concentrations of Celastrol. The adipogenic differen-

tiation capacity of BM-MSCs diminished in a dosage-

dependent manner, as demonstrated using oil red 

staining (Figure 2A, 2B; P<0.0001 (Figure 2B)). 

Furthermore, the mRNA levels of peroxisome 

proliferator–activated receptor-g (Pparg) and fatty acid 

binding protein 4 (Fabp4), two main indicators of 

adipocyte differentiation, also decreased (Figure 2C, 

P<0.0001). Together, these results recommended that 

Celastrol inhibited the adipogenic differentiation of 

BM-MSCs in vitro. 

 

Celastrol regulated the differentiation of BM-MSCs 

by activating PGC-1α signaling 

 

Accumulation of oxidative stress is related to bone loss 

in OP and skeletal aging [17, 18]. PGC-1α plays an 

important role in regulating oxidative stress in 

multifarious mitochondria-rich tissues [19, 20]. More 

importantly, PGC-1α can reduce ROS in BM-MSCs, 

participating in controlling lineage decisions between 

osteoblasts and adipocytes fate of BM-MSCs [21].  We 

established that the transcript levels of PGC-1α mRNA 

in BM-MSCs treated with Celastrol were obviously 

elevated (Figure 3A, P<0.0001). Furthermore, levels of 

UCP2 and Catalase, which are negative regulators of 

ROS, were also significantly elevated (Figure 3A, 

P<0.0001). Western blotting analysis further confirmed 

that Celastrol could promote the protein expression 

levels of PGC-1α (Figure 3B). Moreover, the 

acetylation levels of PGC1α decreased in the Celastrol-

treated group (Figure 3C). 

 

In order to identify pathways involved in activating 

PGC-1α by Celastrol, we measured the rate of 

phosphorylation of AMP kinase (AMPK) and 

expression of SIRT1 in BM-MSCs using western 

blotting analysis. The results revealed that the Celastrol-

treated group showed significantly higher levels of 

AMPK activity (exhibited as pAMPK/AMPK, 

P=0.0003) and higher levels of SIRT1, compared with 

the control group (Figure 3D, 3E). In order to confirm 

whether Celastrol regulated the fate of BM-MSCs via 

activation of PGC-1α signaling, we silenced PGC-1α 

signaling in BM-MSCs using siRNAs and then treated 

BM-MSCs with Celastrol. The successful establishment 

of the inhibition of PGC-1α in BM-MSCs was 

confirmed using western blotting analysis (Figure 3F). 

Interestingly, Celastrol supplementation could enhance 

osteogenic differentiation and abrogate adipogenic 

differentiation in BM-MSCs of the WT control group 

(Figure 3G–3J; P<0.0001 (Figure 3H, left panel), 

P<0.0001 (Figure 3J, left panel)). Nevertheless, in the 

PGC-1α-knockdown group, Celastrol failed to restore 

homeostasis between osteogenic and adipogenic 

differentiation of BM-MSCs (Figure 3G–3J; P=0.5283 

(Figure 3H, right panel), P=0.0582 (Figure 3J, right 

panel)).  

 

In order to further confirm the role of PGC-1a in vivo, 

PGC-1α-knockout (PGC-1α-/-) mice (2 month old) and 

WT mice (2 month old) were ovariectomized. 12 weeks 

later, the mice were intraperitoneally injected with 

Celastrol (200 μg/kg) or DMSO (control), every two 

days for 4 weeks. As expected, Celastrol treatment 

reduced the number and area of adipocytes in the bone 

marrow and increased the number and surface of 

osteoblasts on trabecular and endosteal bone surfaces in 

WT OVX mice, while the curative effect of Celastrol in 

PGC-1α-/- OVX mice was offset (Figure 3K). Taken 

together, these results indicated that Celastrol regulated 

the differentiation of BM-MSCs by activating PGC-1α 

signaling. 
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Administration of Celastrol alleviated bone loss and 

