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INTRODUCTION 
 

Lung cancer is one of the most lethal tumors, with a 

mean survival rate of 18.4% at one year [1], and results 

in more than 1.3 million deaths per year [2]. NSCLC is 

the most common pathological type of lung cancer, 

accounting for about 85% of lung cancer [3]. In recent 

years, surgery, radiotherapy, chemotherapy, and 

targeted therapy have been shown to prolong the 

survival of patients with NSCLC [4]. However, the 

prognosis of NSCLC patients remains poor, with a 5-

year survival rate of only 18% [5]. Therefore, there is an 

urgent need to find a new and meaningful biomarker or 

modification in NSCLC cells.  

 

Apart from the genetic elements and proteins that play 

a vital effect in the occurrence and development of 

cancer, RNA modifications also play a crucial role in 

tumorigenesis. Among the RNA modifications, m6A 

is the most common, participating in multiple 

biological processes [6–8], such as cell death [9], 

cancer stem cell formation [10], tumorigenesis [11, 

12], as well as contributing to the development of 

pathological conditions such as obesity and  type 2 

diabetes [13]. m6A occupies about 0.1–0.4% of the 

total adenosine residues in cellular RNA [6–8]. The 

process of m6A modification is mediated by enzymes 

that function as writers (methylases), erasers 

(demethylases), and readers [14]. Writers include 
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ABSTRACT 
 

N6-methyladenosine (m6A) is the most common internal modification in eukaryotic mRNA. However, little is 
known about its role in non-small cell lung cancer (NSCLC). In this study, a total of 1017 NSCLC patients from the 
cancer genome atlas (TCGA) database with copy number variation (CNV) data were included. Log-rank tests and 
Cox regression model were used for survival analysis. The relationship between m6A regulators and 
clinicopathological features was evaluated using the chi-square test. The alteration of m6A regulators were 
related to T stage. Patients with any CNVs of regulators genes had worse overall survival (OS) than those with 
diploid genes. The deletion of m6A writer genes was an independent risk factor for poor OS, and the effect 
synergized with that of copy number gain of eraser genes. High expression of Fat mass-and obesity-associated 
gene (FTO) was associated with KRAS signaling up. Knockdown of FTO increased m6A content and inhibit 
proliferation of A549 lung cancer cell. Thus, we identified the genetic changes of m6A regulatory factors in 
NSCLC for the first time and found a significant relationship between these changes and poor clinical 
characteristics. FTO might play an important role in promoting NSCLC by decreasing m6A level and activating 
KRAS signaling. 
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METTL14, METTL3 and WTAP, and their complex 

promotes m6A modification in RNA. By contrast, 

erasers reverse the effect of writers in m6A-modified 

mRNA. FTO, the first recognized demethylase, has 

been proven to have cancer-promoting activity in 

gastric cancer, breast cancer, acute myeloid leukemia 

(AML), and cervical squamous cell carcinoma [15–

19]. The readers enable the instructions of m6A 

modification to be converted into functional signals, 

including YTH domain family proteins [20]. 

 

In recent years, m6A regulators have been reported to 

enhance the development of diverse carcinomas, 

including liver cancer [12], acute myeloid leukemia 

[21], and glioblastoma [22]. However, m6A regulators 

also act as tumor suppressors in renal cell carcinoma 

[21]. Although many studies explain the role of m6A 

regulators in cancers, little is known about the function 

of m6A regulators in NSCLC. The present study aimed 

to understand the functions of m6A regulators in 

NSCLC by sequencing and analysis of CNV data from 

TCGA database. 

 

RESULTS 
 

Mutations and CNVs of m6A regulatory genes in 

NSCLC patients 

 

In the sequencing analysis, only 45 out of 408 samples 

showed mutations in the m6A regulatory genes 

(Supplementary Table 1). However, among the 1017 

NSCLC samples with CNV data, CNVs were often 

observed in 10 m6A regulatory genes (Figure 1A). 

