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INTRODUCTION 
 

Acute myeloid leukemia (AML) is a rapidly progressing 

malignancy characterized by immature differentiation 

and abnormal proliferation of hematopoietic precursors 

in bone marrow and blood [1, 2]. Although AML 

accounts for only 20% of pediatric leukemia cases, it is 

disproportionately responsible for more than 30% of 

mortality in suffering children [3, 4]. In current 

therapies for AML, cytarabine, a DNA nucleoside 

analog that disrupts DNA synthesis, serves as an 

essential and effective cytotoxic agent in both primary 

and salvage chemotherapy regimens [5]. Despite a high 

early remission rate, most AML cases frequently relapse 

and gain resistance against cytarabine, leading patients 

to succumb to the disease [6]. The 5-year survival rate 

for AML patients is only about 30%, which is even 

worse among elderly patients [7]. Due to this major 

clinical challenge, it is urgent to understand the 

underlying molecular basis and identify therapeutic 

targets that could overcome cytarabine resistance. 

 

In the last decade, considerable attention has been paid 

to study the role of autophagy in chemoresistance [8]. 

Autophagy is an evolutionarily conserved catabolic 

pathway constituting a cellular quality control 
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cytotoxicity, which is associated with suppression of caspase-dependent apoptotic pathway. Overall, this study 
demonstrates that targeting ATG7 and ATG2B-dependent autophagy is a critical mechanism by which miR-143 
sensitizes AML to cytarabine, implicating it as a potential therapeutic target in AML treatment. 
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mechanism. It promotes bulk degradation of 

intracellular substrates in lysosomes, such as aggregated 

or misfolded proteins and impaired organelles [9].  

In addition to homeostatic functions, autophagy has  

also been shown to increase cytotoxic drug resistance 

during chemotherapy that helps cancer cell to survive 

[10]. For instance, inhibition of autophagy was found to 

sensitize AML cells to cytarabine treatment in vitro 

[11–13]. However, the mechanisms for autophagy-

mediated cytarabine resistance are still largely 

undefined and the prospect of directly targeting 

autophagy remains poor. 

 

MicroRNAs (miRNAs) are defined as small non-coding 

RNAs with 19 to 25 nucleotides in length. miRNAs can 

bind to the 3’ untranslated region (3’-UTR) of target 

mRNAs, resulting in translational repression or gene 

silencing [14]. Many studies have demonstrated that 

miRNAs play important roles in a variety of vital 

biological processes, such as proliferation, 

differentiation, apoptosis, autophagy and aging [15]. 

Moreover, miRNAs also influence malignant 

transformation and chemoresistance in AML [16, 17]. 

Recently, miR-143 was identified as a relevant 

prognostic and therapeutic factor in AML therapy [18]. 

Furthermore, miR-143 inhibits autophagy in non-small 

cell lung cancer cells and gastric cancer cells to improve 

chemoresistance towards quercetin [19, 20]. These 

reports intrigued us to ask whether and how miR-143 

enhances cytarabine cytotoxicity in AML cells. In this 

study, we show that miR-143 expression in AML cells 

is decreased upon treatment with cytarabine. Further, 

using overexpression and knockdown strategies, we 

demonstrate that miR-143 enhances cytarabine 

cytotoxicity in AML cells by suppressing autophagy 

through targeting ATG7 and ATG2B. 
 

RESULTS 
 

miR-143 expression is decreased in cytarabine-

treated AML cells 
 

Previous studies have found that miR-143 is frequently 

downregulated in various types of cancer, including 

hematopoietic malignancies [24, 25]. More recently, 

miR-143 expression has been shown to predict outcome 

of AML patients [18]. To explore whether miR-143 is 

associated with cytarabine cytotoxicity in AML cells, 

we first monitored its expression in cytarabine-treated 

human AML cell lines, HL60 and U937, using RT-

qPCR analysis. The results showed that miR-143 

expression in both HL60 (Figure 1A) and U937 (Figure 

1B) cells was decreased by cytarabine treatment in a 

dose-dependent manner. Similar tendency was found in 

a time-dependent manner (data not shown). To establish 

a closer relevance to the clinical settings, AML cells 

from 3 newly diagnosed patients were collected, and 

further expanded and treated with cytarabine in vitro. 

