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ABSTRACT 
 
This study aimed to develop a model that fused multiple features (multi-feature fusion model) for predicting 
metachronous distant metastasis (DM) in breast cancer (BC) based on clinicopathological characteristics and  
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INTRODUCTION 
 
Breast cancer (BC) is the most common malignant 
tumour in females worldwide and results in the highest 
mortality rate in women [1]. Distant metastasis (DM) 
remains the main cause of death in BC patients [2]. 
Over 30% of BC patients present with DM, which 
significantly worsens the prognosis [3, 4]. The National 
Comprehensive Cancer Network (NCCN) guidelines 
recommend that all BC patients be followed up every 
three months. Patients showing BC recurrence signs and 
metastatic symptoms should be screened for DM. 
Frequent screening may result in unnecessary radiation 
exposure and an economic burden for BC patients. 
Thus, prediction modelling of DM in BC is warranted. 
 
A series of studies reported that patient age and past 
medical history were risk factors for DM in cancer 
patients [4–6]. Several pathological characteristics, 
including estrogen receptor (ER) status, progesterone 
receptor (PR) status, N stage, and histological 
differentiation, were reported to be associated with the 
occurrence of DM in BC [7–9]. However, due to the 
limited variability of the included clinicopathological 
characteristics, the reported predictive system could 
hardly make satisfactory predictions. 
 
Magnetic resonance imaging (MRI) can 
comprehensively evaluate the overall tumour details of 
BC. It can also determine the heterogeneity of tumours 
by detecting haemodynamic characteristics and 
morphology [10]. MRI has been widely used to predict 
the prognosis of BC [11, 12]. Few studies have been 
conducted to predict DM in BC with a model that fuses 
multiple features (multi-feature fusion model). 
 
Based on identified variables, the present study aimed 
to develop a multi-feature fusion model incorporating 
clinicopathological characteristics and MRI features for 
predicting metachronous DM in BC. The nomogram 

can potentially guide metachronous DM screening and 
the implementation of personalized therapy. 
 
RESULTS 
 
Characteristics of distant metastasis 
 
The DM cohort included 41 patients with single organ 
metastasis and 26 patients with multiple organ 
metastases. Bone was the most common site for DM (35 
cases, 52.24%), followed by the lung and/or pleura (28 
cases, 41.79%) and liver (21 cases 31.34%). Visceral 
(hepatic, pulmonary, esophageal, and ovarian) 
metastases were found in 83.58% (56 cases) of patients. 
A Venn diagram was used to demonstrate the details of 
BC patients with different metastatic sites (Figure 1). 
The average period until the occurrence of DM after a 
BC diagnosis was 17.31±13.12 months. 
 
Differences in the clinicopathological and MRI 
features between BC patients with/without DM 
 
Detailed information on the clinicopathological 
characteristics is shown in Supplementary Tables 1, 2. 
There was a significant difference in reproductive history 
(85.07% versus 95.52%, χ2 =6.655; p=0.01), parity (χ2 

=21.860; p<0.001), metastatic lymph nodes (59.70% 
versus 24.63%, χ2 =23.759; p<0.001), ER status (61.19% 
versus 79.85%, χ2 =8.008; p=0.005), PR status (56.72% 
versus 77.61%, χ2 =9.405; p=0.002), CA153 (25.37% 
versus 0.75%, χ2 =33.225; p<0.001), CEA (19.40% 
versus 0.75%, χ2 =23.993; p=<0.001), CA125 (14.62% 
versus 5.97%, χ2 =5.696; p=0.017), surgery (χ2 =19.168; 
p<0.001) and endocrine therapy (0.00% versus 8.96%, χ2 

=6.381; p=0.011) between patients with/without DM. 
There were no significant differences in the age 
distribution, family history of BC, marital status, number 
of abortions, age of menarche, HER2 status or Ki-67 
expression, radiotherapy, or chemotherapy between the 
control group and metastatic group. 

