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Structure of α-Synuclein 
 

α-Syn is composed of 140 amino acids. Snca encodes α-

Syn, and wild-type (WT) α-Syn is an inherently 

disordered protein (IDP). The gene encoding the protein 

is located on human chromosome 4 and occupies a 

region of approximately 114 kb in the genome. α-Syn 

accounts for 1% of the total protein content of neurons 

and has a predominantly presynaptic localization. It is 

widely distributed within neurons and is found in the 

cytoplasm, nucleus, mitochondria, and mitochondria-

associated membranes. In the cytoplasm, one-third of 

the protein binds to the synaptic membrane [1–3]. α-Syn 

has no persistent structure under physiological 

conditions and is mainly monolithic and inherently 

disordered. 

 

Under physiological conditions, α-Syn displays a 

disordered structure in vitro. Its sequence is usually 

divided into the following three main regions  

(Figure 1): 

• The N-terminal amphipathic domain (residues 1–

60): The amphiphilic N-terminal domain (NTD) is 

composed of six imperfect repeats (KTKEGV) with 

which the protein interacts with lipids. 

 

• The nonamyloid β component (NAC) region 

(residues 61-95): This is a central hydrophobic 

region with oligomeric properties that participates 

in α-Syn protein aggregation and appears to be 

essential for α-Syn fibril formation. It integrates 

with the highly acidic C-terminal domain (CTD). 

Since these interactions involve electrostatic 

properties, the ionic strength or pH of the solution 

can strongly increase the aggregation of α-Syn [4]. 

 

• The CTD (residues 96-140): This is a highly acidic 

and proline-rich region with no obvious structural 

tendency. The negative charge in the acidic portion 

of the CTD, confers chaperone-like properties and 

can inhibit the oligomerization process, which is 

essential for preventing rapid α-Syn fibrillation [5]. 
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ABSTRACT 
 

α-Synuclein (α-Syn) is a small, soluble, disordered protein that is widely expressed in the nervous system. 
Although its physiological functions are not yet fully understood, it is mainly involved in synaptic vesicle 
transport, neurotransmitter synthesis and release, cell membrane homeostasis, lipid synthesis, mitochondrial 
and lysosomal activities, and heavy metal removal. The complex and inconsistent pathological manifestations 
of α-Syn are attributed to its structural instability, mutational complexity, misfolding, and diverse 
posttranslational modifications. These effects trigger mitochondrial dysfunction, oxidative stress, and 
neuroinflammatory responses, resulting in neuronal death and neurodegeneration. Several recent studies have 
discovered the pathogenic roles of α-Syn in traumatic and vascular central nervous system diseases, such as 
traumatic spinal cord injury, brain injury, and stroke, and in aggravating the processes of neurodegeneration. 
This review aims to highlight the structural and pathophysiological changes in α-Syn and its mechanism of 
action in traumatic and vascular diseases of the central nervous system. 
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Natural α-Syn is usually an IDP or unstructured 

monomer, and the disordered monomer form is the 

main state of α-Syn in aqueous solution. The α-Syn 

tetramer is another form with a stable helix structure 

that coexists with the monomer in the cell [6]. The use 

of denaturing detergents and cell lysis methods may 

destabilize the tetramers, thereby forming monomers. 

Tetramer can maintain α-Syn steady state and resist 

aggregation [7]. Therefore, α-Syn naturally exists as a 

helical tetramer, and it is in a dynamic equilibrium state 

with disordered monomers, which is the overall 

dominant state. Missense mutations in the α-Syn gene 

reduce the ratio of the tetramer to the monomer, which 

promotes the transition to a disease state. 

 

The Physiological Function of α-Syn 
 

In nondisease states, the function of α-Syn is still poorly 

understood, although increasing evidence suggests that 

the protein mediates the transport of vesicle axons, 

regulates neurotransmitter release, and mediates the 

interaction and assembly of synaptic vesicles. It also 

undergoes strong binding to negatively charged vesicles 

in vitro and has the function of inhibiting membrane 

fusion [8]. The physiological effects of neurons rich in 

α-Syn expression include maintenance of mitochondrial 

morphology, regulation of transport, and clearance of 

substances. Recent reports indicate that α-Syn may 

benefit to improve neuronal microtubule dynamics and 

lymphocyte development [9–10]. In short, its biological 

function is inseparable from the biological significance 

of cell membrane homeostasis and synaptic regulation. 

Therefore, vesicles composed of mixed lipids, which 

mimic lipids in neuronal cells, should be studied to 

discover the true biological significance of α-Syn in 

vivo and in vitro. 

 

α-Syn participates in synaptic vesicle transport 

and neurotransmitter synthesis and release 
 

In rodents, α-Syn expression is detected shortly after 

birth, continues to increase until one month of age, and 

 

 
 

Figure 1. Structural characteristics of α-Syn monomers and fibril aggregates. (A) α-Syn is composed of three different regions: a 

positively charged amphiphilic N-terminus (residues 1-60), a hydrophobic nonamyloid (NAC) region (residues 61-95), and a negatively 
charged CTD (residues 96-140); they may have different functions. (B) The secondary structure of α-Syn. (C) The structure of the amino acid 
residues of α-Syn. (D) The fibril structure (secondary structure) of α-Syn. (E) The fibril structure (amino acid residues) of α-Syn. All the 
structure diagrams are from the PDB database (https://www.rcsb.org/), and the corresponding colors are marked. 

https://www.rcsb.org/


 

www.aging-us.com 22315 AGING 

then reaches a stable level that persists into adulthood. 

Similarly, in cultured rat neurons, synaptic development 

preceded the expression of α-Syn and translocation to 

the axonal end [11]. α-Syn is an intracellular protein, 

and under physiological conditions, the level of α-Syn 

in the central nervous system (CNS) is quite high. 

However, it has been suggested that a large proportion 

of α-Syn may be extracellular and may be secreted and 

transmitted between neuronal cells [12]. α-Syn is 

present in biological fluids, such as cerebrospinal fluid 

(CSF) and plasma, in patients and normal subjects, 

which is also evidence of α-Syn release. α-Syn is also 

found in peripheral neurons, hematopoietic cells in the 

bone marrow, and circulating blood cells, including red 

blood cells (RBCs), platelets, and lymphocytes; this 

distribution depends on α-Syn transport between cells, 

which occurs via exosomes and other extracellular 

vesicles (EVs) [13]. 

 

α-Syn participates in the dynamics of synaptic vesicle 

transport, promotes the interaction between synaptic 

vesicles, and improves their assembly, providing 

support for the functions of exocytosis and endocytosis, 

in which stability of the membrane is a key step [14]. 

Evidence suggests that α-Syn is involved in synaptic 

vesicle transport, i.e., vesicle docking, recovery and/or 

reaggregation. Physiologically, α-Syn acts as a soluble 

NSF attachment protein receptor (SNARE) chaperone, 

promoting the assembly of the SNARE complex to 

release neurotransmitters, with involvement in 

dopamine (DA) synthesis, transport and recovery. α-

Syn maintains the stability of neurotransmitters by 

regulating synaptic vesicle fusion, aggregation and 

transport between the storage and releasable pools, as 

well as the interaction with neurotransmitter membrane 

transporters. In addition, supplementing the activity of 

cysteine choline protein α (CSPα) promotes synaptic 

integrity [15]. The selective regulation of glutamate 

neurotransmission alters the level of extracellular α-

Syn. It is possible that the mechanism of α-Syn activity-

dependent release participates in specific neural 

networks, maintaining precise control of the 

neurotransmitter cycle (Figure 2). 