Astonishingly, similar to that found in HL60 and U937 

cells (Figure 1A, 1B), miR-143 expression was also 

dose-dependently downregulated in these primary AML 

cells (Figure 1C). Hence, the results from both AML 

cell lines and clinical specimens suggest that miR-143 

responds to cytarabine treatment by downregulation. 

 

 
 

Figure 1. Cytarabine treatment decreases miR-143 expression in AML cells. (A, B) Human AML cell line HL60 (A) and U937 
(B) were treated with increasing concentrations of cytarabine as indicated for 24 h. The expression level of miR-143 was 
determined by RT-qPCR analysis. The house-keeping gene ACTB was used as a reference control. The results are expressed 
as relative to vehicle group. (C) Three lines of primary AML cells from newly diagnosed patients (named as AML #1, AML 
#2, AML #3) were individually treated as in (A, B). The analysis of expression level of miR-143 was conducted as in (A, B). 
Each column represents the value from 5 replicates. All data are mean ± SD from three independent experiments. Data 
between two groups were compared using Student t-test. **, P<0.01; *, P<0.05; NS, not significant, versus 0 nM group in 
each cell line. 



 

www.aging-us.com 20113 AGING 

miR-143 enhances cytarabine-induced cytotoxicity in 

AML cells 

 

miRNA signatures are associated with chemosensitivity 

in tumors, including AML [26–28]. The downregulation 

of miR-143 in cytarabine-treated AML cells led us to 

evaluate its possible role in cytarabine cytotoxicity. To 

explore this, miR-143 was ectopically overexpressed in 

HL60 cells and then cells were treated with cytarabine. 

Cells viabilities were determined using MTT assays. 

The result showed that in comparison to control 

samples, miR-143 overexpression resulted in further 

decreased cell viability upon cytarabine treatment 

(Figure 2A), indicating an enhanced cytarabine 

cytotoxicity in HL60 cells upon miR-143 

overexpression. Additionally, similar results were also 

obtained when primary AML cells were investigated 

(Figure 2B). On the other hand, when miR-143 was 

knocked down by transfection of an antagomir, the 

survival rate of cytarabine-treated HL60 cells (Figure 

2C) and primary AML cells (Figure 2D) was 

profoundly improved. In addition to MTT assays, 

similar results were obtained using CCK-8 experiment 

(Supplementary Figure 1A, 1B). And all the above 

phenomena were also reproducible in a time-dependent 

manner (data not shown). Taken together, these lines of 

evidence suggest that miR-143 functions to increase 

cytarabine cytotoxicity in AML cells, at least in vitro. 

 

miR-143 inhibits autophagy in cytarabine-treated 

HL60 cells 
 

Autophagy is an important intracellular physiological 

process that influences cytarabine chemosensitivity in 

 

 
 

Figure 2. miR-143 enhances cytotoxicity of cytarabine in AML cells. (A, B) HL60 (A) and AML #1 (B) cells were transfected with 100 
nM miR-143 mimic (O/E miR-143) or 100 nM non-target mimic control (O/E Ctrl) for 48 h, and then treated with increasing concentrations of 
cytarabine as indicated for 24 h. Cell viability was analyzed by MTT assay. The results are expressed as relative to vehicle group (%). (C, D) 
HL60 (C) and AML #1 (D) cells were transfected with 100 nM antagomir of miR-30a (Antagomir-143) or 100 nM non-target antagomir 
(Antagomir Ctrl) for 48 h, and then treated with increasing concentrations of cytarabine as indicated for 24 h. Cell viability was analyzed and 
expressed as in (A–B). Each symbol represents the value from 5 replicates. Data were compared using two-way ANOVA with a post hoc 
Tukey’s test. **, P<0.01.  
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leukemia cells [8]. It has also been reported that 

