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INTRODUCTION 
 
Atrial fibrillation (AF), which is characterized by rapid 
and irregular beating of the atria, and known as the most 
common type of cardiac arrhythmia. According to the 
epidemiologic data, the prevalence of AF ranged from 
0.7% to 1% in the general population, and up to 8% in 
elders greater than 80 years [1, 2]. Meanwhile, AF 
increases the risk of stroke, congestive heart failure,  

 

sudden cardiac death, and increase the rate of 
substantial morbidity and mortality for about 2  
folds [3]. 
 
AF is often associated with complications such as 
hypertension, valvular heart disease, coronary artery 
disease, heart failure, hyperthyroidism, structural heart 
diseases, and is also clearly heritable [4, 5]. The 
important role of genetic factors in the pathogenesis of 
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ABSTRACT 
 
Objective: Genome-wide association studies (GWAS) and the candidate gene based association studies have 
identified a panel of variants associated with atrial fibrillation (AF), however, most of the identified single 
nucleotide polymorphisms (SNPs) were found located within intergenic or intronic genomic regions, and 
whether the positive SNPs have a real biological function is unknown, and the real disease causing gene need to 
be studied.  
Results: The current results of the genetic studies including common variants identified by GWAS (338 index 
SNPs) and candidate gene based association studies (40 SNPs) were summarized.  
Conclusion: Our study suggests the relationship between genetic variants and possible targeted genes, and 
provides insight into potential genetic pathways underlying AF incidence and development. The results may 
provide an encyclopedia of AF susceptibility SNPs and shed light on the functional mechanisms of AF variants 
identified through genetic studies. 
Methods: We summarized AF susceptibility SNPs identified by GWAS and candidate gene based association 
studies, and give a comprehensive functional annotation of all these AF susceptibility loci. by genomic 
annotation, microRNA binding prediction, promoter activity analysis, enhancer activity analysis, transcription 
factors binding activity prediction, expression quantitative trait loci (eQTL) analysis, long-range transcriptional 
regulatory function analysis, gene ontology and pathway enrichment analysis. 
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AF has shown by the identification of AF-causing 
mutations or rare variants in some families with lone 
AF, which occurs in structurally normal hearts and 
without known risk factors [6–8]. Meanwhile, in 
general AF, the non-hypothesis-driven genome-wide 
association studies (GWAS) and the candidate gene 
based association studies have identified a panel of 
common variants confer risk to AF [9–11]. These 
studies have set up a key role for the genetic 
background in generating for AF. 
 
GWAS investigate associations between genomic 
variants and a disease or trait at the whole genome level 
without priori assumptions of genomic locations or 
potential functions of candidate genes. In this case, most 
of the identified single nucleotide polymorphisms 
(SNPs) associated with disease were found located 
within intergenic or intronic genomic regions, and 
whether the positive SNPs have a real biological 
function is unknown, and the real target gene need to be 
further studied [12, 13]. For example, SNP rs2200733 
on chromosome 4p25 is the first risk variant for AF 
identified by GWAS and is the most robustly replicated 
AF locus to date. The gene that closest proximity to 
rs2200733 and other AF susceptibility variants in 4q25 
is the PITX2. Studies in mice showed that pitx2 haplo-
insufficiency promotes an atrial arrhythmia [14]. 
However, functional evidence about the mechanisms 
linking these non-coding variants with PITX2 or the 
incidence of AF is limited, until a recent study found 
that these non-coding variants in 4q25 possessing a 
long-range enhancer–promoter interactions and exert as 
a transcriptional regulatory directed function at PITX2 
[15]. Understanding the biological nature of non-coding 
variants associated with AF can enable us to point the 
real causal genes causing AF and provide insight into 
the mechanism of AF. 
 
Considering one of the most important challenges of AF 
genetic study is to elucidate functional mechanisms that 
how the susceptibility loci modulate AF risk, in the 
current study, we summarized the results of the studies 
including variants identified by GWAS and candidate 
gene based association studies, and give a 
comprehensive functional annotation of all these AF 
susceptibility loci. The non-synonymous SNPs were 
first identified and classified as functional SNPs, and 
for SNPs in the non-coding region, we try to predict 
their potential functions including microRNA binding, 
promoter activity, enhancer activity, transcription 
factors binding activity, expression quantitative trait 
loci (eQTL), and long-range transcriptional regulatory 
function. Our results may provide an encyclopedia of 
AF susceptibility SNPs and shed light on the functional 
mechanisms of AF variants identified through genetic 
studies. 