From these 10, the frequency of CNVs of YTHDC2 was 

the highest (68.53% 697/1017), that of YTHDF2 was 

the lowest (49.66% 505/1017), and that of the other 8 

m6A regulatory factor genes was more than 50%. In 

addition, CNVs of TP53 and EGFR genes were higher 

in NSCLC patients, about 66.18% and 60.89%, 

respectively than in controls. 

 

Next, we explored the CNV mutation pattern of m6A 

regulatory factors in NSCLC patients and found that 

the most frequent CNV type was loss of copy number, 

and the frequency was similar to that in ccRCC [23] 

and AML [24] (Figure 1B, Table 1). Because of the 

high frequency of CNVs of m6A regulatory factors in 

NSCLC patients, the frequency of CNV of only one 

regulatory factor or that of two genes at the same time 

is relatively small. The results showed that the 

shallow deletion of WTAP is the most frequent CNV 

of m6A regulatory genes (0.885%) and shallow 

deletion of WTAP and copy number gain of YTHDF3 

were the most frequent double-gene CNV (0.492%) 

(Figure 1C).  

 

Relationship between alterations in m6A regulatory 

factors and clinicopathological and molecular 

characteristics 

 

We evaluated the relationship between alterations in 

m6A regulatory genes (CNV and mutation) and 

clinicopathological parameters of patients. The results 

showed that there was a significant correlation 

between the change in m6A regulatory factors and T 

stage (p= 0.02) (Table 2). Next, we evaluated the 

relationship between m6A regulatory gene alterations 

and the hot genes (EGFR, ERBB2, ALK, MET, TP53

 

 
 

Figure 1. CNVs of m6A regulatory genes in NSCLC. (A) Percentage of lung cancer samples with CNVs in m6A regulatory factors in TCGA 

data. (B) Loss and gain of copy number of m6A regulatory factors in patients with NSCLC. (C) The most common CNV mutation pattern of 
m6A regulators in patients with NSCLC. 
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Table 1. Different CNV patterns found in lung cancer samples (n = 1017). 

 
gene Diploid 

Deep 

deletion 

Shallow  

deletion 

Copy number 

 gain 
Amplification CNV sum Percentage 

Eraser 
ALKBH5 361 9 510 131 6 656 64.50% 

FTO 487 7 324 193 6 530 52.11% 

Writer 

METTL14 469 0 473 75 0 548 53.88% 

METTL3 431 4 270 296 16 586 57.62% 

WTAP 488 8 382 138 1 529 52.02% 

Reader 

YTHDF1 420 1 106 458 32 597 58.70% 

YTHDF2 512 4 332 166 3 505 49.66% 

YTHDC1 493 2 374 124 24 524 51.52% 

YTHDC2 320 8 585 102 2 697 68.53% 

YTHDF3 391 3 117 474 32 626 61.55% 

Hot gene 

EGFR 398 6 85 465 63 619 60.87% 

ERBB2 473 1 148 370 25 544 53.49% 

ALK 558 5 46 397 11 459 45.13% 

KRAS 465 2 128 366 56 552 54.28% 

MET 442 5 130 416 24 575 56.54% 

TP53 344 10 577 85 1 673 66.18% 

 

Table 2. Clinicopathological parameters of NSCLC patients with or without mutation/CNV of m6A regulatory genes. 

  With mutation and/or CNV* Without mutation and CNV* P-value 

Age <=60 690 7 0.417 

 >60 255 29  

gender Female 372 18 0.269 

 Male 573 18  

Pathological Stage I 479 22 0.363 

 II 267 10  

 III 157 3  

 IV 32 0  

 Discrepancy 10 1  

T stage T1 259 18 0.02 

 T2 536 11  

 T3 107 6  

 T4 41 1  

 TX 2 0  

N stage N0 600 30 0.162 

 N1 218 3  

 N2 105 3  

 N3 7 0  

 Nx 15 0  

M stage M0 709 23 0.078 

 M1 204 0  

 MX 32 13  

*With mutation or CNV: Cases have mutant or CNV or mutant+CNV, confirmed through TCGA database. Without mutant and 
CNV: Cases with neither mutant nor CNV, confirmed through TCGA database. Ambiguous variables (Nx, Mx, N/A, discrepancy 
and Gx) were excluded from chi-square test or non-parametric test. 
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Table 3. Relationship between molecular characteristics and alteration of m6A regulatory genes in patients with 
NSCLC. 