cytarabine treatment induces autophagy in AML cells 

[13, 29]. Further, some literatures have shown that miR-

143 inhibits autophagy in the non-small cell lung cancer 

H1299 cells and gastric cancer cells [19, 20]. However, 

whether miR-143 modulates autophagy and cytarabine 

chemosensitivity in HL60 cells is unknown. To gain 

mechanistic insight into the enhanced cytarabine 

cytotoxicity by miR-143, we assessed autophagy level 

in cytarabine-treated HL60 cell by manipulating miR-

143 expression levels. Western blotting analysis showed 

that cytarabine treatment induced the microtubule-

associated protein1 light chain 3 (MAP1LC3)-II  (LC3-

II) turnover, a widely-used prominent indicator of 

autophagy [30], which was, however, suppressed by 

miR-143 overexpression (Figure 3A, 3B). Furthermore, 

miR-143 overexpression inhibited cytarabine-induced 

degradation of an autophagic substrate sequestosome 1 

(SQSTM1), though this phenotype was abolished when 

an autophagic inhibitor chloroquine was present (Figure 

3C). In other set of experiments, miR-143 knockdown 

led to elevated autophagy levels in cytarabine-treated 

HL-60 cells, which was evidenced by elevated LC3-II 

turnover (Figure 3D, 3E) along with increased SQSTM1 

degradation (Figure 3F). Overall, these results indicate 

that miR-143 inhibits cytarabine-induced autophagy in 

HL60 cells, and this effect may be associated with miR-

143-promoted cytarabine cytotoxicity. 

 

miR-143 directly targets ATG7 and ATG2B in HL60 

cells 

 

To understand how miR-143 inhibits autophagy, we 

explored its potential autophagic targets using target 

prediction algorithms including TargetScanHuman 

version 7.2 and miRbase, and the putative binding sites 

of miR-143 within the 3’UTR of autophagy-related 

protein 7 (ATG7) and ATG2B mRNA were predicted 

 

 
 

Figure 3. miR-143 inhibits cytarabine-induced autophagy in HL60 cells. (A, B) HL60 cells were transfected with 100 nM  
O/E miR-143 or 100 nM O/E Ctrl for 48 h, and then treated with or without 500 nM cytarabine for 24 h. The protein expression of  
LC-3 was measured by immunoblotting. β-actin was used as a loading control. The representative images (A) and statistical analysis of 
LC3-II/β-actin (B) are shown. (C) HL60 cells were transfected as in (A) and treated with cytarabine in the presence or absence of 30 
µM chloroquine. The expression of SQSTM1 was analyzed by immunoblotting. (D, E) HL60 cells were transfected with 100 nM 
Antagomir-143 or 100 nM Antagomir Ctrl for 48 h, and then treated with or without 500 nM cytarabine for 24 h. The protein 
expression of LC-3 (D) and statistical analysis of LC3-II/β-actin (E) were conducted as in (A, B). (F) HL60 cells were transfected as in (D) 
and treated with cytarabine in the presence or absence of 30 µM chloroquine. The expression of SQSTM1 was analyzed by 
immunoblotting. All data were from 3 independent experiments and expressed as mean ± SD. Data were compared using Student t-
test. **, P<0.01. 
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(Figure 4A), which are two critical components for 

autophagy formation [31, 32]. To confirm their 

interaction with miR-143, a dual luciferase assay using 

luciferase reporter vector expressing wild-type or 

mutant 3’-UTR of ATG7 and ATG2B was introduced in 

miR-143-overexpressing HL-60 cells. The results 

showed that in comparison to overexpression control, 

miR-143 overexpression pronouncedly inhibited the 

luciferase activity of both ATG7-WT (Figure 4B) and 

ATG2B-WT (Figure 4C) constructs. Whereas, similar 

effects were not seen when miR-143 was co-expressed 

with mutant construct ATG7-mut (Figure 4B) or 

ATG2B-mut (Figure 4C), showing that miR-143 

directly interacts with the 3’-UTR of ATG7 and  

ATG2B mRNA. Coinciding with its inducible effect on 

autophagy in HL-60 cells, cytarabine treatment increased 

protein expression of ATG7 and ATG2B (Figure 4D, 

4E). Furthermore, overexpression of miR-143 reduced 

expression of ATG7 and ATG2B (Figure 4D), and 

oppositely, miR-143 knockdown increased their 

expression (Figure 4E). Overall, these findings confirm 

that miR-143 reduces the expression of ATG7 and 

ATG2B in cytarabine-treated HL-60 cells, which may 

be responsible for the aforementioned autophagy 

inhibition (Figure 3). 