MAT accumulation in aged mice  
 

In order to explore the remedial potential of Celastrol 

on aging-associated osteoporosis, aged (18 month old) 

male mice were intraperitoneally injected with Celastrol 

(200 μg/kg, 98% (HPLC), Sigma, St. Louis, MO) or 

DMSO (control) every two days for 4 weeks. Mice 

treated with Celastrol showed increased PGC-1α 

expression levels, compared with the vehicle-treated 

group (Figure 4A, P=0.0003). As a result, Celastrol 

augmented trabecular bone volume and number, as well

 

 
 

Figure 1. Celastrol promoted the osteogenic differentiation of BM-MSCs in vitro. (A) BM-MSCs were seeded into 96-well plates at a 

density of 8×103 cells/well and treated with different concentrations of Celastrol for 48 h. Cell viability was determined using CCK-8 assay. (B, 
C) Representative images of Alizarin Red S staining (B) and quantitative analysis (C) of matrix mineralization of BM-MSCs cultured in the 
osteogenesis induction medium for 21 days. Scale bar: 100 μm. (D, E) Analysis of ALP activity (D) and osteocalcin secretion (E) of BM-MSCs 
cultured in the osteogenesis induction medium for 48 hours (n = 3 per group). (F) qRT-PCR analysis of the relative levels of Osterix and Runx2 
mRNA expression in BM-MSCs cultured in the osteogenesis induction medium for 48 hours (n = 3 per group). Results are shown as mean ± 
SD. Statistical significance was determined using analysis of variance (one-way ANOVA). *P < 0.0001 compared with control. 
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as cortical bone thickness, and reduced trabecular 

separation and the endosteal perimeter (Figure 4B–4G; 

P=0.0031 (Figure 4C), P=0.0084 (Figure 4D), P=0.0187 

(Figure 4E), P=0.0263 (Figure 4F), P=0.0259 (Figure 

4G)). Moreover, the bone strength of Celastrol treated 

mice was higher (Figure 4H–4I; P=0.0021 (Figure 4H), 

P=0.0031 (Figure 4I)). Vertebral bone volume was also 

higher in Celastrol treated mice, compared with the 

vehicle-treated group (Figure 4J–4K; P<0.0001 (Figure 

4K)). In addition, Celastrol–treated mice showed an 

obviously lower number and area of adipocytes in bone 

marrow and a higher number and surface area of 

osteoblasts on the trabecular and endosteal bone surfaces 

(Figure 4L). Thus, together these results indicated that the 

administration of Celastrol alleviated bone loss and MAT 

accumulation in aged mice. 

 

Celastrol treatment increased bone formation and 

decreased bone marrow fat in OVX mice 

 

Ovariectomy (OVX) is a well-known model utilized to 

trigger postmenopausal estrogen deficiency as well as 

prompt osteoporotic bone loss. In order to further 

confirm the therapeutic effect of Celastrol, OVX mice 

were intraperitoneally injected with Celastrol, as 

mentioned above. Similar to the results obtained from 

the previous experiment, mice treated with Celastrol 

showed elevated PGC-1α expression levels (Figure 

5A, P=0.0008). Furthermore μCT analysis indicated 

that mice treated with Celastrol showed a significantly 

greater increase in trabecular bone volume, number as 

well as cortical thickness, and a reduction in trabecular 

separation and endosteal perimeter (Figure 5B–5G; 

P=0.0054 (Figure 5C), P < 0.0001 (Figure 5D), P= 

0.0167 (Figure 5E), P= 0.0004 (Figure 5F), P < 0.0001 

(Figure 5G)). Furthermore, bone strength was greater 

in the Celastrol treated group (Figure 5H–5I; 

P<0.0001 (Figure 5H), P < 0.0001 (Figure 5I)). 

Furthermore, the vertebral bone volume of Celastrol 

treated mice had increased (Figure 5J–5K; P < 0.0001 

(Figure 5K)). Meanwhile, adipocyte numbers along 

with the area of bone marrow covered by them had 

significantly decreased and the number and surface of 

osteoblasts on trabecular and endosteal bone surfaces 

had increased in Celastrol treated mice (Figure 5L). 

These outcomes recommended that Celastrol treatment 

increased bone formation and decreased bone marrow 

fat in OVX mice. 