   
Without mutation  

or CNV* 
With mutation 

and CNV* 
X2 P 

EGFR N=1017 
wt 4 615 36.65 <0.0001 

alteration 32 366   

ERBB2 N=1017 
wt 0 544 40.72 <0.0001 

alteration 36 437   

ALK N=1017 
wt 0 459 28.84 <0.0001 

alteration 36 522   

KRAS N=1017 
wt 5 547 22.87 <0.0001 

alteration 31 434   

MET N=1017 
wt 2 573 37.36 <0.0001 

alteration 34 408   

TP53 N=1017 
wt 1 672 64.11 <0.0001 

alteration 35 309   

*With mutation or CNV: Cases have mutant or CNV or mutant+CNV of m6A regulators, confirmed through TCGA database. 
Without mutant and CNV: Cases with neither mutant nor CNV of m6A regulators, confirmed through TCGA database.  
 

and KRAS) in NSCLC. As expected, there was a 

significant relationship between the alterations in 

m6A regulatory factors and alterations in these six 

genes. The result indicated the patients with mutation 

and CNV had more the alterations of hot genes than 

the patients without mutation or CNV (p<0.0001) 

(Table 3). 

 

Furthermore, we detected the effect of the alterations of 

m6A regulatory factors on mRNA expression in 

NSCLC patients. The results revealed that mRNA 

expression was significantly correlated with various 

CNV mutation patterns (p < 0.0001). For all the top 10 

genes with CNV, copy number gain was associated with 

increased mRNA expression, while copy number loss 

was associated with decreased mRNA expression 

(Figure 2). 

 

Relationship between CNVs of m6A regulatory 

genes and survival of NSCLC patients 

 

We also analyzed the relationship between CNVs of 

m6A regulatory genes and OS and DFS of patients. 

The results showed that the patients with m6A 

regulatory gene CNV had better OS than the patients 

with diploid. (Figure 3A and Figure 3B). Then, the 

OS and DFS analysis with respect to 10 m6A 

regulatory genes in NSCLC patients were carried out. 

The results showed that the patients with FTO and 

YTHDC2 deletion CNVs had better DFS than those 

with diploid and copy number gain (Figure 3C and 

Figure 3D) and patients with METTL3 deletion CNVs 

had worse OS than those with diploid and copy 

number gain (Figure 3E). The other genes showed no 

significant effects. Multivariate Cox regression 

analysis showed that the alteration of m6A regulatory 

genes was an independent risk factor for poor OS 

(Table 4). In addition, the "writers" are a group of 

methyltransferase genes, and are the most important 

part of the regulation process of m6A. "Erasers" are a 

group of demethylase methyltransferase genes. The 

results show that the "writer" gene down-regulation 

and "eraser" gene up-regulation may lead to the 

decline of survival rate of patients. 

 

In order to verify our results, we tested the association 

between CNVs combinations with different patterns of 

m6A carried by patients and OS and DFS. We found 

that compared with patients with only writer gene 

deletion, when the down-regulation of "writer" genes 

and the up-regulation of "erasers" genes occur 

simultaneously, the prognosis of patients was worse 

(Figure 3F and Figure 3G). 