 

Autophagy restoration through ectopic co-

expression of ATG7 and ATG2B diminishes miR-

143-enhanced cytarabine cytotoxicity in HL60 cells 
 

To elucidate the functional role of reduced expression 

of ATG7 and ATG2B in miR-143-suppressed 

autophagy as well as in miR-143-promoted cytarabine 

cytotoxicity, a tandem vector capable of simultaneously 

co-expressing ATG7 and ATG2B (pcDNA-ATG7-

IRES-ATG2B) was transfected into cytarabine-treated 

HL-60 cells overexpressed with miR-143. The results 

from western blotting analysis demonstrated that along 

 

 
 

Figure 4. miR-143 decreases expression of ATG7 and ATG2B by directly targeting in HL60 cells. (A) Schematic illustration of the 
complementary sequence between miR-143 and the 3’-UTRs of ATG7 and ATG2B mRNAs. This information is provided by the computational 
and bioinformatics-based approach using TargetScan. (B) HEK293 cells were co-transfected pMIR-LUC-3’-UTR-ATG7-wt (ATG7-wt) or pMIR-
LUC-3’-UTR-ATG7-mut (ATG7-mu) with 100 nM O/E miR-143 or 100 nM O/E Ctrl for 48 h, and then luciferase activity was measured. The 
results relative to O/E Ctrl group are shown. (C) HEK293 cells were co-transfected pMIR-LUC-3’-UTR-ATG2B-wt (ATG2B-wt) or pMIR-LUC-3’-
UTR-ATG2B-mut (ATG2B-mu) with 100 nM O/E miR-143 or 100 nM O/E Ctrl for 48 h, and then luciferase activity was measured. The results 
relative to O/E Ctrl group are shown. (D) HL60 cells were transfected with 100 nM O/E miR-143 or 100 nM O/E Ctrl for 48 h, and then treated 
with or without 500 nM cytarabine for 24 h. The protein expression of ATG7 and ATG2B was measured by immunoblotting. β-actin was used 
as a loading control. (E) HL60 cells were transfected with 100 nM Antagomir-143 or 100 nM Antagomir Ctrl for 48 h, and then treated with or 
without 500 nM cytarabine for 24 h. The protein expression of ATG7 and ATG2B was analyzed as in (D). All data were from 3 independent 
experiments and expressed as mean ± SD. Data were compared using Student t-test. **, P<0.01; NS, not significant. 
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with the recovered expression of ATG7 and ATG2B by 

transfection of pcDNA-ATG7-IRES-ATG2B construct, 

the inhibited autophagy by miR-143 overexpression was 

restored to the level in overexpression control group, as 

evidenced by LC3-II turnover (Figure 5A, 5B), 

describing that miR-143 inhibits autophagy through 

decreasing the expression of ATG7 and ATG2B under 

this condition. Also, autophagy restoration drastically 

increased cell viability in miR-143-overexpressing HL-

60 cells treated with cytarabine, although did not 

completely reach to that of overexpression control 

group (Figure 5C). Nonetheless, these evidence together 

suggest that miR-143-mediated autophagy inhibition via 

suppressing expression of ATG7 and ATG2B plays a 

critical role in enhancing cytarabine cytotoxicity in 

AML cells. 

 

Decreases in ATG7 and ATG2B contribute to miR-

143-promoted caspase-dependent apoptosis in 

cytarabine-treated HL60 cells 

 

To learn further about the intrinsic mechanism by which 

miR-143 enhances cytarabine cytotoxicity in AML cells, 

we investigated its effect on cytarabine-induced caspase-

dependent apoptosis, which is fundamental for cytarabine 

cytotoxicity [33]. We found that miR-143 overexpression 

sharply increased expression of cleaved caspase 9 and 

cleaved caspase 3 (Figure 6A, 6B). It also resulted in 

elevated cleaved poly ADP-ribose polymerase (PARP) 

and BCL2 associated x (BAX)/B cell CLL/lymphoma-2 

(BCL-2) in cytarabine-treated HL-60 cells (Figure 6A and 

6C), clearly indicating that miR-143 overexpression 

promotes caspase-dependent apoptosis. Moreover, 

consistent with above findings, miR-143 overexpression 

also led to upregulation of cleaved PARP (Figure 6A) and 

cytosol release of cytochrome c (Cyto C) (Supplementary 

Figure 2A, 2B), strengthening the notion that miR-143 

causes promoted activation of mitochondrial apoptosis 

pathway in cytarabine-treated HL-60 cells. However, upon 

restored expression of ATG7 and ATG2B, the effects of 

miR-143 overexpression on mitochondrial- and caspase-

dependent apoptosis were diminished (Figure 6A–6C and 

Supplementary Figure 2A, 2B), which is in agreement 

with the recovered cell viability (Figure 5C). In summary, 

this study suggests that miR-143 enhances cytarabine 

cytotoxicity in AML cells by downregulating the anti-

apoptotic autophagy machinery targets ATG7 and ATG2B 

(Figure 7). 