 

 
 

Figure 2. Celastrol inhibited the adipogenic differentiation of BM-MSCs in vitro. (A, B) Representative images of Oil Red O 

staining of lipids (A) and quantification of the number of spots (B) on BM-MSCs cultured in the adipogenesis induction medium for 14 days. 
Scale bar: 100 μm. (C) qRT-PCR analysis of the relative levels of Pparg and Fabp4 mRNA expression in BM-MSCs cultured in the adipogenesis 
induction medium for 48 hours (n = 3 per group). Results are shown as mean ± SD. Statistical significance was determined using analysis of 
variance (one-way ANOVA). *P < 0.0001 compared with control. 
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Figure 3. Celastrol regulated the differentiation of BM-MSCs by activating PGC-1α signaling. (A) Expression levels of PGC-1α, 

UCP2 and Catalase in BM-MSCs treated with the vehicle or Celastrol (1.0 μM, 48 hours) (n = 3 per group). (B) Western blotting analysis of the 
protein levels of PGC-1α of BM-MSCs treated with the vehicle or Celastrol (1.0 μM, 48 hours). (C) Western blotting analysis for the detection 
of PGC1α acetylation levels in PGC1α immunoprecipitates obtained from BM-MSCs transfected with pcDNA-Flag-PGC1α and treated with the 
vehicle or Celastrol (1.0 μM, 48 hours). (D) Western blotting analysis for the detection of pAMPK in BM-MSCs treated with the vehicle or 
Celastrol (1.0 μM, 48 hours). The levels of pAMPK were quantified using ImageJ software and were normalized to total AMPK levels (D, 
bottom). (E) Western blotting analysis of the protein levels of SIRT-1 in BM-MSCs treated with the vehicle or Celastrol (1.0 μM, 48 hours). (F) 
Western blotting analysis of the relative levels of PGC-1α in BM-MSCs transfected with PGC-1α siRNA. (G, H) Representative images of 
Alizarin Red staining (G) and quantitative analysis (H) of matrix mineralization of BM-MSCs cultured in the osteogenesis induction medium for 
21 days. Scale bar: 100 μm. (I, J) Representative images of Oil Red O staining of lipids (I) and quantification of the number of spots (J) on BM-
MSCs cultured in the adipogenesis induction medium for 14 days. Scale bar: 100 μm. (K) PGC-1α-knockout (PGC-1α-/-) mice (2 month old) and 
WT mice (2 month old) were ovariectomized. 12 weeks later, they were intraperitoneally injected with Celastrol (200 μg/kg) or DMSO 
(control) every two days for 4 weeks. H&E staining (top) and osteocalcin immunohistochemical staining (bottom) of the bone were 
conducted to evaluate the numbers and area covered by adipocytes and osteoblasts after Celastrol treatment. Scale bar: 100 μm. Data are 
presented as mean ± SD. Statistical significance was determined using the t-test. *P < 0.0001; #P < 0.001 compared with control. 
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DISCUSSION 
 

The occurrence of OP along with its complications are 

rapidly increasing globally. Therefore, it is imperative 

to identify more effective and safer therapy options for 

osteoporosis. Previous scientific evidence has found 

that BM-MSCs have a tendency to differentiate into 

adipocytes rather than osteoblasts as age increases, 

resulting in the gradual accumulation of fat and bone 

loss [22]. Thus, BM-MSCs are regarded as promising 

therapeutic targets for OP. In this study, our results 

demonstrated that Celastrol promotes osteoblast 

 

 
 

Figure 4. Administration of Celastrol alleviated bone loss and MAT accumulation in aged mice. (A) mRNA expression level of 

PGC-1α in the BM-MSCs determined using qRT-PCR (n = 3 per group). (B–G) Representative μCT images (B) and quantitative μCT analysis of 
trabecular (C–E) and cortical (F, G) bone microarchitecture in the femora of Celastrol-treated mice. n = 6-7 per group. (H–I) Three-point 
bending measurement of femur maximum load (H) and stiffness (I). n = 5 per group. (J, K) Representative μCT images (J) and quantification of 
the ratio of bone volume to tissue volume (K) of L4 vertebrae (Vt. BV/TV). n = 6 per group. (L) Representative images of H&E staining (L, top) 
and osteocalcin immunohistochemical staining (L, bottom). Scale bars: 100 μm. n = 5 per group. Data are presented as mean ± SD. Statistical 
significance was determined using analysis of variance (one-way ANOVA). #P < 0.001; **P < 0.01; *P < 0.05. 
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differentiation as well as inhibits adipocyte differen-