 

Enrichment analysis of “eraser” genes: FTO 

 

It has been shown that FTO is related to the occurrence 

and development of NSCLC. Thus, we divided all 

samples into high and low FTO mRNA expression 

levels according to the median FTO mRNA expression 

levels and performed the GSEA to conduct enrichment 

analysis. The high expression of FTO was significantly 

enriched in nine related pathways such as UV radiation 

response, myogenesis, KRAS signaling pathway and 

TGF-beta signaling (Figure 4A and Supplementary 

Table 2). Therefore, the genetic alterations of m6A 

regulatory factors in NSCLC were related to poor 

survival. To test our findings, we examined gene 

expression associated with these pathways. The result 

demonstrated that BMPR1A associated with TGF-beta 

signal and UV radiation pathway and was 

downregulated in NSCLC tissues. ANKH associated 
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Figure 2. Correlation between different CNV patterns of 10 m6A regulatory genes and mRNA expression level. 
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with androgen response pathway was upregulated in 

NSCLC tissues (Figure 4B). Besides, several studies 

have found that FTO could participate in UV radiation 

response, myogenesis and androgen response, which are 

consistent with our results [25–27]. 

FTO inhibition suppressed the proliferation of NSCLC 

cells and Increase the level of mRNA m6A in A549 

 

By the EpiQuik m6A RNA Methylation Quantification 

Kit, we found the m6A content in A549 knocked down 

 

 
 

Figure 3. Survival rate of patients with CNVs of m6A regulatory factors. (A, B) Relationship between OS, RFS and m6A regulator 

carrying CNV or diploid in NSCLC patients. (C, D) DFS for NSCLC patients with different CNV patterns of FTO and YTHDC2. (E) OS for NSCLC 
patients with different CNV patterns of FTO and YTHDC2. (F, G) Relationship between simultaneous changes in m6A regulatory factors: writer 
genes and eraser genes, and OS, and DFS in NSCLC patients. 
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Table 4. Clinical Information and risk model univariate/multivariate COX analysis of m6A regulatory genes for overall 
survival and disease-free survival of patients with NSCLC. 

Variables 

OS DFS 

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis 

HR(95%CI) p.Value HR(95%CI) p.Value HR(95%CI) p.Value HR(95%CI) p.Value 

Age(≥60 vs.<60) 1.21(0.92-1.57) 0.168   1.04(0.75-1.45) 0.798   

Gender (male vs 

female) 
1.23(0.97-1.55) 0.089   1.03(0.77-1.38) 0.835   

Pathologic stage  

(I-II vs III + IV) 
1.86(1.46-2.38) <0.0001* 1.19(0.83-1.7) 0.348 1.89(1.35-2.63) <0.0001* 1.28(0.82-1.99) 0.269 

M (M1 vs M0) 1.98(1.21-3.24) 0.006* 1.64(0.95-2.83) 0.078 1.37(0.61-3.1) 0.449   

N (N1, N2, N3 vs 

N0) 
1.53(1.23-1.91) <0.0001* 1.38(1.07-1.79) 0.014* 1.65(1.24-2.2) 0.001* 1.51(1.08-2.11) 0.015* 

T (T3-T4 vs T1-T2) 1.74(1.33-2.29) <0.0001* 1.55(1.11-2.15) 0.01* 1.89(1.32-2.73) 0.001* 1.64(1.06-2.53) 0.026* 

EGFR (altered vs 

diploid) 
1.18(0.94-1.48) 0.148   1.3(0.98-1.74) 0.071   

ERBB2 (altered vs 

diploid) 
0.94(0.76-1.18) 0.614   1.09(0.82-1.45) 0.549   

ALK (altered vs 

diploid) 
1.27(1.02-1.59) 0.035* 1.35(1.07-1.69) 0.01* 1(0.75-1.33) 0.984   

KRAS (altered vs 

diploid) 
0.91(0.73-1.13) 0.391   0.9(0.67-1.19) 0.451   

MET (altered vs 

diploid) 
1.17(0.94-1.47) 0.156   1.34(1.01-1.78) 0.045* 1.31(0.97-1.75) 0.075 

TP53 (altered vs 

diploid) 
0.96(0.76-1.22) 0.74   1.06(0.78-1.43) 0.719   

m6A regulator 

alteration (Writer 

Loss + Eraser Gain 

vs others) 