 

α-Syn is involved in cell membrane homeostasis 
 

α-Syn is a soluble protein that transiently fused to the 

membrane. Studies have shown that the balance 

between order and disorder in the α-Syn protein system 

is essential for the regulation of membrane affinity, 

which can induce synaptic vesicle aggregation and self-

assembly into amyloid fibrils on the surface of 

biofilms. Of course, the more complex membrane 

components are not easily damaged by oligomers. At 

the structural level, the separation between the helical 

binding conformation and the disordered conformation, 

especially around the NAC region, seem to affect the 

key properties of α-Syn, such as the promotion of 

membrane-binding affinity or synaptic vesicles [16]. 

NTD acetylation to form the NTD helix can stabilize 

the interaction of the lipid membrane with α-Syn 

micelles and increase the affinity of the NTD for 

physiological membranes [17]. The ability of proteins 

to combine with lipids to promote the α-helical 

conformation of the NTD segment has been fully 

demonstrated. This prevents fibrils from forming and 

stabilizing physiological polymers, which together with 

monomers can improve the assembly of SNARE 

complexes and the circulation of synaptic vesicles [1, 

19]. At the molecular level, the ability of α-Syn to form 

pores in biofilms or to interact with specific proteins in 

organelles and the cytoplasm may be the factor that 

determines the toxicity of this protein [18]. In 

summary, there is increasing evidence that the balance 

between the ordered and disordered conformations of 

α-Syn on the surface of biofilms is critical for 

membrane stability. 

 

α-Syn participates in mitochondrial activities 
 

Neurons, Ranvier somatic cells, synapses, and nodes all 

have high energy requirements. The maintenance of 

mitochondrial dynamics involves multiple processes that 

ensure that these high energy requirements are met, 

namely, fusion, fission, transport, and engulfment [20], 

whose functions include mitigating pretouch Ca2+ 

levels, maintaining the membrane potential, and 

transport along axons and nerves. The absorption  

and recycling of transmitters provides energy [21].  

Each of these processes is interconnected through 

complex relationships that maintain a functional 

mitochondrial network throughout the neuron life cycle. 

Monomeric α-Syn can increase ATP synthase efficiency 

and mitochondrial function [22]. At nanomolar 

concentrations, α-Syn reversibly blocks voltage-

dependent anion channels (VDACs), which are the main 

channels in the outer mitochondrial membrane and 

control the passage of most metabolites into and out of 

mitochondria, protecting cells from oxidative stress [23]. 

 

Other functions 
 

The expression of WT α-Syn in primary brain cells also 

protects the cells from neurotoxicity caused by 

manganese [24]. Hsiao et al. reported a new role of α-

Syn, highlighting its importance in neuronal cholesterol 

regulation, and identified novel therapeutic targets for 

controlling cellular cholesterol levels [25]. Eichmann et 

al. observed that α-Syn can form high-density 

lipoprotein-like (HDL-like) particles, and all human 

Syn proteins can form stable and homogeneous HDL-

like particles with different morphologies [26]. 
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Pathological Characteristics and Pathogenic 

Mechanism of Aggregated α-Syn 
 

The most complicated and diverse aspect of aggregated 

α-Syn is its pathological manifestations. Due to its 

structural instability and the complexity of its 

mutations, there is neither a precise pathological 

mechanism nor a clear targeted drug for this protein. 

Toxic α-Syn forms can negatively affect various key 

cellular processes, including mitochondrial function, 

endoplasmic reticulum (ER) stress, and protein folding, 

leading to cell dysfunction and death, protein 

degradation, and abnormal axonal transport and 

presynaptic function [18]. The pathogenic mechanism

 

 
 

Figure 2. Schematic of the physiological role of α-Syn in synaptic transmission. The figure shows that α-Syn (monomeric and 
tetrameric forms) is involved in neurovesicle transport during the intricate transmission of neurotransmitters in synapses, dendrites and 
axons; this transport includes neurotransmitter vesicle storage, aggregation, assembly and release, as well as recovery and inhibition of 
neurotransmitters and other circulatory processes. α-Syn is also involved in the maintenance of cell membrane homeostasis and the normal 
functioning of mitochondria and lysosomes. 
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and pathological characteristics of α-Syn have been 

explored from the following perspectives. 

 

Characteristics of α-Syn aggregation 
 

In disease states, α-Syn has an increased tendency to 

self-assemble and can form more than one type of 

small assembly (for example, dimers, trimers, 

tetramers, and larger oligomers); these assemblies have 

a fibril structure with a β-sheet structure, up to the size 

of inclusion bodies (i.e., Lewy bodies, LBs) [27]. 

Dimerization is the first step of α-Syn aggregation and 

accelerates α-Syn aggregation at acidic pH due to 

electrostatic effects [28]. For example, aggregates 

proliferate much faster in certain intracellular locations 

(including the ER and lysosomes) at a moderate acidic 

pH (6) than at a normal physiological pH [29]. In 

addition, point mutations promote dimerization and 

indicate that the structural heterogeneity of α-Syn 

dimers may lead to different aggregation pathways 

[30]. The dimerization of α-Syn accelerates the 

formation of fibrils. The dimer's β-hairpin region is 

adjacent to the nonamyloid β component (NAC) of α-

Syn. Since the formation of the β-hairpin can accelerate 

the aggregation of α-Syn, small molecules that can bind 

to these regions and inhibit the process of β-hairpin 

formation may effectively inhibit α-Syn aggregation 

[31]. Furthermore, α-Syn oligomers with the same 

mass concentration are more effective than monomers 

or fibrils in clearing lipid vesicles. The conversion 

mechanism from soluble α-Syn monomers to disease-

related oligomers, especially dimers, has become a hot 

topic of recent research. 

 

PTMs of α-Syn, including phosphorylation, nitration, 

ubiquitination, glycosylation, and CTD truncation, are 

the main cause of its oligomerization [32], and there 

are multiple combinations of simultaneous 

modifications. 

 

Phosphorylation 

A gradient of phosphorylated α-Syn accumulates in 

synapses (presynaptic>presynaptic+postsynaptic> 

postsynaptic), and phosphorylated α-Syn was found at 

presynaptic ends in dementia patients with LBs, mainly 

manifesting as small phosphorylated α-Syn aggregates, 

which are related to changes in synaptic morphology. 

Overall, pathologically phosphorylated α-Syn may 

disrupt the structure and function of synapses in 

patients with LB dementia [33]. In the brains of healthy 

individuals, only a small portion (4%) of the total α-

Syn is phosphorylated at residue Serine-129 (Ser-129). 

In contrast, in Parkinson’s disease (PD) brains 

containing LBs, Ser-129 phosphorylation is the most 

common (approximately 90%) form of PTM for α-Syn 

[34]. In conclusion, Ser-129 phosphorylation of α-Syn 

can promote the accumulation of oligomeric α-Syn in 

vitro and can accelerate the formation of α-Syn 

inclusions. 

 

Nitrosation 

Research suggests that Tyr-125 may promote the 

dimerization of α-Syn under nitrosation stress, leading 

to its subsequent oligomerization [35]. Oxidation and 

nitration of tyrosine residues in preassembled α-Syn 

fibers can stabilize these fibers and enhance the 

formation of sodium lauryl sulfate (SDS)-insoluble, 

thermally stable polymer aggregates, indicating that 

oxidative stress and nitrosyl stress are involved in its 

pathogenesis [36]. In addition, the intermolecular 

interaction between NTD and CTD of α-Syn induces α-

Syn oligomerization mediated by nitrification. 