tiation in BM-MSCs in vitro. Consistent with our 

results, Hong’s research also found that Celastrol 

exerted an inhibitory effect on lipid accumulation and 

the adipogenesis of human adipose-derived stem cells 

(hADSCs) [23]. Additionally, Celastrol could regulate 

the function of bone marrow-derived endothelial 

progenitor cells (BM-EPCs) [24]. 

 

More importantly, we found that Celastrol controlled 

the differentiation of BM-MSCs by inducing PGC-1α 

signaling. Reactive oxygen species (ROS)-induced 

oxidative stress rises along with aging, resulting in the 

pathophysiology of aging related OP and postmenopausal 

osteoporosis [25, 26]. Excessive levels of ROS can 

prevent the differentiation and development of osteoblasts 

[27]. PGC-1α performs an imperative function in 

 
 

 

Figure 5. Celastrol treatment increased bone formation and reduced bone marrow fat in OVX mice. (A) mRNA expression level 

of PGC-1α in the BM-MSCs determined using qRT-PCR (n = 3 per group). (B–G) Representative μCT images (B) and quantitative μCT analysis 
of trabecular (C–E) and cortical (F, G) bone microarchitecture of the femora of Celastrol-treated mice. n = 6-7 per group. (H–I) Three-point 
bending measurement of femur maximum load (H) and stiffness (I). n = 5 per group. (J, K) Representative μCT images (J) and quantification of 
the ratio of bone volume to tissue volume (K) of L4 vertebrae (Vt. BV/TV). n = 6 per group. (L) Representative images of H&E staining (L, top) 
and osteocalcin immunohistochemical staining (L, bottom). Scale bars: 100 μm. n = 5 per group. Data are presented as mean ± SD. Statistical 
significance was determined using analysis of variance (one-way ANOVA). #P < 0.001; **P < 0.01, *P < 0.05. 



 

www.aging-us.com 16894 AGING 

defending against ROS produced by mitochondrial 

activity via its capability to stimulate several anti-

oxidant enzymes, including SOD, catalase and 

glutathione peroxidases [28]. The results of Yu’s 

research study indicated that PGC-1α is critically 

involved in determining the fate of BM-MSCs as well 

as the prevention of MAT buildup as a result of OP and 

skeletal aging [21]. In our study, we found that mRNA 

and protein expression level of PGC-1α in BM-MSCs 

treated with Celastrol were obviously elevated. 

Furthermore, levels of UCP2 and Catalase, which are 

negative regulators of ROS, also significantly increased. 

Likewise, other reports also found that Celastrol could 

augment PGC-1α expression in adipocytes and skeletal 

muscles [29, 30]. 

 

AMPK and SIRT1 are major upstream regulators of 

PGC-1α and are inhibited in pathological conditions 

such as oxidative stress and aging [31]. The activation 

of AMPK and SIRT1 produces beneficial effects on 

these conditions. In NAFLD mice, Celastrol could 

enhance the phosphorylation of AMPK and induce 

hepatic SIRT1 expression [16]. Consistently, our results 

revealed that Celastrol could increase AMPK 

phosphorylation and SIRT1 protein expression levels. 

Taken together, our data recommended that Celastrol 

regulated the differentiation of BM-MSCs by activating 

the AMPK/SIRT1-PGC-1α signaling pathway. 

Similarly, Wang’s study also found that Celastrol could 

exert an anti-inflammatory effect in liver fibrosis by 

increasing AMPK- PGC-1α signaling [32]. In diabetic 

rats, Celastrol was found to have exerted antioxidant 

effects on the skeletal muscle, partially by regulating 

the AMPK-PGC1α-Sirt3 signaling pathway [30].  