0.27(0.1-0.73) 0.01* 0.31(0.11-0.85) 0.022* 1212451(0-Inf) 0.992   

Ambiguous variables (Nx, Mx, N/A, discrepancy and Gx) were excluded 
 

the FTO increased (Figure 5A). Furthermore, using 

qRT-PCR, we found that FTO was highly expressed in 

A549. Then we used silencer-FTO to knock down the 

FTO (Figure 5B and Figure 5C). Next, by the CCK-8 

assay, we showed knockdown of FTO inhibited the 

proliferation capacity of A549 lung cancer cell (Figure 

5D). This is consistent with our results. 

 

DISCUSSION 
 

N6-methyladenosine (m6A) is the most common 

internal modification in eukaryotic mRNA, the 

abundance of which varies from 0.1% to 0.4% of total 

adenosine residues [6–9]. Actually, previous study 

proved m6A existed in mRNA of more than 7600 genes 

and over 300 non-coding RNA [28]. It has been 

reported that m6A is involved in a variety of cellular 

processes such as cell proliferation, self-renewal, 

development and cell death [9]. Considering the 

importance of m6A in transcriptome, some studies have 

attempted to reveal the role of m6A in cancer and the 

results shown the regulators of m6A exert enormous 

functions in cancer development, such as proliferation, 

migration and invasion [29, 30]. In recent years, m6A 

regulators have been reported to enhance the 

development of diverse carcinomas, including liver 

cancer (11), acute myeloid leukemia [21], and 

glioblastoma [22]. However, m6A regulators also acted 

as tumor suppressors in renal cell carcinoma [31]. In our 

study, the frequency of alterations of the ten m6A 

related genes was much higher than that shown in AML 

and ccRCC, suggesting that dysregulation of m6A may 

play a significant role in the occurrence and 

development of NSCLC than AML and ccRCC [23, 

24]. Thus, having a better understanding and further 

exploring the underlying mechanism for the m6A 

regulators in NSCLC is necessary. 

 

Based on the statistics of 408 NSCLC patients, we 

found the mutations related to m6A regulatory factors in 

45 samples. From the 10 m6A regulatory genes, shallow 

deletion of m6A “writer” gene WTAP and the copy 

number gain of m6A “reader” gene YTHDF3 were the 

most frequent double gene alterations, and shallow 

deletion of m6A “writer” gene WTAP was the most 

frequent single alteration, implying the importance of 

m6A writer genes in the process of RNA m6A 

modification. Due to the fact that EGFR, ERBB2, ALK, 

MET, TP53 and KRAS played important roles in the 

pathogenesis of NSCLC, we further evaluated the 

correlation between m6A regulatory gene variation and 

the alterations of six hot genes in NSCLC. The result 
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indicated the patients with mutation and CNV of m6A 

regulators had more the alterations of hot genes than the 

patients without mutation or CNV (p<0.0001). Previous 

studies shown that EGFR mutation was related to the 

level of mRNA methylation in pancreatic cancer [32], 

and TP53 mutation was related to the level of mRNA 

methylation in gastric cancer [33]. 

Upon analyzing the relationship between CNV/mutation 

in m6A regulators and clinicopathological parameters of 

patients by chi-squared test, we found that there was a 

significant correlation between the change of m6A 

regulatory factors and T stage (p=0.02). Multivariate 

Cox regression analysis showed that the alteration of 

m6A regulatory genes was an independent risk factor 

 

 
 

Figure 4. Enrichment analysis of “eraser” genes: FTO. (A) GSEA results of FTO with different expression levels. (B) Expression of genes 

related to enrichment pathway. 
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for poor OS. For all the top 10 genes with CNV, copy 

number gain was associated with increased mRNA 

expression, while copy number loss was associated with 

decreased mRNA expression, revealing that mRNA 

expression was significantly correlated with various 

CNV mutation patterns. Besides, the results showed that 

the patients with m6A regulatory gene CNV had better 

OS than the patients with diploid. Sun et al. found that 

NSCLC patients with high expression of METTL3 was 

associated with better OS [34]. However, Gregory et al. 