magnetic resonance imaging (MRI). A nomogram based on clinicopathological features (clinicopathological-
feature model) and a nomogram based on the multi-feature fusion model were constructed based on BC 
patients with DM (n=67) and matched patients (n=134) without DM. DM was diagnosed on average 
(17.31±13.12) months after diagnosis. The clinicopathological-feature model included seven features: 
reproductive history, lymph node metastasis, estrogen receptor status, progesterone receptor status, CA153, 
CEA, and endocrine therapy. The multi-feature fusion model included the same features and an additional 
three MRI features (multiple masses, fat-saturated T2WI signal, and mass size). The multi-feature fusion model 
was relatively better at predicting DM. The sensitivity, specificity, diagnostic accuracy and AUC of the multi-
feature fusion model were 0.746 (95% CI: 0.623-0.841), 0.806 (0.727-0.867), 0.786 (0.723-0.841), and 0.854 
(0.798-0.911), respectively. Both internal and external validations suggested good generalizability of the multi-
feature fusion model to the clinic. The incorporation of MRI factors significantly improved the specificity and 
sensitivity of the nomogram. The constructed multi-feature fusion nomogram may guide DM screening and the 
implementation of prophylactic treatment for BC. 
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As shown in Supplementary Table 1, multiple masses 
(χ2=25.441; p<0.001), T1WI signal (χ2=8.127; p=0.004), 
fat-saturated T2WI signal (χ2=4.043; p=0.044), lesion 
size (χ2=31.855; p<0.001) and lesion type (χ2=10.090; 
p=0.006) were markedly different between these groups. 
No significant differences were found in the kinetic 
curve pattern, internal enhancement, parenchymal 
enhancement, or fibroglandular tissue between the 
control group and the metastatic group. 
 
Dimensionality reduction and feature selection 
 
According to the LASSO method, seven features with 
optimal λ values, including reproductive history, lymph 
node metastasis, ER status, PR status, CA153, CEA and 
endocrine therapy, were selected for the model with 
only clinicopathological features (clinicopathological-
feature alone model) (Figure 2A, 2B). Ten features 
incorporating seven clinical features (reproductive 
history, lymph node metastasis, PR, CA153, CEA, 
surgery and endocrine therapy) and three MRI features 
(multiple masses, fat-saturated T2WI signal and mass 

size) were selected for the multi-feature fusion model 
(Figure 3A, 3B). 
 
Construction and validation of the predictive 
nomogram 
 
Multivariate logistic regression was used to construct 
two models to predict DM in BC using the 
aforementioned features, the clinicopathological-feature 
alone model (Figure 2C) and the multi-feature fusion 
model (Figure 3C). 
 
The calibration curve showed that the prediction (solid 
line) of the two models closely followed the 45-degree 
line in the training and test sets, suggesting good 
diagnostic accuracy (Figure 2D–2I for the 
clinicopathological-feature alone model and Figure 3D–
3I for the multi-feature fusion model). The ROC curves 
of the clinicopathological-feature alone model showed 
AUCs of 0.848 (95% CI 0.780-0.915) and 0.778 (95% 
CI 0.660-0.896) in the training set and test set, 
respectively, and no significant difference was found 

 

 
 