 

Ubiquitination 

Several proteolytic systems are involved in 

dysfunctional degradation pathways and α-Syn 

aggregation, including the ubiquitin proteasome system 

(UPS) and the autophagy lysosomal pathway (ALP) 

during α-Syn degradation [37]. α-Syn aggregates 

colocalize with ubiquitin in an immunoreactive manner 

in neurons. Although this nitrosation stress is partly the 

result of the inflammatory changes produced by α-Syn, 

there is also evidence that NO causes abnormal protein 

accumulation by disrupting the UPS. The UPS is 

mainly responsible for the short-term degradation of 

soluble proteins, while the ALP can degrade long-

standing macromolecules and cytoplasmic components, 

leading to functional organelle disorders. The failure of 

these functionally interconnected proteolytic systems 

may be accompanied by the accumulation of 

aggregated α-Syn, which will eventually interfere with 

normal cellular function and promote the pathogenesis 

of PD [38]. 

 

Glycosylation 

Glycosylation enhances α-Syn-related 

neurodegeneration in synucleinopathy. Glycosylation 

increases the oligomerization of α-Syn and interferes 

with the NTD of the protein, thereby reducing the 

capacity of α-Syn to bind to the lipid membrane. 

Saccharification is an inevitable age-related PTM that 

enhances α-Syn toxicity. Glycosylation reduces 

membrane binding, hinders the clearance of α-Syn, and 

promotes the accumulation of toxic oligomers, thereby 

impairing neuronal synaptic transmission [39]. Glucose 

is easily metabolized to produce reducing sugars, 

which covalently react with proteins to produce 

advanced glycosylation end products (AGEs), which 

are always responsible for protein function [40]. With 

age, brain defenses against glycosylation (such as 

glutathione, reduced glutathione and GLO1, and the 

glyoxalase system (GLO1)) decrease, as in the 
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substantia nigra (SN) in PD [41]. Methylglyoxal levels 

increase α-Syn glycosylation and increase with age and 

PD [42]. In addition, glycosylation has long been 

known to enhance neurodegeneration in a Huntington 

disease model, further suggesting a link between 

hyperglycemia and neurodegeneration [43]. 

Determining the molecular mechanism by which 

glycosylation alters protein homeostasis and 

contributes to synucleosis can lead to an important 

breakthrough, linking aging to neurodegeneration and 

supporting the discovery new therapeutic targets for 

intervention in synucleosis. In addition, glycosylated α-

Syn can impair the long-term enhancement of the 

hippocampus [42]. Overall, disturbances in the stable 

components of these glycosylated proteins can lead to 

the accumulation, aggregation, and cytotoxicity of α-

Syn. 

 

CTD truncation 

The conformational changes in the CTD of α-Syn in 

cells may be involved in the initial steps by which 

exogenous α-Syn aggregates form fibrils [44]. The 

truncated α-Syn form of CTD strongly induced the 

formation of LB. Intracellular repair after oxidative 

damage fails to target the CTD modification site of α-

Syn [45]. Specific physiological CTD-truncated forms 

of α-Syn have significant aggregation properties, 

including the capacity to increase the virus-like 

aggregation and inoculation activities of α-Syn fibrils. 

In addition, CTD truncation exacerbates aggregation 

and α-cytotoxic synuclein, forming a vicious cycle in 

PD [46]. CTD-truncated fibrils show superior spread in 

stimulating α-Syn aggregation, and CTD α-Syn 

truncation in LBs is associated with cysteine protease 

activity, promotes amyloid formation and contributes to 

the pathogenesis of PD [47]. 

 

Aggregated α-Syn and mitochondrial 

dysfunction 
 

The α-Syn protein can directly form plasma membrane 

channels or change its activity, thereby changing the 

membrane's permeability to ions; this protein is also 

associated with mitochondrial abnormalities leading to 

mitochondrial dysfunction (i.e., mitochondrial 

depolarization, Ca
2+

 metabolic imbalance, and 

cytochrome C release), interference with autophagy 

regulation, and alteration of calcium homeostasis or 

mitochondrial fragmentation [48]. The interaction of α-

Syn with spectrin causes pathological changes in the 

actin cytoskeleton and induces mitochondrial 

dysfunction and downstream neurotoxicity [49]. The 

pathogenic characteristics of α-Syn misfolding are also 

time-dependent pathological cascades of toxic reactions 

that begin with mitochondrial oxidative stress, lead to 

the accumulation of oxidized DA, and ultimately cause 

reduced glucocerebrosidase (GCase) activity, lysosomal 

dysfunction and α-Syn accumulation. 

 

Aggregated α-Syn and lysosomal dysfunction 
 

In vivo, lysosomes engulf misfolded α-Syn aggregates, 

but incomplete lysosomal clearance mechanisms can 

also promote the accumulation of soluble α-Syn 

oligomers, which may be the key to disease progression 

[50]. Incorrect presynaptic peripheral α-Syn aggregation 

leads to lysosomal dysfunction, and this restoration of 

presynaptic function prevents neurodegeneration caused 

by lysosomal storage disease [51]. In sporadic PD, the 

probability of heterozygous mutations in the lysosomal 

hydrolase GBA1 is approximately 7%. GBA1 mutations 

that cause a moderate reduction in GCase by 30-50% 

can promote the development of PD, but the mechanism 

is not clear. In short, the presence of normal lysosomes 

and α-Syn are complementary factors that influence 

each other. 

 

Aggregated α-Syn, oxidative stress and free 
radical damage 
 

Compared with surrounding organs, the brain is 

extremely susceptible to oxidative stress due to its 

extremely high polyunsaturated fat content and 

relatively low antioxidant activity [52]. Toxic α-Syn 

oligomers can affect cells in a variety of ways, 

including membrane destruction, mitochondrial 

depolarization, cytoskeletal changes, impaired protein 

clearance pathways, enhanced oxidative stress, and free 

radical damage. Much evidence shows that there is a 

two-way relationship between the oligomeric nature of 

α-Syn and the generation of reactive oxygen species 

(ROS) [53]. Lipid peroxidation promotes intracellular 

accumulation and then squeezes out toxic α-Syn as the 

"seed" [54]. This "seed" is then internalized by 

neighboring neurons, spreading the neurodegeneration 

process. The oxidative stress reaction destroys the 

ability to scavenge free radicals. Excessive free radicals 

can trigger the pathological production of misfolded 

proteins, lead to abnormal mitochondrial function, and 

stimulate neuronal cell apoptosis pathways [55]. The 

peroxidase activity of cytochrome C contributes to the 

formation of free radicals and α-Syn oligomerization, 

and α-Syn increases neuronal death by colocalizing with 

cytochrome C [56]. 
 

Aggregated α-Syn and neuroinflammation 
 

In PD and related diseases, it is important to understand 

the exact mechanisms of glial regulation [57], which 

can trigger changes in the CNS immune 

microenvironment, leading to outcomes such as 

proinflammatory responses. We propose a mechanism 
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in which α-Syn secreted from neurons acts as a trigger 

that causes changes in glial cells. Studies have shown 

that α-Syn fibrils begin to recruit major 

histocompatibility complex class II (MHC II)-

expressing cells in the rat brain before 

neurodegeneration begins; these cells consist of both 

resident microglia and peripheral cells, including 

monocytes, macrophages and lymphocytes [58]. 

Microglia serve as innate immune cells in the CNS. On 

the one hand, microglial activation is necessary to clear 

debris from apoptotic DA neurons. On the other hand, 

microglial overactivation leads to free radical damage 

and increases the production of cytokines and 

chemokines. Astrocytes have multiple functions in the 

CNS, from brain development to synapse formation and 

from blood flow barrier control to myelin sheath 

formation. Astrocytes can also absorb extracellular α-

Syn aggregates, at a rate between those observed in 

neurons and microglia. Evidence for α-Syn activation of 

stellate cells has also been confirmed in other 

neurodegenerative diseases for which protein 

accumulation is a key pathological marker [59]. After 

neurons transfer α-Syn to astrocytes, astrocytes display 

a proinflammatory response, producing a variety of 

proinflammatory cytokines and chemokines. From these 

findings, the importance of astrocytes in the 

inflammatory process that progresses during 

synucleosis has been demonstrated. 
 