 

DISCUSSION 
 

The development of chemoresistance in AML cells to 

cytarabine-based therapy is a huge obstacle for 

improving the clinical outcome in AML patients [34]. 

The poor overall prognosis due to chemoresistance has 

made it as a pressing need to comprehensively delineate 

 

 
 

Figure 5. Ectopic co-expression of ATG7 and ATG2B restores autophagy and diminishes miR-143-enhanced cytarabine 
cytotoxicity in HL60 cells. (A, B) HL60 cells were co-transfected 100 nM O/E miR-143 or 100 nM O/E Ctrl with pcDNA-vector or pcDNA-
ATG7-IRES-ATG2B for 48 h in the presence of 500 nM cytarabine. The protein expression of ATG7, ATG2B, and LC-3 was measured by 
immunoblotting. β-actin was used as a loading control. The representative images (A) and statistical analysis of LC3-II/LC3-I (B) are shown. (C) 
HL60 cells were treated as in (A, B). Cell viability was analyzed by MTT assay. The results are expressed as relative to vehicle group (%). In (A, 
B), data are representative of 3 independent experiments. In (C), each symbol represents the value from 5 replicates. Data are mean ± SD 
and compared using Student t-test. **, P<0.01; NS, not significant. 
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the underlying molecular mechanisms so as to develop 

effectively-targeted approaches to treat the relapsed/ 

refractory AML [35, 36]. Emerging knowledge about 

the prognostic and functional role of miRNAs in AML 

has rendered them as promising targets in AML 

diagnosis, treatment, and reverse of chemoresistance 

[17, 37, 38]. In the present study, we identify miR-143 

as a novel positive regulator of cytarabine-induced 

cytotoxicity in AML cells, in which the targeted anti-

apoptotic machinery of autophagy represents a 

predominant mechanism, thus highlighting an important 

role of autophagy in mediating self-protection function 

against cytarabine-induced cytotoxicity and also 

exemplifying miR-143 as a possible druggable target 

among miRNAs that could be employed to enhance the 

effectiveness of chemotherapy for AML treatment 

(Figure 7). 

 

miR-143 was previously reported to play a role during 

Fas-mediated apoptosis in human T-cell leukemia cells 

[39]. The overexpression of miR-143 was also found to 

inhibit the growth and induce apoptosis in human 

leukemia cells [40]. Further, studies have shown that the 

expression of miR-143 is downregulated in childhood-

lineage acute lymphoblastic leukemia at initial diagnosis 

and in relapse phases [41], and an association of high 

miR-143 expression with a higher probability of survival 

exists in AML patients [18]. These literatures point to an 

anti-leukemic effect miR-143 may exhibit in AML cells. 

Prompted by these clues, we first sought the possible 

association between miR-143 and cytarabine-induced 

cytotoxicity in AML cells. Intriguingly, we found that in 

human AML cell line HL60 and U937 as well as in 

primary AML cells, cytarabine decreased miR-143 

expression, suggesting that a reverse correlation exists 

between miR-143 expression and cytarabine treatment. It 

has been reported that the differentially expressed 

miRNAs in distinct stages of lymphopoiesis could be used 

as signatures for discriminating AML with different 

subtypes [42, 43], and that changes in the expression of 

several miRNAs may have functional relevance with drug 

resistance [44]. Whereas, for the majority of these 

aberrantly expressed miRNAs, the mechanisms that 

control their expression are largely unknown. In addition 

to the genetic mechanisms such as mutation, deletion, 

amplification, loss of heterozygosity and translocation, the 

epigenetic mechanisms including DNA methylation and 

histone code may be all possibly involved in [45]. In 

 

 
 

