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ABSTRACT

Due to the current delay in childbearing, the importance of elucidating the underlying mechanisms for
reproductive aging has increased. Human fertility is considered to be controlled by hormones secreted by the
hypothalamic-pituitary-gonadal axis. To clarify the changes in hypothalamic gene expression with increasing
age, we performed paired-end strand-specific total RNA sequencing for the hypothalamus tissues of rhesus. We
found that hypothalamic gene expression in females was more susceptible to aging than that in males, and
reproductive aging in females and males might have different regulatory mechanisms. Intriguingly, the
expression of most of the hormones secreted by hypothalamus showed no significant difference among the
macaques grouped by age and gender. Moreover, the age-related housekeeping genes in females were
enriched in neurodegenerative disorders- and metabolic-related pathways. This study provides evidence that
aging may influence hypothalamic gene expression through different mechanisms in females and males and
may involve some nonhormonal pathways, which helps further elucidate the process of reproductive aging and
improve clinical fertility assessment in mid-aged women.

INTRODUCTION are becoming a major health issue, as more women

globally are delaying childbearing and life expectancy

Since 1950, the mean childbearing ages of both men
and women have increased [1]. With age, both men and
women show a natural decline in reproductive
functions, including fertility and sex hormone status [2,
3]. Generally, women's fertility declines faster than
men’s fertility, with a dramatic reproductive and
endocrinological shift as well as the coming of meno-
pause [4, 5]. In fact, reproductive aging and its sequelae

is increasing [6]. Therefore, studying reproductive aging
is important and will help humans adapt to changes in
childbearing age.

The hypothalamus is a brain region controlling
reproduction, development, metabolism, homeostasis
and circadian rhythm. A majority of physiological
functions that decline with age, including reproduction,
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are extensively dominated and regulated by the
hypothalamus. In  mammals, the hypothalamus-
pituitary-gonad (HPG) axis plays an essential role in the
regulation of reproduction. Gonadotropin-releasing
hormone (GnRH) neurons located in the hypothalamus
release GnRH into the portal vessel in a pulsatile
manner [7]. Secreted GnRH activates the pituitary to
synthesize and release gonadotropins, such as follicle
stimulating hormone (FSH) and luteinizing hormone
(LH), to control gonad function. Therefore, the
biological process driving pulsatile GnRH release has
long been considered the major regulator of mammalian
reproductive function [8, 9]. Moreover, some hormone-
free pathways mediated by hypothalamus and involved
in reproductive aging were observed in previous studies.

Rhesus macaque (Macaca mulatta) is one of the most
common nonhuman primate animals used in
neuroscience studies [10] and is phylogenetically close to
humans [11]. Moreover, the brain structure and function
of rhesus macaques are more similar to those of humans
than other species, making it an ideal model to assess the
mechanisms of the human brain [12]. Given the
similarity between macaques and humans, analysis of the
gene expression of the hypothalamus of the rhesus
macaque could facilitate a better understanding of human
reproductive aging. However, most of the current studies
that have investigated the relationship between the
hypothalamus and reproductive aging are limited by
species and hypothalamus collection.

This is the first study to explore how the hypothalamus
correlates with reproductive aging using rhesus macaque.
In this study, we performed paired-end strand-specific
total RNA sequencing for the hypothalamus tissues of
young and middle-aged rhesus macaques to determine
whether there are any changes in hypothalamic gene
expression with increasing age.

RESULTS

Highly expressed genes in the hypothalamus of
rhesus macaques

To elucidate the gene expression levels in the
hypothalamus of rhesus macaques, we performed
paired-end strand-specific total RNA sequencing (see
Methods) for the hypothalamus tissues of young (not
older than 5 years) and middle-aged (older than 5 years)
rhesus macaques; each group had two males and two
females (9 hypothalamus samples total, 3 samples in the
male_mid group) (Figure 1A). For each sample, we
sequenced an average of 36.7 million raw reads
(ranging from 27.7 to 46.4 million reads), with mapping
rates of approximately 88.9% (ranging from 85.9% to
90.3%, sequencing quality statistics in Supplementary

Table 1). A total of 23651 genes were detected.
Sequencing data are available at the GEO under
accession GSE128537 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE128537).