The Mechanism of α-Syn in Traumatic CNS 

Diseases 
 

Traumatic spinal cord injury 
 

Overview of spinal cord injury 

Spinal cord injury (SCI) is a serious CNS trauma of the 

spinal cord that involves various causes of 

organizational structure and functional impairment and 

results in varying degrees of damage to sensory and 

motor functions, causing SCI-related autonomic 

dysfunction (AD) [60–61]. The disease can lead to 

permanent disability, with its attendant sudden 

autonomic function disorders such as orthostatic 

hypotension, autonomic reflexes, sympathetic activity 

surge failure and bladder, rectum, and sexual 

dysfunction [62]. SCI causes substantial pain to patients 

but is also a heavy burden for society and countries. In 

recent years, the incidence of SCI has shown annual 

increases. According to the literature, the annual 

incidence of SCI in Asian countries and regions is 

approximately 19.5-56.1 cases per million people, with 

11,000 new cases of SCI in the United States per year 

[63]. For the first time in years, the burden of SCI was 

estimated at more than 900 million cases in 2016 [64]. 

From the perspective of the pathophysiology of SCI, the 

primary injury is usually attributed to local injury, 

which directly causes tissue defects, edema and 

neuronal death at the injury site; however, the more 

destructive lesions are secondary injuries. Many studies, 

including our earlier studies, have found that tissue 

lesions after SCI are time-dependent and spatially 

progressive. The damage increases with time, and more 

distant parts of the spinal cord are involved [65]. 

Typically, a series of biochemical cascade events, 

including activation, inflammatory mediators, oxidative 

stress and free radical damage, abnormal protein 

aggregation (including α-Syn) and glial cell activity, 

result in delayed neuronal death [62, 64, 66]. A 

secondary SCI injury can develop several months after 

the early stages of SCI development and is the current 

focus of a series of modern medical interventions. 

 
α-Syn-Ser-129 phosphorylation and SCI 
It is unclear what causes the transformation between the 

physiological function and pathological aggregation 

tendencies of α-Syn, and this active conformational 

change also suggests that the balance between normal 

and abnormal behavior of the protein is very delicate. α-

Syn-Ser-129 phosphorylation and dephosphorylation, 

the main PTM modes, are regulated by protein kinases 

and protein phosphatases, respectively. It is unclear 

which kinases phosphorylate Ser-129 on α-Syn in cases 

of disease. Polo-like kinase 2 (PLK2) is an important 

serine/threonine kinase that phosphorylates α-Syn at 

Ser-129 [67]. Neuropathological analysis of the brains 

of elderly nonhuman primates showed that increased 

expression of PLK2 was associated with increased 

levels of phosphorylated Ser-129-α-Syn. In addition, 

PLK2 was colocalized with phosphorylated Ser-129-α-

Syn [68]. This finding supports the important role of 

PLK kinases in α-Syn phosphorylation at Ser-129 in the 

brain and suggests that PLK2 is responsible for this 

activity under physiological conditions [67]. 

Overexpression of PLK2 and PLK3 in DA neurons 

induces endogenous Ser-129 phosphorylation of α-Syn; 

however, its survival is not impaired, and the effect of 

functional phosphorylation on the interaction of α-Syn 

with specific protein chaperones may be significant and 

highly site-specific [68]. Sato et al. overexpressed G 

protein-coupled receptor kinase 6 (GRK-6), which 

increased the content of Ser-129-phosphorylated α-Syn 

in DA neurons and caused strong neurodegeneration 

and α-Syn pathological inclusions [69]. Protein 

phosphatase 2 (PP2A) is a ubiquitous cytoplasmic 

serine/threonine phosphatase that accounts for more 

than 50% of the serine/threonine phosphatase activity in 

the brain. PP2A is important for α-Syn 

dephosphorylation at Ser-129. Insoluble α-Syn can 

reduce the activity of PP2A, and overexpression of 

PP2A can prevent neuropathological changes in mice 

caused by overexpression of α-Syn. Metformin reduces 

Ser-129-phosphorylated α-Syn levels through mTOR-
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dependent PP2A activation [70]. Phosphorylation of 

Ser-129 under stress conditions increases the influx of 

extracellular Ca
2+

 and prevents the accumulation of 

insoluble α-Syn by causing the proteasome to perform 

a function complementary to that of the lysosome. 

However, phosphorylated Ser-129 may provide an 

ineffective antidegradation signal for aggregates, 

leading to extensive phosphorylation of the aggregates 

[71]. Our recent research demonstrated that α-Syn and 

p-α-Syn (phospho Ser-129) expression increased 

significantly in the early stages of SCI, and the 

differential expression was mainly concentrated in the 

white matter of the spinal cord, scattered in a punctate 

pattern [65, 72]. In recent years, an increasing number 

of studies have attached importance to this finding. 

 

α-Syn and SCI neuroinflammation 
PTMs of α-Syn can cause the activation of microglia 

or monocytes and produce corresponding 

proinflammatory cytokines. α-Syn acts on Toll-like 

receptor 2 (TLR2) on microglia. TLR2 transmits the α-

Syn signal that triggers the cascade, but there is also 

the possibility that other secondary receptor molecules 

participate in the internalization and clearance 

processes. Qiao et al. demonstrated with in vivo and in 
vitro experiments that neurons subjected to 

ischemia/reperfusion in the injured spinal cord have 

increased levels of α-Syn expression and release and 

cause microglial activation through TLR2 [73]. In WT 

oligo-α-Syn-pretreated rat primary microglia, TLR-2 

was upregulated, and it was interesting that TLR-3 and 

7 were downregulated; TLR-2 knockout (KO) 

inhibited the inflammatory factors TNF-α and IL-1β 

[74]. Furthermore, only secreted forms of α-synuclein 

oligomers were identified as capable of activating 

TLR2, while neuronal cytoplasmic α-synuclein did not 

activate TLR2. In addition, it has been speculated that 

TLR4 is also involved in α-Syn-induced microglial 

and astrocyte activation [75]. Furthermore, Qiao et al. 

demonstrated the role of α-Syn in microglial migration 

by isolating primary microglial cells from Sprague 

Dawley rats and exogenously exposing them to three 

different doses of SNCA oligomers [76]. Another 

study by Qiao et al. demonstrated that α-Syn induces 

microglial migration through pyruvate kinase M2-

dependent glycolysis [77]. Based on qRT-PCR and 

western blot data, the authors also found that SNCA 

can increase the mRNA and protein levels of hypoxia-

inducible factor-1α (HIF-1α) in microglia in a dose-

dependent manner [76]. In addition, HIF-1α has been 

shown to be involved in microglial chemotaxis and the 

release of proinflammatory cytokines [77, 78]. 

Nitrogen-aggregated α-Syn activates primary 

microglia and increases the production of TNF-α, 

interleukin-1β (IL-1β), monocyte chemotactic protein-

1 (MCP-1) and interferon-γ (IFN-γ) [79]. 