indicated the upregulation of METTL3 could promote 

the growth, survival, and invasion of human lung cancer 

cells [35]. In the present study, patients with METTL3 

(writer gene) deletion CNVs had worse OS than those 

with diploid and copy number gain. Moreover, the 

patients with FTO (eraser gene) and YTHDC2 (reader 

gene) deletion CNVs had better DFS than those with 

diploid and copy number gain.  Previous study 

suggested lung cancer patients with depletion of FTO 

had better prognosis [36]. These results suggested that 

the down-regulation of m6A level might be associated 

with poor patient survival. Next, to validate our result, 

the associations among CNVs combinations with 

different patterns of m6A carried by patients and OS 

and DFS were tested, and we found that the "writer" 

gene down-regulation and "eraser" gene up-regulation 

may lead to the decline of survival rate of patients. This 

was consistent with our results.  

 

Furthermore, we found that some studies have discussed 

the possible mechanisms of action of METTL3 in 

NSCLC. For example, METTL3 contributes to 

transforming growth factor-beta-induced epithelial-

mesenchymal transition of NSCLC cells through the 

regulation of JUNB [37]. METTL3 has been found to 

promote protein translation of oncogenes in lung cancer 

cells through methyltransferase-independent activity 

[38]. However, little was known about the mechanisms 

of action of FTO. Thus, we further explored the 

correlated pathways with FTO. FTO was originally 

identified as a fat mass and obesity-associated protein 

and has been regarded as the first RNA demethylase in 

recent study [15, 39]. The GSEA analysis suggested that 

the high FTO expression was significantly enriched in 

 

 
 

Figure 5. Effects of silencing FTO on proliferation and mRNA m6A level of lung cancer cells. (A) The mRNA m6A level in human 

lung cancer cell. (B) The expression of FTO in lung cancer cells. (C) Verification of knockout efficiency. (D) Knockdown of proliferation capacity 
of FTO inhibited lung cancer cells. (*, p < 0.05; **, p < 0.01; ***, ****, p < 0.001). 
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UV radiation response, angiogenesis and KRAS 

signaling. Moreover, we found that BMPR1A related 

to TGF-β signaling and UV radiation response was 

down-regulated in NSCLC tissues and ANKH related 

to androgen response was up-regulated, which 

partially validate the GSEA results. OI. Kit et al. 

analyzed the copy number variation of some gene loci 

in lung tumor cells extracted by laser capture 

microdissection and in cell-free DNA in the plasma of 

patients with lung adenocarcinoma and detected the 

copy number variation of KRAS and FTO at the same 

time [40]. GSEA in high expression of FTO showed 

enrichment of genes up-regulated in KRAS signaling, 

indicating the activation of KRAS signaling by the 

upregulation of FTO. In addition, the results have 

indicated the patients with mutation and CNV had 

more KRAS alteration than the patients without 

mutation or CNV (p<0.0001), suggesting there was a 

significant correlation between KRAS alteration and 

m6A regulatory gene alterations. KRAS was the most 

frequently mutated oncogene in NSCLC and KRAS 

mutations were often associated with low overall 

survival and resistance to treatment [41, 42]. Previous 

studies have shown that MEK-ERK depletion reduced 

the expression of EZH2 in cells with KRAS (G12C) 

mutation, thereby reducing the level of histone 

methylation and inhibiting the development of cancer 

[43]. Therefore, we thought that the eraser gene FTO 

might down-regulate the m6A level of key molecules 

in KRAS signaling and further activate KRAS 

signaling to promote tumor.  