RESULTS 
 
AF susceptibility loci 
 
Through searching the public databases including GWAS 
catalog  (https://www.ebi.ac.uk/gwas/), GWAS central 
(https://www.gwascentral.org),  and literatures in Pubmed, 
Embase and Medline, we included 18 AF GWAS and 
exome-wide association study (EWAS) in our study, 
which published from 2007 to 2019 (Table 1). The 
workflow of the current study is shown in Figure 1.  
Participants of these studies were mainly European 
ancestry (15 of 18 studies), and the rest were East Asian 
(Korean ancestry and Japanese) (Table 1). A total of 338 
SNPs (refer as index SNPs) passed the multiple corrections 
(P<5×10-8 or corresponding multiple correction threshold) 
and showed a significant association with AF in GWAS 
and EWAS (Figure 2 and Supplementary Table 1). We 
also include 40 common SNPs which showed significant 
associated with AF in case control or population 
prospective study in candidate gene based analysis, or 
replication study of GWAS loci (Figure 2 and 
Supplementary Table 1). Totally, we included 378 AF 
susceptibility SNPs in our further functional annotation. 
 
Genomic region annotation using Variant Effect 
Predictor (http://asia.ensembl.org/Homo_sapiens/Tools/ 
VEP, GRCh38) showed that only a small portion of 
GWAS index AF SNPs was located in exon of known 
genes (21/338, 6.21%), 63.31% were found in introns 
(214/338), and 29.29% locate in intergenic regions 
(99/338) (Figure 3). In candidate gene based analysis, 
50% identified AF related variants locate in intron, and 
the proportion of non-synonymous variants associated 
with AF (32.50%, 13/40) was higher than in GWAS 
index SNPs (2.936%, 10/338) (Figure 3).  
 
Functional annotation of missense and splicing 
related SNPs 
 
Through GWAS, EWAS and candidate gene based 
association study, a total of 36 SNPs were found located 
in exon of known genes. Missense variants in SPATC1L 
(rs113710653) [24], TNFSF13 (rs11552708) [24], 
SLC22A25 (rs11231397) [24], RPL3L (rs140185678) 
[16], GCOM1 and MYZAP (rs147301839) [16], UBE4B 
(rs187585530) [17], NEBL (rs2296610) [22], LRIG1 
(rs2306272) [17], PLEC (rs373243633) [23], DNAH10OS 
(rs12298484) [17] were associated with risk of AF 
through GWAS and EWAS approach, and candidate gene 
based association study found missense variants in 
AGTR1 [38], AGXT2 [40], ZFHX3 [52], MTR [70], 
KCNH2 [69], KCNE1 [51], NPPA [66] confer risk to AF. 
Two index SNPs of GWAS, including rs140192228 in 
RPL3L [16] and rs133902 in MYO18B [16] were 
predicted may change the mRNA splicing.  

https://www.ebi.ac.uk/gwas/
https://www.gwascentral.org/
http://asia.ensembl.org/Homo_sapiens/Tools/VEP
http://asia.ensembl.org/Homo_sapiens/Tools/VEP
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Table 1. Included studies with SNPs associated with AF from 2007 to 2019. 

Number Studies Year Discovery population Replication population 
Genome-wide association study 
1 Nielsen JB. et al [16] 2018 60,620 European ancestry cases and 970,216 European 

ancestry controls 
NA 

2 Roselli C. et al [17] 2018 55,114 European ancestry cases and 482,295 European 
ancestry controls, 8,180 Japanese ancestry cases and 

28,612 Japanese ancestry controls, 1,307 African 
American ancestry cases and 7,660 African American 

ancestry controls, 845 Hispanic cases and 4,177 Hispanic 
controls 

NA 

3 Nielsen JB. et al [18] 2018 6,337 European ancestry cases and 61,607 European 
ancestry controls 

30,679 European ancestry cases and 
278,895 European ancestry controls 

4 Thorolfsdottir RB. et al 
[19] 

2018 14,710 cases and 373,897 controls from Iceland, 14,792 
cases and 393,863 controls from the UK Biobank 

9,204 cases and 76,161 controls, European 
ancestry 

5 Lee JY. et al [20] 2017 672 Korean ancestry cases and 3,700 Korean ancestry 
controls 

200 Korean ancestry cases and 1,812 
Korean ancestry controls 

6 Christophersen IE. et al 
[21] 

2017 GWAS: 18,398 individuals with atrial fibrillation and 
91,536 referents, EWAS:  22,806 AF cases and 132,612 

referents. 