 

Celastrol is a traditional Chinese medicine that exerts 

many biological activities. Celastrol could attenuate 

intrahepatic cholestasis in pregnancy by preventing 

matrix Metalloproteinases-2 and -9 [33]. Ma et al. found 

that Celastrol exerted protective effects against obesity 

and metabolic dysfunction via stimulation of the 

HSF1/PGC1α transcriptional axis [34]. It has been 

documented that Celastrol-induced the prevention of 

NF-κB scheme associates by exerting an anti-

inflammatory response [35, 36] and anti-cancer effect 

[37]. Furthermore, Celastrol could ameliorate aceta-

minophen-induced oxidative stress as well as cyto-

toxicity in HepG2 cells [38]. However, only a few 

studies have been conducted on the therapeutic effect of 

Celastrol on osteoporosis. In this study, we established 

that the administration of Celastrol could alleviate bone 

loss and MAT accumulation in old mice and OVX 

mice. 

 

These outcomes indicated that Celastrol could regulate 

bone marrow stem cell differentiation and bone-fat 

balance in OP and skeletal aging by stimulating PGC-

1α, which might act as a possible therapeutic target for 

OP and for the prevention of skeletal aging. 

 

MATERIALS AND METHODS 
 

Cell culture 

 

Mice BM-MSCs were acquired and cultured, as 

described in previous reports [39, 40]. In brief, bone 

marrow cells acquired from the bone marrow cavity of 8 

week old mice were incubated at 4°C for 20 min along 

with the following antibodies: Sca-1, CD29, CD45 and 

CD11b. Thereafter, Sca-1+CD29+CD45−CD11b− BM-

MSCs were separated using flow cytometry (BD 

Biosciences) and cultured in DMEN supplemented with 

10% FBS (Gibco, Invitrogen, USA) and 1% penicillin/ 

streptomycin. 

 

For the transfection of PGC-1α siRNA and its 

respective negative control (NC), the BM-MSCs were 

seeded into 12-well plates and transfected on a lipo-

fectamine 2000 system (Thermo Scientific), according 

to manufacturer's recommendations. 

 

Cell viability 

 

We used CCK-8 assay to assess the viability of BM-

MSCs after Celastrol treatment, as instructed by the 

supplier. Absorbance was measured at 450 nm via a 

microplate reader (Thermo Electron Corp). 

 

Animals  
 

Pathogen free (SPF) C57BL/6J mice were obtained 

from Hunan SLACCAS Jingda Experimental Animal 

Co. Ltd., while PGC-1α-/- mice were obtained from 

Jackson Laboratories. All animals were housed under 

12-hour light/dark cycles and were provided 

unrestricted access to food and water, unless otherwise 

specified. This study was approved by the Animal Care 

Committee of Central South University.  
 

For prior to ovarian surgery, OVX mice (2-month-old) 

were intraperitoneally injected with ketamine (80 

mg/kg.bw) plus xylazine (10 mg/kg.bw). Then, the mice 

were kept in the lateral position and the dorsal and 

ventral skin was disinfected with a cotton soaked in 

alcohol. An incision of about 5 mm in length was made 

on the area ventral to the erector spinae caudal from the 

last rib through ophthalmology. The lower lumbar 

muscle was cut to locate the ovaries, which was 

surrounded by adipose tissue. Both sides of each ovary 

were ligated and the ovaries were removed. Once the 

surgery was completed, the incision was sutured, and 

the mice were placed in warm cages for recovery. 
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Table 1. Primer sequences used for real-time PCR analysis. 

Gene Forward primer  Reverse primer 

Actin(mouse) GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT 

Actin(human) CGTGGACATCCGCAAAGA TCGTCATACTCCTGCTTGCTG 

Runx2 (mouse) ACTTCCTGTGCTCCGTGCTG TCGTTGAACCTGGCTACTTGG 

Osterix (mouse) ACCAGGTCCAGGCAACAC GCAAAGTCAGATGGGTAAGTAG 

PPAR g (mouse) GACCACTCGCATTCCTTT CCACAGACTCGGCACTCA 

Fabp4 (mouse) AAATCACCGCAGACGACA CACATTCCACCACCAGCT 

PGC-1α (mouse) AGCCGTGACCACTGACAACGAG GCTGCATGGTTCTGAGTGCTAAG 

PGC-1α(human) TCTGAGTCTGTATGGAGTGACAT CCAAGTCGTTCACATCTAGTTCA 

UCP2 (mouse) ACAAGACCATTGCACGAGAG ATGAGGTTGGCTTTCAGGAG 

Catalase(mouse) TGAGAAGCCTAAGAACGCAATTC TGAGAAGCCTAAGAACGCAATTC 

 