Figure 6. Decreased expression in ATG7 and ATG2B contributes to miR-143-promoted apoptosis in cytarabine-treated HL60 
cells. (A–C) HL60 cells were treated as in Figure 5A. The expression of indicated protein targets was measured by immunoblotting. β-actin 
was used as a loading control. The representative images (A) and statistical analysis of the fold change of key protein targets (B, C) are shown. 
All data are representative of 3 independent experiments. Data are mean ± SD and compared using Student t-test. **, P<0.01. 
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recent studies, the decreased expression of miR-143 was 

shown to be associated with the methylation modification 

on its gene promoter [46, 47]. In addition, cytarabine 

mediates genome wide methylation and alters gene 

expression in AML [48]. We thus guess that the decreased 

miR-143 expression by cytarabine treatment in AML cells 

may be attributed to the methylation-mediated epigenetic 

regulation. Following investigations are needed to address 

whether this is the case. More significantly, whether the 

expression change of miR-143 in response to cytarabine 

treatment is of prognostic significance merits further 

studies. 

 

Subsequently, through gain-and loss-of-function 

studies, we demonstrated that miR-143 increased 

cytarabine cytotoxicity in AML cells in vitro, which 

might provide another layer evidence supporting its role 

as an anti-leukemic miRNA. We next discovered that 

miR-143 directly targeted ATG7 and ATG2B to inhibit  

 

 
 

Figure 7. Schematic description of the role and 
mechanism by which miR-143 influences cytarabine 
activity against AML. MiR-143 functions to inhibit autophagy 
induction via targeting ATG7 and ATG2B, whereby erasing the 
inhibitory role of autophagy in cytarabine-induced caspase-
dependent apoptosis and cytotoxicity in AML cells, including 
primary AML cells and human AML cells lines, HL60 and U937. 
However, the expression of miR-143 in AML cells is 
downregulated by cytarabine treatment, thus compromising the 
cytarabine cytotoxicity against AML cells. 

the autophagic activity. Moreover, ectopic co-

expression of ATG7 and ATG2B completely restored 

autophagy and markedly diminished the promotive 

effect of miR-143 on cytarabine cytotoxicity and 

caspase-dependent apoptosis in HL60 cells. These 

mechanistic findings not only prove that the targeted 

autophagy contributes greatly to miR-143 function in 

cytarabine cytotoxicity, but also suggest that other 

mechanisms may also play a role in this scenario. 

Previous studies have also reported that the deletion of 

ATG7 or ATG2B promotes caspase-dependent 

apoptosis in various human cells [49–52]. Further, the 

protective autophagy against caspase-dependent 

apoptosis is associated with the regulation of reactive 

oxygen species (ROS) [53, 54]. It is thus interesting to 

investigate whether ATG7- and ATG2B-mediated 

autophagy protects against caspase-dependent apoptosis 

of cytarabine-treated AML cells through modulating 

ROS. In addition, it’s been demonstrated that the 

impairment of the autophagy-lysosome pathway induces 

apoptosis mainly via excessive ER stress [55]. Further, the 

depletion of c-Myc impairs autophagy flux, thereby 

reducing phosphorylation of JNK1 and its downstream 

target anti-apoptotic molecule Bcl2, and knockdown of 

this proto-oncogenic transcriptional factor disrupts 

autophagosome formation [56, 57]. Besides, the 

autophagic cell death, in which the factors like the JNK 

signal, interferon-gamma, FAK and EGFR are deeply 

involved [55, 58–61]. We also proved that the inhibited 

Akt/mTOR signaling pathway is associated with miR-

143-enhanced cytotoxicity (Supplementary Figure 3). 

These related clues may provide a possibility to link the 

miR-143-asscociated phenotypes we observed in 

cytarabine-treated AML cells. 

 

It is also conceivable that except for those targets 

involved in autophagy machinery, according to the target 

prediction by algorithms, miR-143 could also inhibit the 

expression of other target genes. For instance, miR-143 

targets ERK5 in AML cells [18], and the inhibition of 

ERK5 has been demonstrated to enhance cytarabine-

induced apoptosis in AML cells [62]. Therefore, in 

addition to the targeted autophagy, the detailed 

mechanisms underlying miR-143-promoted cytarabine 

cytotoxicity remain to be excavated in the future, 

including the identification of the subordinate targets. 

Issues about how miR-143-targeted autophagy is 

connected to the activation of caspase-dependent 

apoptosis, and whether other types of cell death also 

emerge under this condition require extended 

investigations. 