Figure 1. Venn diagrams showing intersections between different metastasis types used in our study. There were 26 cases of 
multiple organ metastases and 41 cases of single organ metastasis. Others include peritoneal (or mediastinal, ovarian, soft tissue) metastasis, 
pericardial effusion and lemostenosis. 
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Figure 2. Construction of the clinicopathological-feature alone model. (A) Selection of tuning parameter lambda in the LASSO model 
used 10-fold cross-validation. The gray line in the figure is the partial likelihood estimate corresponding to the optimal value of lambda. The 
optimal lambda value of 2.313 was chosen. (B) LASSO coefficient profiles of the eleven selected features. A vertical line was plotted at the 
optimal lambda value, which resulted in seven features with nonzero coefficients. (C) A nomogram was developed in the training data set 
with clinicopathological characteristics. Calibration curves and ROC curves of the nomogram for the training set (D, G), validation set (E, H) 
and total population (F, I). 
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Figure 3. Construction of the multi-feature fusion model. (A) Selection of tuning parameter lambda in the LASSO model used 10-fold 
cross-validation. The gray line in the figure is the partial likelihood estimate corresponding to the optimal value of lambda. The optimal 
lambda value of 2.653 was chosen. (B) LASSO coefficient profiles of the sixteen selected features. A vertical line was plotted at the optimal 
lambda value, which resulted in ten features with nonzero coefficients. (C) A nomogram was developed in the training data set with 
clinicopathological and MRI features. Calibration curves and ROC curves of the nomogram for the training set (D, G), validation set (E, H) and 
total population (F, I). 
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between these values, indicating the reliability of the 
nomogram (D=1.003; p=0.318). The ROC curves of the 
multi-feature fusion model showed AUCs of 0.870 
(95% CI 0.807-0.934) and 0.822 (95% CI 0.708-0.936) 
in the training set and test set, respectively, and no 
significant difference was found between these values, 
indicating the reliability of the nomogram (D=0.730; 
p=0.467) (Figure 4A). 
 
Differences in the prediction performance between 
the clinicopathological-feature alone model and the 
multi-feature fusion model 
 
As shown in Figure 4B, the sensitivity, specificity, 
diagnostic accuracy and AUC of the predictive 
nomogram based on the clinicopathological-feature 
alone model were 0.896 (95% CI: 0.791-0.953), 0.597 
(95% CI: 0.509-0.680), 0.697 (95% CI: 0.628-0.759), 
and 0.826 (95% CI: 0.759-0.882), respectively. The 
sensitivity, specificity, diagnostic accuracy and AUC of 

the predictive nomogram based on the multi-feature 
fusion model were 0.746 (95% CI: 0.623-0.841), 0.806 
(95% CI: 0.727-0.867), 0.786 (95% CI: 0.723-0.841), 
and 0.854 (95% CI: 0.798-0.911), respectively. The 
multi-feature fusion model showed a relatively better 
performance than the clinicopathological-feature alone 
model (IDI=0.061, 95% CI: 0.029-0.094, p=0.002; 
D=1.451, p=0.147). 
 
External validation of the multi-feature fusion model 
 
Detailed information on the clinicopathological and 
MRI characteristics of the external validation cohort is 
shown in Supplementary Table 1. As shown in Figure 
4C, 4D, the sensitivity, specificity, diagnostic accuracy 
and AUC of the predictive nomogram based on the 
multi-feature fusion model were 0.708 (95% CI: 0.487-
0.866), 0.917 (95% CI: 0.598-0.996), 0.778 (95% CI: 
0.609-0.899) and 0.795 (95% CI: 0.640-0.949), 
respectively. The calibration curve showed that the 

 

 
 

Figure 4. Receiver operating characteristic (ROC) curves of the nomograms. (A) ROC curves of the clinicopathological-feature alone 
model and multi-feature fusion model for the total population. (B) ROC curves of the multi-feature fusion model in the training set and 
calibration set. (C) ROC curve of the multi-feature fusion model in the external validation cohort. (D) Calibration curves of the multi-feature 
fusion model in the external validation cohort. 
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prediction (solid line) of the multi-feature fusion model 
closely followed the 45-degree line in the external 
validation datasets, suggesting good generalizability of 
the prediction model. 
 
DISCUSSION 
 
Distant metastasis represents the main reason for 
morbidity and mortality in BC patients. Approximately 
7.15% of BC patients present with DM at diagnosis [8]. 
The most common metastatic sites are the bone, brain, 
liver, and lung [8]. Although several predictive models 
for DM in BC have been recently reported, a multi-
feature fusion model can have better predictive ability 
[9, 13, 14]. 
 