NA 

7 Low SK. et al [22] 2017 8,180 Japanese ancestry cases and 28,612 Japanese 
ancestry controls 

3,120 Japanese ancestry cases and 125,064 
Japanese ancestry controls,  15,993 

European ancestry cases and113,719 
European ancestry controls 

8 Thorolfsdottir RB. et al 
[23] 

2017 14,255 AF cases and 374,939 controls, Iceland  2,002 non-Icelandic cases and 12,324 
controls 

9 Yamada Y. et al [24] 2017 884 patients with atrial fibrillation and 12,282 controls, 
Japanese 

NA 

10 Lubitz SA. et al [25] 2016 1,734 individuals with and 9,423 without AF, European 
ancestry 

NA 

11 Kertai MD. et al [26] 2015 620 European ancestry cases, 257 European ancestry 
controls 

220 cases and 84 controls 

12 Sinner MF. et al [27] 2014 6,707 AF cases and 52,426 controls in Europeans, 843 AF 
and 3,350 controls in Japanese 

6,691 AF cases and 17,144 controls in 
Europeans, 1,618 AF cases and 17,190 

controls 
13 Ellinor PT. et al [28] 2012 6,707 European ancestry cases and  52,426 European 

ancestry controls 
5,381 European ancestry cases and  10,030 

European ancestry  controls 
14 Ellinor PT. et al [29] 2010 1,335 European ancestry lone AF cases and 12,844 

European ancestry controls 
1,164 European ancestry AF cases, 3,607 

European ancestry controls 
15 Gudbjartsson DF. et al 

[30] 
2009 2,385 European ancestry cases and 33,752 European 

ancestry controls 
2,427 European ancestry cases and 3,379 

European ancestry controls, 286 Han 
Chinese ancestry cases and 2,763 Han 

Chinese ancestry controls 
16 Benjamin EJ. et al [31] 2009 3,413 cases and 37,105 referents, European ancestry 2,145 cases and  4,073 controls, European 

ancestry 
17 Larson MG. et al [32] 2007 151 cases and 1,190 controls from 310 families NA 
18 Gudbjartsson DF. et al 

[33] 
2007 550 European ancestry cases and 4,476 European ancestry 

controls 
3,030 European ancestry cases and 14,780 

European ancestry controls, 333 Han 
Chinese ancestry cases and 2,836 Han 

Chinese ancestry controls 
Candidate gene based association study 
19 Cao H. et al [34] 2019 828 patients and 834 controls in Chinese population NA 
20 Xiong H. et al [35] 2019 944 AF patients and 981 non-AF controls in Chinese 

population 
732 cases and 1,291 controls in Chinese 

population 
21 Wang P. et al [36] 2018 1,164 AF patients and 1,460 controls NA 
21 Zaw KTT. et al [37] 2017 452 cases and 1,981 controls in Japanese NA 
22 Feng W. et al [38] 2017 300 AF cases and 300 controls NA 
23 Nakano Y. et al [39] 2016 577 cases and 1935 controls in Japanese NA 
24 Seppälä I.  et al [40] 2016 1,834 individuals with AF and 7,159 unaffected 

individuals 
NA 

25 Fang Z.  et al [41] 2016 1,150 AF cases and 1,150 AF-free controls in Chinese NA 
26 Wang C. et al [42] 2016 1,127 unrelated AF patients and 1,583 non-AF subjects NA 
27 Fang Z. et al [41] 2016 597 AF cases and 996 AF-free controls in Chinese NA 
28 Zhang R. et al [43] 2016 1,132AF patients and 1,206 controls  NA 
29 Roberts JD. et al [44] 2016 2,601 incident of AF in a total of 17,529 participant NA 
30 Luo Z. et al [45] 2016 889 AF patients and 1015 controls, Chinese NA 
31 Chen S. et al [46] 2015 941 cases and 562 controls, Chinese 2,113 cases and 3,381 controls 
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32 Liu Y. et al [47] 2015 597 AF patients and 996 non-AF controls in Chinese NA 
33 Rosenberg MA. et al [48] 2014 879 incident AF in a total 3,309 participants NA 
34 Andreasen L. et al [49] 2014 657 patients diagnosed with AF and a control group 

comprising 741 individuals 
NA 

35 Luo Z. et al [50] 2014 889 AF patients and 1,015 controls in Chinese NA 
36 Voudris KV. et al [51] 2014 509 patients of whom 203 with AF NA 
37 Liu Y. et al [52] 2014 597 AF patients and 996 non-AF controls in Chinese NA 
37 Andreasen L. et al [49] 2014 657 AF cases and 741 controls, European ancestry NA 
38 Lin H. et al [53] 2014 948 cases and  3,330 controls, European ancestry NA 
39 Adamsson S. et al [54] 2014 520 incident AF in a total 3,900 subjects, European 

ancestry 
2,247 cases, 2,208 controls 

40 Cao H. et al [55] 2014 840 AF patients and 845 controls in Chinese NA 
41 Marott SC. et al [56] 2013 358 patients with lone AF, 299 non-lone AF, and 741 