 

In summary, this study provides molecular basis 

demonstrating that miR-143 sensitizes AML cells to 

cytarabine treatment by suppressing anti-apoptotic 

autophagy through directly targeting ATG7 and 
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ATG2B. Evidence obtaining from animal models is 

preferably needed to demonstrate whether miR-143 

enhances cytarabine cytotoxicity in vivo. 

 

MATERIALS AND METHODS 
 

Patients and primary AML cell sampling 
 

AML peripheral blood mononuclear cells (PBMCs) were 

obtained from three de novo pediatric patients in our 

hospital who were newly diagnosed with AML following 

the French-American-British criteria [21]. Mononuclear 

cells were isolated from the bone marrow samples using 

Ficoll density gradient centrifugation (GE Healthcare) 

according to the manufacturer’s instructions. The isolated 

cells were either stored at -80°C for future usage or 

directly cultured in RPMI 1640 medium supplemented 

with 10% fetal bovine serum (FBS), 2 mM L-glutamine 

and 1% penicillin-streptomycin solution in a humidified 

incubator with 5% CO2 at 37°C throughout the study and 

treated with cytarabine (Sigma-Aldrich). The study 

protocols were approved by the Ethics Committee of 

Affiliated Hospital of Jining Medical University. The 

informed consent was obtained from all patients prior to 

sampling. 

 

Cell lines, culture and treatment 
 

The human AML cell lines U937 and HL60 were 

obtained from American Type Culture Collection 

(ATCC). These cell lines were cultured in RPMI 1640 

medium conditions similar to those for primary AML 

cells. For cytarabine treatment, cells were seeded with a 

density of 5×105 cells/ml one day before the 

experiment, and fresh medium was added together with 

different concentrations of cytarabine according to 

experimental design, with or without 30 µM 

chloroquine (Sigma-Aldrich). 

 

Cell transfection 

 

HL60 cells were seeded into 6-well plates and allowed 

to reach approximate 60% confluence before 

transfection. A final concentration of 100 nM miR-143 

mimics (O/E miR-143), control miRNA mimics (O/E 

Ctrl), antagomir of miR-143 (Antagomir-143), non-

target antagomir (Antagomir Ctrl) were transfected with 

Lipofectamine 2000 (Invitrogen) according to the 

manufacturer's protocol. To restore expression of ATG7 

and ATG2B, the construct of pcDNA-ATG7-IRES-

ATG2B was established by cloning gene fragments of 

human ATG7 and ATG2B into the pcDNA vector 

(Genepharma) to achieve simultaneous double-

overexpression of ATG7 and ATG2B. At 48 h or 72 h 

after transfection, HL60 cells were harvested for 

subsequent analyses. 

Cell viability determination 
 

Cell viability was determined using the CellTiter Non-

Radioactive Cell Proliferation Assay (MTT) (Promega) 

according to the manufacturer's instructions. Briefly, 

primary AML cells and HL-60 cells were plated into the 

96-well plates with a density of 2×104 cells. After 

transfection, cells were further incubated for 24 h in 

culture medium containing increasing concentrations of 

cytarabine (0, 100, 200 and 500 nM). Subsequently, 

MTT dye (20 μl per well) was added and further 

incubated for 4 h at 37°C. The formazan precipitate was 

dissolved using dimethyl sulfoxide (DMSO) (150 μl per 

well), and the absorbance was measured at 490 nm 

using an automatic microplate reader (Molecular 

Device). Each treatment was allocated with 5 replicates. 

The results were calculated according to a standard 

curve and expressed as relative to control treatment. 

 

Real-time quantitative PCR analysis 

 

Total RNA was extracted from primary AML cells and 

cell lines using Trizol Reagent (Takara), and cDNA was 

synthesized using RevertAid First Strand cDNA 

Synthesis Kit (ThermoFisher Scientific). MicroRNA-

143 expression was quantified using real-time 

quantitative PCR (RT-qPCR) with TaqMan microRNA 

assay (Applied Biosystems) on CFX96 PCR system 

(bio-rad). The housekeeping gene beta-actin (ACTB) 

was used for expression normalization of mRNAs. The 

specific sense and anti-sense primers used for 

amplifying human miR-143 were 5’- TGCTGGGTGC 

AGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAG

ATGAAGCACTGTAGCTC-3’ and 5’-CCTGGAGC 

TACAGTGCTTCATCTCAGACTCCC AACTGACCA 

GAGATGCAGCACTGCACCC-3’ [22]. Notably, the 

efficiency of RT-qPCR for all targets was same. Data 

were analyzed by the 2(-Delta Delta C(T)) method [23]. 