Our nomogram was created with a combination of 
univariate analysis and the LASSO method. Our model 
is an improvement of previous predictive models based 
on univariate and multivariate analyses and optimized 
the predictive ability and stability (Figure 3). Using the 
LASSO method, ten characteristics were selected, 
including seven clinicopathological features and three 
MRI features. In the present study, we performed a 
comparative analysis between nomograms generated 
with/without MRI features. As shown in Figures 2 and 
3, the incorporation of MRI features can significantly 
improve both the specificity and sensitivity of the 
predictive nomogram. Thus, to address the limitations 
of current nomograms merely generated with clinical 
factors, the incorporation of imaging data is important. 
Among all radiographic imaging methods, MRI was 
chosen for its ability to obtain mass information and its 
wide acceptance. 
 
Previous studies demonstrated the potential ability of 
DCE-MRI to distinguish patients with/without 
metastasis [15]. It was reported that type 3 TIC patterns 
showed a significant association with the occurrence of 
DM. Our results showed that the enhancement pattern 
and TIC pattern were not significantly correlated with 
DM. This inconsistency might be caused by different 
proportions of the two factors between the present study 
and the previous study (only 6 of 59 patients had DM) 
[15]. Among the recorded MRI features, multiple 
masses, fat-saturated T2WI signal, and mass size were 
found to be independent predictors for DM in BC. A 
previous study reported tumour size as one of the risk 
factors for DM in BC [16]. We further verified this 
hypothesis through MRI features in BC patients with 
metachronous DM. A series of studies previously 
reported the different risk factors and prognostic factors 
of synchronous metastasis and metachronous metastasis 
in cancer [17, 18]. Thus, studies predicting DM should 
separate synchronous metastasis and metachronous 
metastasis. 

Some independent clinicopathological factors were 
previously confirmed to be associated with DM. Age, T 
stage, N stage, lymphovascular invasion, and hormone 
receptor status were independently associated with bone 
metastasis in BC [19]. Moreover, histological subtypes 
and tumour grade have been reported to be significantly 
related to visceral metastasis in BC patients [20]. The 
latest study found that sex, histology type, N stage, 
grade, age, ER status, PR status, and HER2 status can 
predict liver metastasis in BC [9]. In our study, 
reproductive history, lymph node metastasis, PR status, 
CA153, CEA, surgery and endocrine therapy were 
found to be correlated with DM occurrence in BC. 
Although DM differed among patients with various 
molecular subtypes, the molecular subtype was not 
confirmed to be a significant factor. The underlying 
reasons will be clarified with a larger sample size. 
 
This is the first study to construct a multi-feature fusion 
model for BC patients with metachronous DM. We 
admit to several limitations. First, considering the many 
subtypes of BC, the risk factors identified with the 
limited sample size may not be equally relevant in the 
general population. A larger multicentric validation will 
be needed. Second, some patients were followed up for 
less than 5 years. The rate of DM may be 
underestimated. Third, further studies will be needed to 
analyse the effect of incorporating other imaging data in 
the predictive nomogram, such as mammography and 
breast ultrasounds. Fourth, the present study merely 
included general features in the prediction model, and 
some features may not be captured; thus, the diagnostic 
accuracy of the prediction model was not satisfactory. 
In the future, radiomics is needed to incorporate more 
features into the model and improve the performance of 
the prediction model. 
 
In summary, the characteristics of metachronous DM in 
BC were described and analysed. The average period 
until the occurrence of DM after a BC diagnosis was 
17.31±13.12 months. Using an artificial intelligence 
technique, the dimensionality of imaging characteristics 
can be reduced and merged into the predictive 
nomogram for DM in BC. The constructed nomogram 
can potentially be employed as a graphic tool to guide 
metachronous DM screening and generate 
individualized treatment plans in BC. 
 