 

Additionally, we found FTO was highly expressed in 

NSCLC cell A549 and knocking down FTO could inhibit 

the proliferation of A549, and mRNA m6A content 

analysis showed that the m6A content in A549 that 

knocked down the FTO increased. All this partly proved 

our hypothesis: the down-regulation of m6A level might 

be associated with poor survival in NSCLC patients. FTO 

has been reported to participate in the development of 

NSCLC. Depletion of FTO inhibited the proliferation, 

invasion, emigration of lung cancer cells [36]. And 

research has suggested that FTO facilitates lung 

adenocarcinoma cell progression by activating cell 

migration through m6A demethylation [44].  

 

In summary, we determined, for the first time, the 

genetic alterations in m6A regulatory genes in NSCLC 

and identified a significant relationship between the 

alterations resulting in decreased m6A level and worse 

clinical characteristics including survival. Moreover, we 

found eraser gene FTO might play an important role in 

promoting NSCLC by decreasing m6A level and 

activating KRAS signaling. Future studies uncovering 

the oncogenesis mechanisms of FTO will be required to 

confirm our findings. 

MATERIALS AND METHODS  
 

NSCLC TCGA data 

 

NSCLC-related data, including somatic non-silent 

mutation (gene-level), phenotype, gene expression, 

RNA-seq, and copy number (gene-level) data, were 

downloaded from TCGA (https://cancergenome. 

nih.gov/). 

 

Mutation of m6A regulatory genes and 

characterization of CNV in NSCLC patients 

 

The somatic mutation data were used to calculate the 

somatic mutations of m6A regulatory factors and the 

copy number (gene level) data were used to calculate 

the CNV mutation pattern distribution of m6A-related 

regulatory factors in NSCLC patients. We collected the 

mutation information of the patients and selected for 

information of m6A gene. Simultaneously, statistical 

analyses and visualization were performed to assess the 

percentage of NSCLC samples with CNV in all 

patients, the number of samples with amplification and 

deletion, and the frequency of one or two regulatory 

factors with CNV. 

 

Analysis of the relationship between the changes in 

m6A regulatory factors and clinicopathological and 

molecular characteristics of tumor patients 

 

COX regression analysis was used to explore the 

correlation between different CNV patterns and the 

levels of m6A regulatory gene mRNA. The relationship 

between CNV of m6A-related regulatory factors and 

clinicopathology was evaluated. Chi-square test was 

used for analyzing statistical significance. 

 

Association between CNV of m6A regulatory genes 

and survival of cancer patients 

 

The effects of CNVs on overall survival (OS) and 

disease-free survival (DFS) of cancer patients and the 

risk factors were assessed by survival analysis and a 

univariate/multivariate Cox regression model.  

 

Enrichment analysis of m6A regulatory genes 

 

GSEA was performed to enrich and analyze m6A 

regulatory genes and the genes that affected cellular 

pathways were selected.  

 

Quantitative reverse transcription PCR (qRT-PCR) 

and mRNA m6A level in human NSCLC cells 

 

Total RNA was isolated from cells with RNA 

Extraction Kit (Aidlab Biotechnologies Co, Ltd, China). 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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The RNA concentrations were detected using a 

Nanodrop spectrophotometer (Thermo Scientific Ltd., 

USA). cDNA synthesis was completed using a reverse 

transcription kit according to the manufacturer’s 

instructions. qRT-PCR was performed on the CFX 

ConnectTM Real-Time PCR Detection System (Bio-Rad, 

USA) using the ChamQTM SYBR® qPCR Master Mix. 

The expression of GAPDH was used as the reference 

for normalization. The 2-ΔΔCt method was used to 

calculate the relative fold change in mRNA expression. 

The EpiQuik m6A RNA Methylation Quantification Kit 

(Colorimetric) (P-9005, Epigentek, USA) was used to 

measure the m6A content in total RNAs. 

 

Cell proliferation assay 

 

Cell proliferation was assessed using the Cell Counting 

Kit-8 (CCK-8; Beyotime, Hangzhou, People’s Republic of 

China) according to the manufacturer’s instructions. 