Administration of Celastrol 

 

For intraperitoneal (i.p.) treatment, mice received 25 μl 

of vehicle (DMSO) on four consecutive days as 

acclimation before the doses of Celastrol or vehicle 

treatment indicated were administered. Celastrol was 

dissolved in DMSO solution and the mice were 

administered intraperitoneal injections of Celastrol (200 

μg/kg), every two days for 4 weeks. Vehicle groups 

received the same volume of DMSO for control pur-

poses during the experiments. 

 

Osteogenic differentiation and mineralization assay 

 

In order to induce osteoblastic differentiation, BM-

MSCs were cultured in 24-well plates at appropriate 

densities in an osteogenesis induction medium for 48 

hours. Then, the culture media were obtained for 

evaluation of ALP activity and osteocalcin levels using 

ELISA kits, as instructed by the supplier. 

 

In order to induce osteoblastic mineralization, the above 

mentioned process was performed in 6-well plates at 

appropriate densities with an osteogenesis induction 

medium for 21 days. Alizarin Red staining was 

conducted and used to quantitatively assess cell matrix 

mineralization. 

 

Adipogenic differentiation assay 

 

In order to induce adipogenic differentiation, BM-

MSCs were cultured in 6-well plates at a density of 2.5 

× 106 cells/well in an adipogenesis induction medium 

for 14 days. Oil Red O staining was performed to 

identify mature adipocytes in the culture. 

 

Immunoprecipitation and Western blotting analysis 

 

Cells were transfected with pcDNA-Flag-PGC1α. After 

24–48 hours, the cells were lysed in a lysis buffer with a 

protease inhibitor cocktail, cleared using centrifugation, 

and subjected to immunoprecipitation using Flag-

conjugated beads (Sigma-Aldrich). After 2 to 3 hours, the 

beads were washed, resuspended in a protein loading 

buffer, and boiled. Then, the supernatant was subjected to 

SDS-PAGE and proteins were detected using the 

indicated antibodies. 

 

Immunohistochemical staining 

 

Immunohistochemical staining was conducted, as 

previously described [41, 42]. Bone segments were 

treated for antigen recovery through assimilation with 

0.05% trypsin at 37°C for 15 minutes, and were then 

probed using a primary antibody against osteocalcin 

(Takara) overnight at 4°C. Consequently, an HRP-

streptavidin recognition system (Dako) was utilized to 

distinguish immunoactivity, followed by counter-

staining with hematoxylin (Sigma). The segments 

probed with polyclonal rabbit IgG (R&D Systems Inc.) 

acted as negative controls. 

 

qRT-PCR analysis 

 

Total RNA was extracted using TRIzol reagent 

(Thermo Fisher). qPCR was performed using a 

PrimeScript RT reagent Kit (Takara) and SYBR Green 

PCR Master Mix (Takara). Each value was adjusted by 

using β-actin levels as reference. The list of primers 

used are mentioned in Table 1. 

 

Micro-CT analysis 

 

The femurs were separated from mice and fixed in 4% 

paraformaldehyde overnight. Next, they were imaged 

and evaluated using high-resolution micro-CT analysis 

(Skyscan 1172, Bruker MicroCT). We selected an area 

of 5% of femoral length below the growth plate for 

examination. Trabecular bone volume per tissue volume 

(Tb. BV/TV), trabecular number (Tb.N), trabecular 

separation (Tb.Sp) and trabecular thickness (Tb.Th) 

were determined.  
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Statistical analysis 

 

The results are expressed as mean ± SD. Two-tailed 

Student’s t test (for comparison between two groups) as 

well as one-way ANOVA (for comparison between 

multiple groups) were performed. All experiments were 

repeated a minimum of 3 times. A P value of < 0.05 

signified statistical significance. 
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