MATERIALS AND METHODS 
 
Study design and participants 
 
This case-control study was approved by the Ethics 
Committee of Tianjin Medical University Cancer 
Institute and Hospital. A total of 6,703 BC patients from 
January 2011 to December 2016 were reviewed from 
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the database. The inclusion criteria were as follows 
(Figure 5): (1) a histopathological diagnosis of invasive 
BC through surgically resected specimens and/or needle 
biopsy; (2) availability of diagnostic-quality 
preoperative MRI images; (3) MRI scanning before 
neoadjuvant therapy or surgical resection; (4) no DM at 
diagnosis; and (5) follow-up data for at least two years. 
Eventually, sixty-seven patients (8 diagnosed by 
puncture biopsy, 3 by surgery, and 56 by imaging) with 
DM and 134 randomly selected patients without DM 
were included in the present study as the model 
construction cohort. 
 
A series of demographic and clinicopathological 
characteristics were collected, including age, family 
history, breastfeeding history, marital status, abortion 
history, number of abortions, reproductive history, 

parity, menstrual status, age of menarche, clinical-based 
lymph node metastasis, estrogen receptor (ER) status, 
progesterone receptor (PR) status, human epidermal 
growth factor receptor 2 (HER2) status, Ki-67 
expression, surgery, radiotherapy, and chemotherapy. 
According to the NCCN guidelines, breast cancer 
patients who received breast-conserving surgery 
(lumpectomy) with or without radiotherapy were 
recommended to receive endocrine therapy to reduce 
the risk of recurrence. Thus, endocrine therapy was also 
added as one of the potential factors in the prediction 
model. In this study, serum oncological indicators such 
as CA125 and CEA were included as categorical 
variables. The cutoff value was set according to the 
laboratory diagnostic criteria, and the cutoff values for 
CA125, CEA, TPSA and CA153 were 35 U/ml, 5 ug/L, 
80 U/L, and 25 U/ml, respectively. 

 

 
 

Figure 5. Flowchart of the patient selection process in the present study. 
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To validate the performance of the prediction model, 
the construction cohort was first randomly divided into 
two sets: the training set (70%) and the test set (30%, 
internal validation). Additionally, 36 BC patients 
diagnosed between January 2011 and December 2015 
acquired from the Russian Federation N.N. Blokhin 
National Medical Research Center of Oncology were 
included as the external validation cohort to test the 
generalizability of the model. Among these patients, 18 
with DM (female; age: 33-73 years) and 18 without DM 
(female; age: 28-75 years) had complete MRI and 
clinicopathological records. 
 
MRI technique 
 
Magnetic resonance images were acquired at the Tianjin 
Medical University Cancer Institute and Hospital using 
scanners manufactured by two different companies. 
MRI was performed with a 1.5-T system equipped with 
a dedicated four-channel phased-array bilateral breast 
coil (Signa Infinity Excite II, GE Healthcare) before 
2013, while a 3.0-T MRI system equipped with a 
dedicated eight-channel phased-array breast coil 
(Discovery MR750, GE Medical Systems) was used 
after 2013. Some examinations were performed with a 
3.0-T scanner using a dedicated 8-channel (4-channel 
for 1.5T scanner) phased-array breast coil. MRI 
protocols included axial T1-weighted imaging, fat-
saturated fast spin-echo (FSE) sequences for T2-
weighted imaging (T2WI) and unilateral sagittal fat-
saturated FSE T2-weighted imaging of the affected 
breast before contrast administration. Diffusion-
weighted imaging (DWI) was performed using a multi-
section spin-echo single-shot echo-planar sequence 
bilaterally in the axial plane and in the sagittal plane of 
the affected breast. Images and sagittal data were 
obtained by sagittal DCE-MRI using the volume 
imaging for breast assessment (VIBRANT) bilateral 
breast imaging technique. Before the injection of the 
contrast agent, serial mask images were obtained. A 
contrast agent (Gd-DTPA, 0.2 mL/kg body weight, flow 
rate 2.0 mL/s) was manually injected using an 
automatic MR-compatible power injector and then 
flushed with the same total dose of saline solution. 
Dynamic MRI was immediately performed after the 
injection. Image acquisition was repeated five times 
(eight times for the 1.5T scanner), and each phase took 
90-100 seconds (58-62 seconds for the 1.5T scanner). In 
all patients, final axial 3D fast spoiled gradient-recalled 
echo images were obtained after the dynamic study. 
 