Transfected A549 cells (3000 cells/well) were seeded in 

96-well plates with three replicate wells per group. The 

optical density (OD) was measured at 450 nm every 24 

hours using a multimodal plate reader (PE Enspire, USA). 

 

Statistical analysis 

 

The R software was used to analyze all statistics and 

graphs. Chi-square test was used to analyze the 

association between m6A regulatory gene CNVs and 

clinicopathological features. Kaplan-Meier curve 

analysis and the logarithmic rank test were used to 

evaluate the predictive value of changes in m6A 

regulatory genes. Survminer and survival packages in R 

language were employed for Cox proportional hazard 

regression model analysis. All statistical results with p 

<0.05 were considered significant. 
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SUPPLEMENTARY MATERIALS  

 

Supplementary Tables 
 

 
Supplementary Table 1. Mutations of m6A regulatory genes in 408 cases. 

sample FTO ALKBH5 YTHDF2 METTL14 WTAP YTHDC1 YTHDC2 YTHDF1 METTL3 
TCGA-05-4396-01 1 1 1    1 1  

TCGA-60-2725-01   1       

TCGA-17-Z008-01   1       
TCGA-49-4507-01   1       
TCGA-49-6742-01   1       
TCGA-50-6590-01   1       
TCGA-85-6560-01         1 
TCGA-05-4417-01         1 
TCGA-66-2788-01        1  
TCGA-05-4405-01        1  
TCGA-64-5775-01        1  
TCGA-22-1012-01          
TCGA-33-4538-01          
TCGA-66-2791-01          
TCGA-17-Z003-01          
TCGA-50-6594-01          
TCGA-73-4670-01          
TCGA-91-6836-01 1      1   
TCGA-18-3419-01       1   
TCGA-56-6545-01       1   
TCGA-66-2756-01       1   
TCGA-66-2763-01       1   
TCGA-17-Z022-01       1   
TCGA-35-3621-01       1   
TCGA-22-4591-01      1    
TCGA-33-6737-01      1    
TCGA-17-Z050-01      1    
TCGA-44-6775-01      1    
TCGA-50-6593-01      1    
TCGA-22-4595-01     1     
TCGA-66-2744-01     1     
TCGA-05-4420-01     1     
TCGA-73-4677-01     1     
TCGA-75-5125-01     1     
TCGA-75-6207-01     1     
TCGA-33-4566-01    1      
TCGA-05-4433-01    1      
TCGA-17-Z011-01    1      
TCGA-44-6777-01    1      
TCGA-50-5044-01    1      
TCGA-17-Z028-01  1        
TCGA-18-3407-01 1         
TCGA-22-5485-01 1         
TCGA-66-2766-01 1         
TCGA-05-4390-01 1         

The number 1 means there is a mutation of m6A regulatory genes in the sample. 
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Supplementary Table 2. Gene enrichment results of high expression of FTO in patients with NSCLC. 

GS DETAILS Size ES NES Nom p-val FDR q-val 

HALLMARK_UV_RESPONSE_DN 136 -0.57 -1.96 0 0.069 

HALLMARK_ANDROGEN_RESPONSE 96 -0.43 -1.81 0.018 0.12 

HALLMARK_TGF_BETA_SIGNALING 54 -0.51 -1.76 0.025 0.12 

HALLMARK_MYOGENESIS 199 -0.51 -1.57 0.011 0.22 

HALLMARK_HEDGEHOG_SIGNALING 35 -0.58 -1.56 0.01996 0.21 

HALLMARK_ANGIOGENESIS 36 -0.58 -1.55 0.034 0.19 

HALLMARK_KRAS_SIGNALING_UP 194 -0.5222249 -1.5274777 0.02868852 0.2020273 

HALLMARK_HEME_METABOLISM 191 -0.3403853 -1.5154847 0.01992032 0.1987541 

HALLMARK_ESTROGEN_RESPONSE_EARLY 192 -0.3725932 -1.402012 0.04364326 0.23626567 

 
 

 

 

 

 

 