controls, European ancestry 
NA 

42 Jeff JM. et al [57] 2014 1,288 patients with cardiac surgery, European ancestry NA 
43 VoudrisKv. et al  [51] 2014 509 patients with cardiac surgery, European ancestry NA 
44 Ilkhanoff L. et al [58] 2014 241 cases and 3,144 controls, African Americans NA 
45 Marott SC. et al [56] 2013 2,570 AF events in 69,611 participants, European ancestry NA 
46 Andreasen L. et al [59] 2013 358 patients  with lone AF  and a control of 751 

individuals, European ancestry 
NA 

47 Olesen MS. et al [60] 2012 209 patients with early-onset lone AF, and a control group 
consisting of 534 individuals free of AF 

NA 

48 Schnabel RB. et al [61] 2011 European (n=18,524; 2260 AF cases in a total 
18,524individuals cohort in European ancestry), 263 AF 

cases in a total of 3,662 African American descent. 

468 AF cases and 438 controls 

49 Wirka RC. et al [62] 2011 384 early onset lone AF cases and 3,010 population 
control 

NA 

50 Li C. et al [63] 2011 650 AF patients and 1,447 non-AF controls NA 
51 Lubitz SA. et al [64] 2010 790 case and 1,177 control subjects, European ancestry 5,066 case and 30,661 referent subjects, 

European ancestry 
52 Roberts JD. et al [65] 2010 620 AF cases and 2,446 healthy controls NA 
53 Ren X. et al [66] 2010 384 sporadic AF patients and 844 controls  NA 
54 Shi L. et al [67] 2009 383 AF patients versus 851 non-AF controls NA 
55 Kääb S. et al [68] 2009 3,508 AF cases and 12,173 controls, European ancestry NA 
56 Sinner MF. et al [69] 2008 1,207 AF-cases and 2,475 controls NA 
57 Giusti B. et al [70] 2007 456 AF patients and 912 matched controls NA 

 

 
 

Figure 1. Workflow of the annotation of susceptibility SNPs associated with atrial fibrillation. 
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Figure 2. Distribution of the 378AF susceptibility SNPs and AF causal genes.  
 

 
 

Figure 3. Genomic region annotation distribution of the AF susceptibility SNPs. (A) Index SNPs associated with AF identified in 
GWAS, (B) AF susceptibility SNPs identified by candidate gene based analysis.  
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Functional annotation of AF susceptibility SNPs in 
UTR 
 
8 AF susceptibility SNPs were found in the UTR of 
protein-coding genes, and 4 of them were predicted to 
alter the microRNA binding ability predicted by MirSNP 
(http://bioinfo.bjmu.edu.cn/mirsnp/search/) and 
miRNASNP (http://bioinfo.life.hust.edu.cn/). 
Rs1049334 in the 3’UTR of CAV1 was predicted change 
the binding with hsa-miR-125a-3p, hsa-miR-3620, hsa-
miR-4299, hsa-miR-4726-3p, hsa-miR-4783-3p and hsa-
miR-497-3p. Rs13385 in the 3’UTR of HBEGF was 
expected to alter the binding with hsa-miR-1207-5p and 
hsa-miR-4763-3p. Rs7508 in 3’UTR of ASAH1 may 
change the binding of hsa-miR-134, hsa-miR-3118, hsa-
miR-5190 and hsa-miR-628-5p. Rs951366 in NUCKS1 
was found in the binding region of hsa-miR-3929, hsa-
miR-4419b, hsa-miR-4478, hsa-miR-4649-3p and hsa-
miR-485-5p. 
 
Functional annotation of AF susceptibility SNPs in 
non-coding regions 
 
According to the data of the chromatin state and 
modification of histone binding, a total of 250 SNPs in 
non-coding regions were identified as located in enhancer 
regions or might affect the histone mark of promoters and 
enhancers (Supplementary Table 1), and further analysis 
found that 65 of them may change the situation of 
interaction with transcription factors (Supplementary 
Table 1). 40 transcription factors were found interact with 
these SNPs.  After corrected by genome-wide expected 
binding ability, these SNPs were significantly enriched for 
disruption of 3 TFs including STAT6 (P=0.02), REST 
(P=0.05) and NFIC (P=3.86x10-3) (Figure 4).  
 
eQTL analyses 
 
SNPs in the non-coding region may associate with the 
expression levels and act as eQTL. We assessed the data 
from GTEx database (https://gtexportal.org/home/) and 
evaluate whether AF susceptibility SNPs affect the 
target gene expression levels. The results showed that 
151 SNPs can affect the expression levels of a total of 
328 target genes, and 81 of them associated with the 
expression levels of the closest gene (Supplementary 
Table 1). Combined with the TF binding data, 39 eQTL 
effect SNPs were found may alter the binding with 
transcription factors (Supplementary Table 1). 
 