Our research on SCI found that α-Syn is an important 

promoter of neuroinflammation. Microglial cells 

phagocytose α-Syn accumulated in the environment and 

have the capacity to target light chain 3B (LC3B)+ 

autophagosomes for degradation [80]. In addition, 

microglial Fc-γ receptors (FcγR) take up extracellular 

accumulated α-Syn, triggering a downstream NF-κB-

dependent signaling cascade (including chemokine 

production) [81]. Interestingly, FcγR
-/-

mice were 

protected from neuroinflammation and 

neurodegeneration after AAV-mediated α-Syn 

overexpression, suggesting that phagocytosed 

aggregated α-Syn enters microglia, which is important 

for inducing an immune response that causes 

neurodegeneration [81]. Fu H et al. suggested that 

complement components, especially C3 and CR3, may 

be related to microglial uptake of α-Syn [82]. 

 

In SCI secondary injury, silencing α-Syn can reduce the 

activation of microglia/astroglia, reduce the expression 

of iNOS, and reduce microglial toxicity via phenotypic 

transformation from the M1 phenotype to the protective 

M2 phenotype; these effects are accompanied by a 

significant increase in Arg-1 and IL-10 expression and 

regulation of neuroinflammation in the spinal cord. α-

Syn-silenced rats also showed reduced IL-1β, TNF-α, 

and IL-2 expression in serum from peripheral blood, 

which significantly increased the expression of the anti-

inflammatory cytokine IL-10. In addition, we also 

tested whether downregulating α-Syn can reduce the 

expression of matrix metalloproteinase-9, which may 

improve the function of the blood-spinal cord barrier, 

which is the key barrier for maintaining the stability of 

central and peripheral immunity [72]. Overexpression 

of neuronal α-Syn results in increased expression of 

type 1 angiotensin receptors and increased NADPH 

oxidase activity, as well as significant increases in the 

number of OX-6-positive microglia and iNOS, TNF-α, 

IL-1β, and IL-6 expression [83]. In addition, markers of 

immunomodulatory M2 microglial phenotypes, such as 

Arg1, have been observed to decrease significantly; 

however, this phenomenon was observed concomitant 

with concurrent use of the angiotensin type 1 blockers 

candesartan and telmisartan, which are inhibited by 

treatment [16]. Mesenchymal stem cells (MSCs) 

enhance α-Syn clearance via M2 microglial polarization 

[84]. When the immunodegradation and repair 

processes of M2 microglia are inhibited, M1 microglia 

dominate the damage site at the end of the disease; it is 

unknown whether these two phenotypes are compatible 

or contradictory, but α-Syn changes the microglial 

phenotype to complicate the disease. We 

comprehensively analyzed the effects of α-Syn 

knockdown on transcript levels in SCI through 

transcriptomics technology and found that enhancement 

of the cholinergic pathway may be an important way to 
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reduce neuroinflammation. Promoting neurogenesis by 

reducing α-Syn at the site of SCI injury may be due to 

the upregulation of muscarinic cholinergic receptor 

subtype 2 (Chrm2) and nicotinic cholinergic receptor β2 

(Chrnb2) on the cholinergic pathway [65]. 

 

Propagation of α-Syn and SCI 
α-Syn folding and assembly can produce species with 

different pathological effects: easy-to-extend fibrillar-

like oligomers with parallel β-sheet arrangements can 

be used for disease and key pathogen transmission, and 

oligomers with antiparallel β-sheet arrangements can 

accumulate in cells [85]. From a micro perspective, the 

spread of α-Syn from cell to cell requires that α-Syn be 

released into the extracellular space and absorbed by 

recipient cells. In addition, intrinsic α-Syn requires 

access to the cytoplasm and/or target organelles of 

recipient cells. The virus-like hypothesis of α-Syn 

pathology proposes a method of transmitting misfolded 

α-Syn from one neuron to another. This hypothesis 

assumes that misfolded α-Syn effectively aggregates. 

When released and absorbed by adjacent cells, this 

pathological α-Syn forms a "seed", which will further 

misfold and aggregate. This assembly resembles a 

"prion", with self-replicating and self-transmitting 

capacities and this novel "prion" behavior may further 

lead to synaptic failure in synucleinopathy [86]. 

Transplantation of pathological α-Syn in the brain can 

cause rapid progressive neurodegenerative 

synucleinopathy in mice [87]. α-Syn spreads disease 

through self-modeling mechanisms similar to those of 

viral diseases, such as Creutzfeldt-Jakob disease [27]. 

 

From a macro perspective, the pathology of α-Syn 

diffuses into the brain and can deteriorate the 

surrounding autonomic and somatic nervous systems 

[87]. A major pathway of disease progression may 

originate in the enteric nervous system, reach the dorsal 

motor nucleus of the vagus nerve of the lower brainstem 

in a retrograde manner and travel along the brainstem to 

the midbrain, forebrain and cerebral cortex. The spinal 

cord center may be involved through the descending 

projection of the lower brainstem nucleus and the 

sympathetic projection that connects the enteric nervous 

system to the peripheral ganglia and preganglionic 

nucleus of the spinal ganglia [88]. Many 

synucleinopathies are accompanied by AD. A large 

number of α-Syn aggregates can be detected in the 

intestinal autonomic nerves of SCI patients, further 

illustrating that the transmission of α-Syn may occur  

in weak autonomic nerves with myelinization. 

Interestingly, research has found that nornicotine, a 

nicotine metabolite involved in saccharification, 

chemically modifies amyloid to prevent aggregation 

[89]. In summary, the development of experimental 

cells and animal models can help explain the 

mechanism by which aberrant α-Syn aggregates and the 

mechanism by which axonal connectivity spreads, 

which has facilitated the initiation of improved disease 

treatment strategies for potential synucleinopathy. 

Recently, accumulated evidence has shown that there is 

a close relationship between the differential expression 

profile of α-Syn and the selective vulnerability of 

certain neuronal populations. 

 

PD and other neurodegenerative diseases associated 

with changes in α-Syn often cause AD, and in most 

cases, this synapse protein is expressed in large amounts 

in peripheral autonomic neurons [90]. SCI is often 

accompanied by AD, and its pathogenesis is unclear, 

but it may be related to the selective involvement of α-

Syn in autonomic neurons. Perivascular nerve fibers 

containing α-Syn were detected in the aortas of mice, 

while aortic endothelial cells and muscle fibers 

containing the protein were not detected.α-Syn is 

present in the sympathetic fibers supplying the rat aorta 

and provides evidence that changes in the α-Syn levels 

in the perivascular fibers contribute to regulating 

vascular function [91]. 

 

New treatment direction for SCI: target α-Syn 
α-Syn has many important influences on the 

physiological and pathological processes of SCI due to 

its unique structure and its important presynaptic 

structure in the CNS. The overexpression or aggregation 

of α-Syn increase neuroinflammation after SCI. Sakurai 

et al. observed biomarkers in rabbits with persistent SCI 

and noted that motor neurons (neurons that were 

eventually found to be dead) were stimulated to increase 

α-Syn levels 8 hours after stimulation [78]. Feng et al. 

showed that SNCA was also downregulated to promote 

the expression of ciliary neurotrophic factor (CNTF), 

inhibit neuronal apoptosis, and promote neural 

regeneration [92]. Many studies have targeted the 

treatment of neuroinflammation induced by α-Syn. For 

example, methyl jasmonate, an effective antioxidant and 

anti-inflammatory compound, delays PD, possibly by 

inhibiting oxidative stress, releasing proinflammatory 

cytokines, and downregulating the expression of NF-κB 

and α-Syn [93]. Apigenin protects rat models of PD 

from neurodegeneration and degeneration by inhibiting 

neuroinflammation and oxidative stress-mediated 

apoptosis [94]. Lipoprotein deficiency increases the 

aggregation and phosphorylation of α-Syn and 

neuroinflammation by reducing peroxisome 

proliferator-activated receptor γ (PPARγ), which causes 

age-related loss of dopaminergic neurons and impaired 

motor coordination [95]. Similarly, the (molecular 

chaperone) cluster protein and α2-macroglobulin bind 

directly to the exposed hydrophobic region on the 

surface of the α-Syn oligomer. The combination of 

these two molecular chaperones reduces the capacity of 
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the oligomer to permeate the lipid membrane and 

prevents oligomer-induced increases in ROS production 

in cultured neuronal cells [96]. Interestingly, motor 

neuron numbers were improved by vagus nerve 

stimulation [97]. In addition, knocking down α-Syn can 

improve neuronal survival in the cerebral cortex of SCI 

rats. More significantly, Jankovic et al. also studied the 

safety of an anti-Syn antibody (PRX002) in humans, 

which may prove beneficial for reducing the 

progression of neurological diseases that occur after 

acute SCI in humans [98]. 