 

Immunoblotting 

 

Total protein was isolated from primary AML cells and 

cell lines using the RIPA lysis buffer (Beyotime). 

Protein concentrations were quantified using BCA 

assay. Equal amount (30 μg) of protein samples from 

each treatment were separated by SDS-PAGE and then 

electroblotted onto PVDF membranes (Millipore). 

Membranes were blocked using 5% nonfat dry milk in 

TBST for 1 h, and then probed overnight with specific 

primary antibodies against LC3 (1:1000, Novus 

Biologicals), ATG7, ATG2B (1:1000, abcam), cleaved 

caspase 9, pro-caspase 9, cleaved caspase 3, pro-caspase 

3 (1:1000, Cell Signaling), BAX and BCL-2 (1: 500, 

Santa Cruz) and β-actin (1: 5000, Santa Cruz) at 4°C. 

This procedure was followed by the incubation with 

HRP-conjugated secondary antibodies (1:10000, Santa 
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Cruz) for 1 h at room temperature. The protein bands 

were visualized with enhanced chemiluminescence 

(Thermo Fisher Scientific) and the intensity was 

analyzed using ImageJ software. 

 

Luciferase reporter assay 

 

The 3'-UTR of ATG7 and ATG2B was ligated into the 

firefly luciferase reporter pGL3 vector (Promega). 

Mutant 3'-UTR of ATG7 (ATG7-mut) and ATG2B 

(ATG2B-mut) were generated using a QuikChange 

Site-Directed Mutagenesis kit (Stratagene). HEK293T 

cells were cultured in 24-well plates and transfected 

with the 3’-UTR reporter plasmids along with O/E miR-

143 or O/E Ctrl. Renilla luciferase expression plasmid 

was used as control. At 48 h after transfection, cells 

were harvested and the luciferase activity was measured 

using a Dual-Luciferase reporter assay system 

(Promega) following the manufacturer’s instructions. 

Results are expressed in comparison to O/E Ctrl 

transfection group. 

 

Statistical analysis 
 

All data were obtained from at least 3 independent 

experiments. Data are mean ± SD. Student's t-test was 

applied to compare the data between two experimental 

groups, unless indicated otherwise. P<0.05 indicates a 

statistically significant difference. 
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Supplementary Figure 1. miR-143 enhances cytarabine-induced cytotoxicity in AML cells. HL60 cells were transfected with 100 
nM miR-143 mimic (O/E miR-143) or 100 nM non-target mimic control (O/E Ctrl) (A), or 100 nM antagomir of miR-30a (Antagomir-143) or 
100 nM non-target antagomir (Antagomir Ctrl) (B) for 48 h. Then, cells were treated with increasing concentrations of cytarabine as indicated 
for 24 h. Cell viability was analyzed by CCK-8 assay. The results are expressed as relative to vehicle group (%). Each symbol represents the 
value from 5 replicates. Data were compared using two-way ANOVA with a post hoc Tukey’ s test. **, P<0.01. 

 

 

 
 

Supplementary Figure 2. miR-143 enhances cytarabine-induced cytosol release of Cyto C in AML cells. HL60 cells were co-
transfected 100 nM O/E miR-143 or 100 nM O/E Ctrl with pcDNA-vector or pcDNA-ATG7-IRES-ATG2B for 48 h in the presence of 500 nM 
cytarabine. The protein expression of Cyto C, and cytosol maker GAPDH and mitochondrial marker, voltage-dependent anion channel 1 
(VDAC1), was detected by immunoblotting. The representative images (A) and statistical analysis of cytosol release of Cyto C (B) are shown. 
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Supplementary Figure 3. miR-143 inhibits Akt/mTOR signaling pathway in cytarabine-treated AML cells. HL60 cells were 
transfected with 100 nM O/E miR-143 or 100 nM O/E Ctrl for 48 h, and then treated with or without 500 nM cytarabine for 24 h. The protein 
expression of p-AKT, AKT, p-mTOR and mTOR was measured by immunoblotting. β-actin was used as a loading control. The representative 
images are shown here. 