Long-range transcriptional regulatory function 
predictions 
 
We used 3dSNP database (http://cbportal.org/3dsnp/) to 
analyze whether AF susceptibility SNPs affect distal 
target genes through topological interactions and 

function as long-range transcriptional regulatory 
elements. Results indicated that a total of 211 SNPs 
interact with distal target genes, and 104 of them exert 
as an eQTL effect (Supplementary Table 1). 
 
Gene ontology and pathway enrichment analyses of 
eQTL targeted genes 
 
eQTL targeted genes of AF were mapped onto Gene 
ontology (GO) database  using three primary categories 
including molecular function, protein class and 
biological process via  PANTHER (http://www. 
pantherdb.org). The results showed that AF related 
genes were mainly enriched in binding, cellular process, 
metabolic process, protein modifying enzyme, gene-
specific transcriptional regulator and membrane traffic 
protein (Figure 5). 
 
All eQTL targeted genes of AF were subjected to pathway 
enrichment analysis in the Search Tool for the Retrieval of 
Interacting Genes (STRING, v11.0, http://string-db.org). 
Statistical enrichment tests were executed on gene lists 
within the STRING by Gene Ontology and pathway 
annotations. The results uncovered some signaling 
pathway may play roles in AF including “organelle 
organization”, “striated muscle cell development”, 
“nuclear migration”, “endomembrane system 
organization” and  “striated muscle cell differentiation” 
(Table 2). 
 

 
 

Figure 4. Transcription factor enrichment analysis results.  

http://bioinfo.bjmu.edu.cn/mirsnp/search/
http://bioinfo.life.hust.edu.cn/
https://gtexportal.org/home/
http://cbportal.org/3dsnp/
http://www.pantherdb.org/
http://www.pantherdb.org/
http://string-db.org/
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DISCUSSION  
 
Population-based genetic analysis including GWAS and 
candidate gene based analysis has identified several 
SNPs associated with the risk of atrial fibrillation, here, 
we summarized the current results of the common 

variants conferred risk to AF and totally including 378 
SNPs. Considering most of the AF susceptibility SNPs 
were located in the non-coding genomic regions, we 
give a comprehensive functional annotation of all these 
AF susceptibility SNPs through microRNA binding 
prediction, promoter and enhancer activity prediction, 

 

 
 

Figure 5. Gene ontology analyses of AF eQTL targeted genes. (A) Molecular function. (B) Biological process. (C) Protein class.  
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Table 2. Significantly enriched pathways of AF eQTL targeted genes. 

#term 
ID 

term 
description 

observed gene 
count 

false discovery 
rate matching proteins in your network (labels) 

GO:00
06996 

organelle 
organization 56 2.0x10-4 

BAZ2A,BRD8,CASQ2,CAV1,CAV2,CDC23,CEP68,CFL
2,CHRAC1,CISD2,CTC1,DEK,DNM1L,GATAD1,GORA
B,HDAC5,HEATR2,HIP1R,HPS6,IMMT,KANSL1,KDM
1B,KIF3C,MAPT,MTHFR,MTSS1,MYH10,MYOZ1,NDU

FB10,NEK6,NEURL1,NKX2-
5,NR3C1,NSF,NUCKS1,PCID2,PCM1,PEX26,PFDN1,
PTK2,RAB29,RAB3IP,REEP1,REEP2, REEP4, RPL3L, 
SCMH1, SEC24C, SYNE2, TMEM70, UBE2D3, USP36, 

VPS37B, WIPF1, ZNF462, ZPBP2 
GO:00
55002 

striated muscle 
cell 

development 
8 0.03 CASQ2, CAV2, CFL2, CHRNB1, FLNC, MYH10, 

MYOZ1, NKX2-5 
GO:00
07097 

nuclear 
migration 4 0.04 MYH10, PCM1, PTK2, SYNE2 

GO:00
10256 

endomembrane 
system 

organization 
12 0.04 CAV1, CAV2, MTSS1, MYH10, NEK6, RAB29, REEP1, 

REEP2, REEP4, SYNE2, VPS37B, ZPBP2 

GO:00
51146 

striated muscle 
cell 

differentiation 
9 0.04 BMP4, CASQ2, CAV2, CFL2, CHRNB1, FLNC, MYH10, 

MYOZ1, NKX2-5 
 

transcription factors binding activity prediction, eQTL 
analysis, and long-range transcriptional regulatory 
function predictions. 
 