 

In general, α-Syn is mainly involved in glial cell 

recruitment, activation and migration; phenotypic 

changes after SCI; neuroinflammation; increased 

expression of inflammatory mediators; changes in 

neurotransmitters, such as dopaminergic and cholinergic 

neurotransmitters; and changes in neuroprotective 

factors, such as CNTF. Targeting α-Syn may be of great 

significance in the diagnosis and treatment of SCI. 

 

Traumatic brain injury 
 

Traumatic brain injury (TBI) is one of the leading 

causes of death among young people in developed 

countries. In the United States, 1.7 million traumatic 

events occur each year, causing 50,000 deaths. The 

causes of TBI include traffic accidents, falls, gunshot 

wounds, sports, and combat-related incidents [99]. As 

with SCI, the initial injuries of TBI are caused by 

mechanical factors that damage neural tissue. From 

animal experiments to clinical studies, secondary 

lesions appear a few minutes after trauma and can 

develop for months or even years. Cell and molecular 

events lead to the secondary events of brain cell death 

and neurodegeneration, which are accompanied by a 

high risk of certain neurodegenerative diseases [100]. 

Cognitive impairment becomes a major sequela of TBI 

in rodent models or patients with secondary injury 

[101]. Another study showed histological evidence of 

chronic traumatic encephalopathy (CTE) in 

neurodegenerative diseases, with PD accounting for 

16% of cases [102]. The biological mechanisms that 

connect brain trauma and neurodegenerative diseases 

require further study. Studies on the correlation between 

chronic TBI and other neurodegenerative diseases have 

shown that repetitive TBI promotes the accumulation of 

abnormal aggregate proteins, including TAR DNA-

binding protein 43, amyloid beta protein and α-Syn. 

Increased α-Syn in the CSF was observed in patients 

with severe TBI (p = 0.0008). A large increase in α-Syn 

in the CSF may indicate widespread neurodegenerative 

changes and reflect secondary neuropathological events 

that occur after injury [103]. Similarly, in a study of the 

feasibility of α-Syn as an objective biomarker for the 

diagnosis and prognosis of mild TBI, it was believed 

that amyloid-β (Aβ) peptide, tau protein and α-Syn are 

involved in the downstream events of the TBI-induced 

idiopathic cascade [104]. In patients with severe TBI, it 

is often difficult to predict survival or long-term 

outcomes, especially in the first few days after injury, 

but the α-Syn levels in patients in the first 24 hours after 

injury were significantly higher than the levels in the 

control group. In patients who survived the injury, the 

α-Syn levels tended to be normal after 3 days, while in 

patients who did not survive, the α-Syn levels in the 

CSF remained increased until 8 days after the injury 

[105]. Therefore, the measurement of CSF α-Syn may 

be a valuable prognostic marker. 

 

Brain trauma leads to the development of PD-related 

pathology in mice. Interestingly, compared with 

astrocytes, microglia accumulate a large amount of α-

Syn. In Alzheimer’s disease and PD mouse models, 

bone marrow MSCs, macrophages and microglia were 

delivered to the brain via the nasal cavity, showing an 

intracellular amyloid beta (APP/PS1 model) or α-Syn 

(Thy1-h[A30P]α-Syn model) immune response [106]. 

In addition, it has been reported that α-Syn aggregation 

may cause dopaminergic neuron loss or synuclein 

pathological changes after TBI. These changes occur in 

the environment of vascular fragility and microglial 

activation shortly after TBI. Loss of dopaminergic 

neurons is often accompanied by vascular and 

immunological changes. IgG exudation was observed in 

injured rats within 1-2 days, while no IgG exudation 

was observed in control rats at 7 or 28 days, indicating 

that blood-brain barrier (BBB) permeability had 

temporarily increased [107]. Some studies have shown 

that in astrocytes, α-Syn-induced proinflammatory 

responses occur in a TLR4-dependent manner [59]. 

However, unlike inflammatory signals, the uptake of α-

Syn by astrocytes is independent of TLR4. In vitro 

studies have shown that the neuroprotective effect of 

anti-TLR2 antibodies is mediated by preventing α-Syn 

transmission from neurons to neurons and from neurons 

to astrocytes; otherwise, the antibodies will promote an 

NF-κB-dependent proinflammatory response [108]. For 

example, in the multiple system atrophy model, the 

activation of astrocytes is directly related to the 

proximity of α-Syn inclusions in oligodendrocytes, 

called glial cytoplasmic inclusions [109]. 

 

α-Syn stimulates astrocytes; the potential roles  

of neuroinflammation and neuroprotection and how  

to establish and maintain an inflammatory 

microenvironment with this protein are still unknown. 

Neuronal α-Syn can be directly transferred to astrocytes 

through sequential exocytosis and endocytosis and 

induces astrocytes to produce an inflammatory 

response. Early in the period after craniocerebral injury, 

the rat TBI model had vascular abnormalities and 
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inappropriate microglial activation, and the mouse 

model had dopaminergic neuron loss due to α-Syn and 

increased microglial activity. The TBI-related changes 

in α-Syn depend on age and the time after the head 

injury occurred. For example, after 60 days of TBI in 

rats, brain tissue was collected and found to be 

colocalized with α-Syn, tyrosine hydroxylase (TH), an 

enzyme that synthesizes DA neurons, and the major 

histocompatibility MHC II. Compared to the control 

neurons, surviving dopaminergic neurons had 

significantly reduced TH-positive expression in the 

dense substantia nigra (SNpc), and the α-Syn 

accumulation detected in the ipsilateral SN was 

increased [110]. α-Syn is a pathological link between 

the chronic effects of TBI and the symptoms of PD, as 

evidenced by the significant overexpression and 

abnormal accumulation of α-Syn in the inflammatory 

SN exposed to chronic TBI [110]. Although microglial 

and subsequent astrocyte activation is often considered 

a secondary response to neuronal damage, 

proinflammatory changes within microglial cells have 

been observed to cause evidence of injury to DA 

neurons in PD animal models [109]. There is a 

difference between the location of neuronal death 

caused by α-Syn and the differential expression of 

brain-dependent α-Syn. Expression patterns of α-Syn 

are different between excitatory and inhibitory 

hippocampal neurons; α-Syn is highly expressed in 

neuronal cell bodies in certain early brain regions 

affected by PD, such as the olfactory bulb, the dorsal 

motor nucleus of the vagus nerve, and the dense SN. 