Magnetic resonance images in the N.N.Blokhin 
National Medical Research Center of Oncology were 
acquired through a 1.5-T MRI system equipped with the 
same four-channel phased-array bilateral breast coil. 
MRI protocols included axial T1-weighted imaging, fat-

saturated fast spin-echo (FSE) sequences for T2-
weighted imaging (T2WI) and unilateral sagittal fat-
saturated FSE T2-weighted imaging of the affected 
breast before contrast administration. DWI was 
performed with the method. The image acquisition was 
repeated eight times, and each phase took 60-64 
seconds. 
 
MRI analysis and postprocessing 
 
Advantage Workstation AW 4.2 equipped with 
Functool II software (GE Healthcare) was employed for 
image postprocessing. A series of features, including 
lesion type, fibroglandular tissue, multiple masses, 
internal enhancement characteristics, signal intensity 
(compared with that of normal fibroglandular tissue of 
the breast) on T1- and T2-weighted images, background 
parenchymal enhancement and time-signal intensity 
curve (TIC) patterns, were analysed. To minimize the 
noise produced by the associated background, a limited 
region of interest was set within the lesion site. For the 
analysis of DCE-MR images, the evolution of the 
enhancement pattern at the periphery and in the centre 
of the tumour was recorded. TICs were classified as 
follows: type 1, slow or rapid initial contrast 
enhancement with a persistent delayed phase; type 2, 
rapid initial enhancement followed by a plateau in 
signal intensity; and type 3, rapid initial enhancement 
followed by rapid washout. 
 
The MRI findings were independently analysed by two 
experienced breast radiologists with a minimum of 5 
years of working experience. The readers interpreted the 
MR images independently using the 2013 MRI Breast 
Imaging Reporting and Data System (BI-RADS) tool 
from the American College of Radiology [21]. 
Differences in interpretation were resolved by 
reviewing and discussing the images according to the 
BI-RADS standard. 
 
Statistical analysis 
 
Continuous variables are presented as the mean 
(±standard deviation), and categorical variables are 
presented as numbers and percentages. Differences in 
continuous variables were analysed with Student’s t-
tests, and differences in categorical variables were 
tested with the chi-square test, Fisher’s exact test or 
Wilcoxon sum-rank test. Features with significant 
differences (p < 0.05) between BC patients with and 
without metastasis were further analysed by using the 
least absolute shrinkage and selection operator 
(LASSO) method to select the optimal subset based on 
the binomial deviance minimization criteria. Based on 
the aforementioned factors, a multivariate logistic 
regression model was adopted to establish two 
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nomograms for predicting the risk of DM in BC: 
clinicopathological-feature alone model vs multi-feature 
fusion model. The performance of the nomogram was 
evaluated by diagnostic accuracy, sensitivity, 
specificity, area under the receiver operating 
characteristic (ROC) curve and calibration curves. The 
regression smoothing method was used to produce the 
calibration plots by bootstrapping with 1,000 resamples, 
where the relationship between the observed and 
predicted probabilities of DM was described 
graphically. The difference in the area under the curve 
(AUC) between the training and validation datasets was 
tested by the P-value of Integrated Discrimination 
Improvement (IDI) and Delong’s test. The validity and 
accuracy of the proposed models were further tested by 
the external validation cohort. 
 
The diagnostic accuracy was calculated as (true 
positive+ true negative)/(true positive + false positive + 
false positive + true negative)× 100%. The 95% CIs of 
sensitivity, specificity and diagnostic accuracy were 
calculated with the website http://vassarstats.net/ 
clin1.html. Other statistical analyses were conducted 
using R software (version 6.1, R Foundation for 
Statistical Computing, Vienna, Austria). A two-tailed 
difference with p<0.05 was considered significant. 
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