Our functional annotation found that 151 AF 
susceptibility SNPs showed an eQTL effect, and 238 
SNPs in non-coding regions were identified as located in 
enhancer regions or might affect the histone mark of 
promoters and enhancers, Previous studies also showed 
that 50-60% of the traits associated non-coding variants 
identified by GWAS were found located in DNase I 
hypersensitivity regions [71, 72], and these results also 
suggest that most of the SNPs identified by the GWAS as 
predisposing to atrial fibrillation may have biological 
functions and exert regulatory effects. Our results also 
showed that only 81 of the 151 eQTL SNPs associated 
with the expression levels of the closest genes, and a total 
of 328 target genes were identified affected by AF 
susceptibility SNPs. Our results identify novel genes that 
may be associated with the occurrence or development of 
AF. For example, rs35006907 located in 139bp upstream 
of a non-coding RNA gene LINC00964, was found 
associated with the expression level of MTSS1 gene 
(P=2.02×10-18) in the left ventricle, which 119 kb 
downstream of rs35006907. Rs35006907 was predicted 
within an enhancer in several types of tissues including 
the right ventricle and right atrium, and long-range 
transcriptional regulatory function predictions also 
showed that rs35006907 and its located enhancer can 
interact with MTSS1 through long-range 3D chromatin 

loops. MTSS1 can promote actin assembly at intercellular 
junctions and a recent functional study indicated that 
rs35006907 showed a cardioprotective effect [73].   
 
Another interesting finding is about AF susceptibility loci 
in 10q22, which was reported as the first genetic locus for 
familial atrial fibrillation by Brugada R et al. in 1997, and 
SNPs including rs10824026 [28, 44], rs7394190 [21], 
rs6480708 [17] and rs60212594 [17] in 10q22 and 
upstream of SYNPO2L gene were found robustly 
associated with AF in several GWAS project. What is 
more, a missense variant in SYNPO2L, rs3812629 
(p.Pro707Leu) was found to confer risk to AF in the 
Framingham population by Whole Exome Sequencing in 
Atrial Fibrillation [25] (Figure 6A). However, our eQTL 
analysis using GTEx data showed that all these GWAS 
positive AF SNPs including rs10824026, rs7394190, 
rs6480708, and rs60212594 were strong associated with 
the expression level of MYOZ1 in human atrial appendage 
tissue with a P value from 1.3x10-28 to 1.4x10-45 (Figure 
6B). Furthermore, the missense variant in SYNPO2L, 
rs3812629 (p.Pro707Leu), which confer risk to AF, was 
also found associated with MYOZ1 expression level in 
human atrial appendage tissue, and the median 
normalized expression level of MYOZ1 in homozygous 
risk allele GG carriers was -0.28 and extremely lower than 
in heterozygous GA carriers (0.94) (Figure 6B). MYOZ1 
encode myozenin 1, which is an intracellular binding 
protein involved in linking Z-disk proteins, and was 
known as a calcineurin-interacting protein, and help tether 
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calcineurin to the sarcomere of skeletal and cardiac 
muscle [74–76]. Mutations in MYOZ1 were found in the 
patient with dilated cardiomyopathy [77–78]. These 
results suggested that MYOZ1, but not SYNPO2L is the 
causal gene of AF. 
 
Previously genetic studies in familial or sporadic AF 
have identified numerous mutations or rare variants that 
putatively cause AF [5, 79–83], and to recently, 44 
genes that putatively cause AF were mapped to pathway 
of ion channels/ion channels related (ABCC9, HCN4, 
KCNA5, KCNE1, KCND3, JPH2, KCNE2, KCNE3, 
KCNE4, KCNE5, KCNH2, KCNJ2, KCNJ5, KCNJ8, 
KCNK3,KCNN3, KCNQ1, RYR2, SCN1B, SCN2B, 
SCN3B, SCN4B, SCN5A, SCN10A), transcription 
factors (GATA4, GATA5, GATA6, NKX2-5, NKX2-6, 
PITX2, SHOX2, SOX5, TBX5, ZFHX3), myocardial 
structural components (GJA1, GJA5, LMNA, MYH6, 
MYL4, SYNE2), signaling, protein turnover and others 
(GREM2, NPPA,SH3PXD2A, PLN). Compared to the 
list AF susceptibility genes including the 328 eQTL 
target genes what we have identified and combined with 
the closest gene of GWAS index SNPs, only 10 genes 
including HCN4, KCND3, KCNJ5, KCNN3, PITX2, 
TBX5, ZFHX3, GJA1, SYNE2, SH3PXD2A, and PLN 
were found have bath rare variants and common 
variants related with AF. These may result from most 
mutation screening were carried out in familial AF, 

early-onset AF or lone AF, and AF patients in GWAS 
were more complex. 
 