The synaptic expression of α-Syn is mainly 

accompanied by the expression of the excitatory 

presynaptic marker vesicle glutamate transporter-1 

(VGT-1). In contrast, the capacity of γ-aminobutyrate 

(GABA) to inhibit the expression of α-Syn in synapses 

differs among brain regions. α-Syn is clearly expressed 

in inhibitory synapses in the outer plexiform layer of the 

olfactory bulb, pale bulb, and SN reticulum but is not 

expressed in the cerebral cortex, subthalamic nucleus, 

or thalamus [111]. Similarly, the synaptic expression of 

α-Syn is mainly accompanied by the expression of 

VGT-1, an excitatory synaptic marker protein. In 

contrast, the inhibition of α-Syn expression in synapses 

differs among brain regions [112]. Another report noted 

that the diffuse α-Syn proximity connection assay had 

significantly more signals in the patient group than in 

the control group, including in the cingulate cortex  

(1.6-fold increase) and medulla reticulum (6.5-fold 

increase) [113]. 

Toxic α-Syn spreads between cells through exosomes 

and induces apoptosis, and microglia and astrocytes may 

act as regulators of α-Syn exosome delivery. Exosomes 

are small vesicles that are released from cells into the 

extracellular space. The accumulation of α-Syn at the 

presynaptic end affects several steps of neurotransmitter 

release. First, high levels of α-Syn change the size of the 

synaptic vesicle pool and impair its transport, forming 

exosomes/EVs for distribution to the extracellular space. 

Second, overexpression of α-Syn may relax or 

redistribute the protein of the presynaptic SNARE 

complex, leading to insufficient storage, docking, 

guidance, and fusion of synaptic vesicles in the active 

functional area. Third, α-Syn inclusions are found in the 

presynaptic active area, accompanied by a decrease in 

protein levels in the active area. In addition, during the 

recovery of vesicles, overexpression of α-Syn reduces 

the endocytosis of synaptic vesicle membranes, further 

impairing the exocytosis of neurotransmitters, which can 

trigger synaptic dysfunction and impaired neuronal 

communication [114]. Under physiological conditions, 

the ALP contributes to the intracellular homeostasis of 

the cytosolic protein SNCA/α-Syn. Endosome/lysosomal 

function is an endogenous disorder that causes pathology 

of α-Syn inclusion bodies. In TBI, α-Syn exosomes/EVs 

may lower the threshold of pathological induction/ 

diffusion [115]. Inhibition of the ALP increased the 

proportion of extracellular SNCA, and ultrastructural 

analysis showed extensively fused polycystic autophagic 

cells. CSF exosomes/EVs transfer SNCA from one cell 

to another in vivo. 

 

Mechanical stress increases brain Aβ, tau, and α-Syn 

concentrations in WT mice. The dose-dependent and 

cumulative effects of repeated mild TBI-induced 

mechanical stress can trigger and/or accelerate 

neurodegeneration by causing protein concentrations to 

exceed disease thresholds [116]. Because axonal damage 

is related to axonal transport disorders, studies have 

found that α-Syn accumulation often occurs in the white 

matter. α-Syn immunoreactivity was found in axonal 

dystrophy, and axon swelling was found in acute TBI 

[117]. In addition, a large accumulation of α-Syn was 

found in swollen axons, and tau protein also 

accumulated in both axons and neuronal cell bodies 

[118]. Starting one month after brain infiltration, tau in 

the prefrontal cortex (PFC) and hippocampus selectively 

increased for three months, while α-Syn and Hippo 

increased briefly [119]. In a study by Urya et al., a 

transient increase in the immunoreactivity of α-Syn in 

axons that traverse the striatum was observed in adult 

animals [118]. This accumulation of α-Syn may be the 

result of abnormal axonal transport and the subsequent 

accumulation of various proteins at the injured site. In 

addition, there may be a link between TBI and the 

oxidative/nitrative stress that produces α-Syn pathology. 

Impaired neurotransmission has been reported within 

weeks after experimental TBI, which may also be the 

cause of behavioral dysfunction. After TBI, the 

formation of SNARE complexes and the abundance of 

various SNARE proteins (including CSPα) were reduced 

[101, 120]. The soluble SNARE complex is a highly 
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conserved mechanism that promotes vesicle docking and 

fusion, which is essential for neurotransmission. Overall, 

these results indicate that abnormal aggregation of 

multiple proteins occurs in swollen axons after 

neurodegeneration but that different proteins undergo 

selective regional aggregation, which may be closely 

related to functional neuron types and neurotransmitter 

transmission. 

 

The Mechanism of α-Syn in Vascular CNS 

Diseases - Ischemic Stroke 
 

Cerebral ischemia triggers a complex series of 

biochemical and molecular events that promote 

neuronal death and neurological dysfunction. These 

include but are not limited to excitotoxicity, ion 

imbalance, edema, oxidative stress, ER stress, and 

inflammation. After cerebral infarction, a large amount 

of free radicals and ROS are generated, which promotes 

the peroxidation of cell membrane lipids and aggravates 

microcirculation disorder in the ischemic area. The 

standard treatment for acute cerebral infarction is to 

improve blood circulation in the cerebral ischemic area 

as early as possible, improve brain metabolism, and 

promote the recovery of nerve function. Mitochondria 

are the main source of ROS (90%), and increased ROS 

levels due to mitochondrial dysfunction can damage 

neuronal survival [121]. Neurons in the ischemic 

penumbra region after cerebral infarction also bear 

higher loads of ROS and reactive nitrogen species 

(RNS). 

 

α-Syn is thought to be a chronic neurodegeneration-

related protein that can also mediate secondary brain 

damage after acute brain damage. Neuronal damage 

due to chronic diseases (such as PD) can continue for 

years, while that due to acute diseases (such as stroke) 

continues for hours to days. Stroke can also initiate or 

accelerate progressive neurodegenerative processes and 

is a known epidemiological risk factor for AD [122]. α-

Syn is mainly distributed in neurons and is permeable 

to the serosa. In the peripheral blood, a study that 

detected α-Syn in RBCs suggested that ischemia-

reperfusion in stroke patients may destroy cells in the 

stroke area and make it easier for α-Syn to diffuse into 

the peripheral blood, which will cause ischemia. The 

content of α-Syn in the peripheral blood was the 

highest in the stroke group. The number of α-Syn 

oligomeric forms in the ischemic stroke group was 

much higher than that in the PD group, and it has also 

been revealed that the pathogenesis of ischemic stroke 

may be correlated to the pathogenesis of PD [123]. In 

the CNS, Hu et al. showed that hypoxia/ischemia 

increased the α-Syn protein levels in the rat cerebral 

cortex [124]. Subsequently, Yoon et al. reported that 

hippocampal CA1 neuronal loss was more pronounced 

in adult gerbils than in older gerbils 4 days after 

ischemia/reperfusion. The α-Syn level in the CA1 

region of aged gerbils is higher than that in the CA1 

region of adult gerbils, and this result may be related to 

the early induction of ROS. More importantly, the 

increase in α-Syn expression and neuronal death can be 

reduced by treatment with the antioxidant enzyme 

SOD1, suggesting that ROS promote the expression 

and aggregation of α-Syn [125]. In addition, different 

studies have linked the function of α-Syn to 

mitochondrial fusion, fission, transport, and 

maintenance. 

 

After cerebral ischemia, the cellular environment, 

including inflammation, oxidative stress and ER stress, 

may provide the best conditions for α-Syn aggregation. 

In vitro studies have shown that oxidative/nitrative 

stress and acidity induce α-Syn oligomerization. These 

conditions that favor α-Syn fibrosis exist in the 

ischemic brain and can be used as an in vivo model for 

studying α-Syn aggregation. Middle cerebral artery 

occlusion (MCAO) in C57BL/6 (Thy1)-h[A30P]α-Syn 

transgenic mice, which significantly enhances 3-

nitrotyrosine immunoreactivity at the congestion site, 

indicates that nitrification stress may be one of the 

mechanisms that mediate aggregation toxicity [126]. 

Therefore, the increased vulnerability of transgenic 

mice to ischemia suggests that α-Syn aggregates not 

only form during ischemia but also negatively affect 

neuron survival, supporting the view that α-Syn 

misfolding may be neurotoxic [126]. Interestingly, the 

use of telmisartan reduced progressive oxidative stress 

and phosphorylated α-Syn accumulation in stroke-

resistant spontaneously hypertensive rats (SHR-SRs) 

after transient MCAO. Hypertension that persists  

after tMCAO in SHR-SRs causes long-term oxidative 

stress, which accelerates the accumulation of p-α-Syn. 

Telmisartan, a receptor activated by PPARγ, reduces 

this oxidative stress and the accumulation of p-α-Syn 

[127]. In addition, Kim et al. found that miR-7 mimic 

therapy can significantly reduce the induction of α-Syn 

after ischemia. MiR-7a-5p improves ischemic brain 

injury by inhibiting α-Syn, and reducing α-Syn  

can induce mitochondrial fragmentation, oxidative 

stress and autophagy, thereby reducing neuronal cell 

death [128]. 

 

In addition, global cerebral ischemia in α-Syn KO mice 

resulted in elevated prostaglandin levels, suggesting 

that α-Syn may aggravate in mediating postischemic 

inflammation. Ahmad et al. also demonstrated that 

stimulation of the prostaglandin D2 receptor DP1 has 

neuroprotective effects in the ischemic brain in rodents 

[129]. Another study showed that MCAO-induced 

transient focal ischemia in adult rats significantly 

upregulated α-Syn mRNA and protein levels, while 
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knockdown of α-Syn reduced infarction and promoted 

better neurological recovery. α-Syn KO also weakened 

known ischemic pathological markers, including 

markers of mitochondrial dysfunction (dynamin-related 

protein 1, Drp1), apoptosis (cleaved caspase-3), 

autophagy (LC-3 II/I ratio), and oxidative stress (3-

nitrotyrosine). In addition, the α-Syn protein is 

oligomerized, aggregated and translocated to the 

nucleus of neurons after stroke in rats and humans 

[122]. Adult rats suffered moderate ischemia-

reperfusion injury, leading to α-Syn induction and 

phosphorylation and nuclear translocation of α-Syn and 

p-Ser-129, resulting in α-Syn aggregates; in addition, 4 

months later, the animals formed aggregates of 

proteinase K [130]. After toxic injury, α-Syn 

translocates into the neuronal nucleus and forms a 

complex with histones, leading to a reduction in histone 

acetylation. α-Syn overexpression is thought to 

increase Drp1 translocation and alter mitochondrial 

morphology through extracellular signal-regulated 

kinases [131]. In addition, α-Syn forms an oligomer 

with a ring-like, porous structure in the membrane, 

which has high permeability to calcium, leading to 

caspase activation and death of apoptotic neurons. 

Overexpression of WT α-Syn caused impaired 

macroautophagy through Rab1a inhibition [132]. In 

conclusion, α-Syn is a potential therapeutic target for 

reducing brain damage after stroke. 

 

Summary and Future Prospects 
 

We separately summarized different aspects of 

traumatic CNS disease and stroke, from the structural 

and physiological features of α-Syn to its pathological 

processes and disease outcomes. The structural 

characteristics and membrane positioning of the 

amphiphilic and hydrophobic α-Syn monomer control 

its stability in the membrane, transmembrane transport 

of substances, and transmission of neurotransmitters. 

When the body is damaged, α-Syn aggregates 

abnormally, causing mitochondrial dysfunction, 

abnormal lysosomal function, exacerbated oxidative 

stress, free radical damage, and a series of inflammatory 

cascades. Eventually, related neuronal death results in 

abnormal or restricted neurotransmission (dopaminergic 

and cholinergic neurons). 

 

Based on this, there are still many unresolved questions 

about the effects of α-Syn on traumatic and vascular 

CNS diseases: 

1). Based on the existing research, we are aware  

of the neurotoxic effects of α-Syn after injury,  

but what is the physiological effect of α-Syn  

on injury? 

2). CNS injury is accompanied by neuroinflammation 

and α-Syn aggregation or upregulation. Does 

inflammation promote α-Syn aggregation or does 

α-Syn aggregation promote inflammation? 

Research has revealed that α-Syn is not unique to 

neurons but is also localized in glial cells (such as 

microglia, astrocytes and oligodendrocytes). 

However, what kind of glial cells does α-Syn 

affect during the secondary inflammatory response 

to CNS injury? 

3). α-Syn is not only the most abundant protein in the 

CNS but also exists in the peripheral blood and 

peripheral nervous system. However, many 

studies have found that the expression of α-Syn in 

the peripheral blood or CSF increases and acts as 

a biomarker for diseases (such as SCI, TBI, and 

stroke). The most notable feature of traumatic 

CNS disease is the BBB, and the cerebrospinal 

barrier is damaged. Does this occur because α-

Syn migrates to the peripheral blood or because 

local α-Syn monomers accumulate? 

4). The mechanism by which α-Syn is transmitted 

between cells is still unknown, and whether 

transmission is related to the vagus nerve currently 

remains unclear. 

 

First, an injury related to trauma or stroke is a serious 

blow to the CNS that triggers a series of abnormal 

pathological reactions. The overexpression and 

aggregation of α-Syn after injury is likely to cause the 

death of related neurons, such as autonomic neurons 

and residual neurons at the edge of the injury. It may be 

difficult for α-Syn to perform its physiological 

functions due to environmental damage. In early 

undamaged cells, α-Syn still performs physiological 

functions such as transmembrane transport, membrane 

stability, and precise release of neurotransmitters. The 

inflammatory response is the main change during the 

acute phase of injury. It occurs immediately after  

the injury. At this time, α-Syn aggregation or 

overexpression is very low or almost negligible; the 

inflammatory response decreases over time, but many 

studies have found that during the chronic phase of the 

disease, a large amount of α-Syn aggregation occurs in 

old age, so it is closely related to neurodegenerative 

diseases. Therefore, α-Syn aggregation showed a time-

dependent increase after injury. In existing studies, α-

Syn was found in microglia, astrocytes and 

oligodendrocytes. Clinically, due to ethical issues 

related to the use of patients' blood, an increase in α-

Syn was detected in the cerebrospinal fluid. In animal 

experiments, α-Syn overexpression was found in a 

substantial portion of the injured area. We believe that 

the source of α-Syn may be related to the course of the 

disease, that it is difficult to determine the main source, 

and that central and peripheral blood sources may exist 

at the same time. From a macro perspective, we 

currently believe that α-Syn is likely to propagate along 
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the autonomic nervous system because this type of 

nerve is unmyelinated, the axons are thin and wide, and 

the cell body has a high energy load. Since this remains 

an unexplored question, the answer is definitely 

complicated. 
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VGT-1: vesicle glutamate transporter-1; SCI: spinal 

cord injury; HIF-1α: hypoxiain-duciblefactors-1α; 

CNTF: ciliary neurotrophic factor; Chrm2: muscarinic 

cholinergic receptor subtype 2; Chrnb2: nicotinic 

cholinergic receptor β2; TBI: Traumatic brain injury; 

CTE: chronic traumatic encephalopathy; BBB: Blood-

brain barrier; TH: tyrosine hydroxylase; SNpc: dense 

substantia nigra; Aβ: amyloid β; MCAO: middle 

cerebral artery occlusion; PPARγ: peroxisome 

proliferator-activated receptor γ; KO: knockout; 

Drp1:dynamin-related protein 1. 
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