In conclusion, we summarized the current results of the 
genetic studies including common variants identified by 
GWAS (338 index SNPs) and candidate gene based 
association studies (40 SNPs), and performed a 
comprehensive annotation of all these AF susceptibility 
loci found by GWAS and candidate gene based 
association. We identified 4 AF susceptibility SNPs in 
UTRs may change the microRNA binding ability, and 
250 AF susceptibility SNPs in non-coding regions were 
identified as located in enhancer regions or might affect 
the histone mark of promoters and enhancers, 65 SNPs 
may change the situation of interaction with transcription 
factors and totally 40 transcription factors were found 
interact with these SNPs. Our results also showed that 151 
SNPs can affect the expression levels of a total of 328 
target genes and 81 of them associated with the 
expression levels of the closest gene. Long-range 
transcriptional regulatory function predictions showed that 
211 SNPs interact with distal target genes, and 104 of 
them exert as an eQTL effect. We also performed a GO 
and pathway enrichment of the AF eQTL genes. Taken 
together, our study suggested the relationship between 
genetic variants and possible targeted genes, and provides 
insight into potential genetic pathways underlying AF 
incidence and development. 

 

 
 

Figure 6. Association of SNPs in 10q22 with AF and eQTL analysis. (A) Regional plots for significant association with AF in 10q22. The 
P value was obtained from GWAS catalog database. SNPs plotted by their positions (UCSC hg19) on the corresponding chromosome against –
log10 (P). Estimated recombination rates from 1000 genomes EUR populations were plotted in blue to reflect the local linkage disequilibrium 
(LD) structure on a secondary y axis. The most significant lead SNP (diamond) is denoted with the SNP identification number.  Flanking SNPs 
(circles) are color-coded to represent the pairwise r2 measure of LD with the lead SNP: red, r2 ≥ 0.8; orange, 0.6 ≤ r2< 0.8; green, 0.4 ≤ r2<0.6; 
light blue, 0.2 ≤ r2<0.4; blue, r2< 0.2. These plots were generated by Locuszoom (https://statgen.sph.umich.edu/locuszoom/). (B) eQTL 
analysis showed that the association between AF susceptibility SNPs in 10q22 with the expression level of MYOZ1 in human atrial appendage 
tissues (n=372). eQTL analysis were performed using GTEx data.  

https://statgen.sph.umich.edu/locuszoom/
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MATERIALS AND METHODS 
 
Acquisition of AF susceptibility variants and search 
strategy 
 
The workflow of the current study is presented in 
Figure 1. First, results of the current GWAS of AF were 
extracted from three public databases, including GWAS 
catalog (https://www.ebi.ac.uk/gwas/), GWAS central 
(https://www.gwascentral.org) and phenotype–genotype 
integrator (https://www.ncbi.nlm.nih.gov/gap/phegeni). 
We also searched the literature in Pumbed 
(https://pubmed.ncbi.nlm.nih.gov) to include all studies 
of AF GWAS. The keywords include atrial fibrillation, 
genome wide association or GWAS.  
 
Besides the GWAS, several candidate gene based 
association studies have also identified a panel of 
genetic variants confer risk to AF. Results of these 
associated genetic variants were obtained by searching 
from the PubMed, EMBASE (https://www. 
embase.com) and Medline (https://www.nlm.nih. 
gov/bsd/medline.html) (Figure 1), and the searching 
keywords of medical subject headings (MeSH) 
including “atrial fibrillation” combined with 
“polymorphism, polymorphisms, variant, variants, 
single nucleotide polymorphism, single nucleotide 
polymorphisms, SNP, SNPs”. The results of literature 
searching were eligibility screened by two reviewers 
based on titles and abstracts. Studies published between 
1 January 2007 and 1 November 2019 were included. 
Only case control association studies or cohort-based 
prospective studies were included. Functional 
researches, animal model studies or studies not 
performed in a population were excluded. 
 
Information of AF GWAS index SNPs was extracted 
from the database of GWAS catalog, and the threshold 
of significant level for the association was set as P value 
lower than 5×10-8. For the SNPs from candidate gene 
based association studies, publications were reviewed 
by two reviewers independently and extracted the 
information about the variant(s) and the details of the 
population. Discrepancies in data extraction were 
resolved by discussion or submitted to a third reviewer 
if required. We divided the variants analyzed in 
candidate gene based studies into three groups, (i) 
replication study of the GWAS identified susceptibility 
loci of AF, (ii) novel variants with minor allele 
frequency (MAF) ≥0.1% (according to 1000 genome 
phase III global data), (iii) rare variants with a low 
frequency (MAF<0.1%) associated with AF by 
candidate gene association study or mutation screening. 
In our study, we excluded rare variants and mutations in 
(iii) from our further annotations, for the causal genes 
harbored mutations or rare variants of AF which were 

found in families or cohort were well summarized in 
previously reviews [8, 84] The significant level for 
SNPs in candidate gene based association studies was 
set as satisfying the Bonferroni correction. To reduce 
the probability of false positives, we exclude case 
controls studies if the statistical power <70%. The 
power was extracted from publications or calculated by 
PS: Power and Simple Size Calculation software [85]. 
 
Genomic region annotations 
 
All AF susceptibility SNPs including index SNPs 
identified by GWAS and SNPs identified by candidate 
gene based association studies were first annotated 
using Variant Effect Predictor (http://asia.ensembl.org/ 
Homo_sapiens/Tools/VEP, GRCh38) in Ensembl to 
obtain their genomic region information. 
 
Functional annotation of AF susceptibility SNPs in 
exon 
 
According to the genomic region information obtained 
from Variant Effect Predictor, non-synonymous SNPs 
were directly recognized as functional variants. SNPs in 
untranslated region (UTR) were analyzed the 
microRNA binding ability using MirSNP tool 
(http://bioinfo.bjmu.edu.cn/mirsnp/search/) [86] and 
miRNASNP v2.0 (http://bioinfo.life.hust.edu.cn/ 
miRNASNP2/) [87]. 
 
Enhancer prediction and transcription factor (TF) 
binding sites prediction of AF susceptibility SNPs in 
non-coding regions 
 
Splicing variants identified by Variant Effect Predictor 
were classified as functional SNPs directly. Next, for 
intronic or intergenic SNPs, the chromatin states data 
from the Roadmap and ENCODE to analyze whether 
they are overlapping any enhancers in possible AF 
related tissues and cell types.  
 
For the AF susceptibility SNPs in the non-coding 
genomic regions, including in UTR, promoter, intron, 
and intergenic regions, SNP2TFBS database 
(http://ccg.vital-it.ch/snp2tfbs/) was used to predict 
potential binding ability between SNPs and trans-
cription factors [88]. 
 
Histone modification analysis 
 
SNPs in promoter, intron, and intergenic regions may 
modify the histone binding ability, and here, using 
HaploReg (version 4.1) (https://pubs.broadinstitute.org/ 
mammals/haploreg/haploreg.php) [89], we analyzed 
whether the identified non-coding AF associated SNPs 
overlap the major histone modifications (H3K9ac and 

https://www.ebi.ac.uk/gwas/
https://www.gwascentral.org/
https://www.ncbi.nlm.nih.gov/gap/phegeni
https://pubmed.ncbi.nlm.nih.gov/
https://www.embase.com/
https://www.embase.com/
https://www.nlm.nih.gov/bsd/medline.html
https://www.nlm.nih.gov/bsd/medline.html
http://asia.ensembl.org/Homo_sapiens/Tools/VEP
http://asia.ensembl.org/Homo_sapiens/Tools/VEP
http://bioinfo.bjmu.edu.cn/mirsnp/search/
http://bioinfo.life.hust.edu.cn/miRNASNP2/
http://bioinfo.life.hust.edu.cn/miRNASNP2/
http://ccg.vital-it.ch/snp2tfbs/
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
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H3K4me3 for promoter regions, H3K27ac and 
H3K4me1for enhancer regions) in AF related tissues 
and cell types. 
 
Long-range transcriptional regulatory function 
predictions 
 
SNPs in the noncoding region may reside within or near 
regulatory elements controlling the expression of distal 
target genes through topological interactions, and using 
3DSNP [90], we annotated the possible regulatory 
effect of identified AF associated SNPs by examining 
their 3D interactions with distal genes mediated by 
chromatin loops. 
 
Expression quantitative trait loci analyses 
 
Genotype-Tissue Expression (GTEx) data were used in 
determining whether identified AF associated SNPs 
affect gene expression levels. eQTL analysis were 
performed bases on raw RNA-Seq data (RPKM) by 
genes from the GTEx V6 analysis freeze (dbGaP 
Accession phs000424.v6.p1) and included 25 tissues. 
 
Gene ontology (GO) and pathway enrichment 
analysis of eQTL targeted genes 
 
Gene Ontology including biological process, molecular 
function, and protein class were annotated using 
PANTHER (http://www.pantherdb.org). KEGG pathway 
enrichment analysis were used in the Search Tool for the 
Retrieval of Interacting Genes (STRING, v11.0, 
http://string-db.org).  
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Please browse Full Text version to see the data of Supplementary Table 1. 
 
Supplementary Table 1. Information of susceptibility SNPs associated with atrial fibrillation. 