To generate the gene expression profiles in each group,
we compared the gene expression levels among the
female_young, female_mid, male_young and male_mid
groups (see Methods). Among the top 500 genes of each
group, 423 were overlapped genes (Figure 1B—1D). Most
of these overlapping genes were enriched in cellular
functions such as regulated exocytosis, organelle
localization, synaptic vesicle cycle, etc. Intriguingly,
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis of the overlapping genes
showed enrichment in some neuropsychiatric diseases,
such as Alzheimer’s disease (AD) and amyotrophic
lateral sclerosis (ALS), in addition to oocyte meiosis. The
Gene Ontology (GO) biological processes of the top 500
genes in each group are shown in Supplementary Figure
1. For instance, compared with other groups, the top
genes in female_mid group showed enrichment in
chemical synaptic transmission, which might indicate a
more robust function of extracellular communication in
the hypothalamus of female middle-aged macaques.

Strong gender differences in hypothalamic gene
expression during aging

We compared gene expression between the hypothalami
of male versus female rhesus macaques and young versus
middle-aged rhesus macaques (see Methods) to identify
potentially sex-related genes (Figure 2A, Supplementary
Data 1-4) and age-related genes (Supplementary Data 5
8). The GO functional enrichment results of differentially
expressed genes by sex are shown in Figure 2B, 2C. The
number of female_high genes was higher than that of
male_high genes in both the young-aged and middle-
aged samples (255 vs. 154 and 252 vs. 168, respectively),
indicating that gene expression was more active in the
hypothalami of female than male rhesus macaques.

As shown in Supplementary Table 2, the difference in
gender-related differentially expressed genes between
the young and middle-aged samples was 11 (409 vs.
420, Supplementary Table 2), while the difference in
age-related differentially expressed genes between
female and male samples was 276 (605 vs. 329), which
revealed strong gender differences in hypothalamic
gene expression during aging. The number of age-
related differentially expressed genes in females was
605, while the number in males was 329. As proved by
previous studies, sex influences the rate of aging and the
responses to many antiaging interventions in animal
experiments. And we hypothesized that the gene
expression in the hypothalamus of female macaques
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might be more susceptible to aging than that of males
[13, 14]. GO functional enrichment of age-related
differentially expressed genes in the female and male
hypothalamus samples are shown in Figure 3A, 3C, and
genes enriched in the items in Figure 3A, C are shown
in Figure 3B, 3D, respectively. As shown in Figure 3B,

female_mid

female_young

3D, corticotropin releasing hormone (CRH) was
upregulated in the female hypothalamus during aging
but downregulated in males, which was in accordance
with the results of the hormone gene analysis below
(Figure 4). These age-related differentially expressed
genes of the female and male macaque hypothalamus
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Figure 1. Experimental design and highly expressed genes in the hypothalamus of rhesus macaque. (A) Diagram of the
experimental process. (B) The overlap of the top 500 genes in each group. (C, D) The GO biological process and KEGG pathway enrichment of

the 423 overlapping genes in Figure 1B.
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Figure 2. Gender-related differentially expressed genes in the hypothalamus of rhesus macaque. (A) The overlap of highly
expressed genes in the rhesus macaque hypothalamus grouped by age and gender. (B, C) The GO functional enrichment of sex-related
differentially expressed genes in the hypothalami of young (B) and middle-aged (C) macaques (red: upregulated genes in females; blue:
upregulated genes in males).
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samples were clustered into different functions,
suggesting that the reproductive aging of female and
male rhesus macaques might be regulated by different
mechanisms and pathways.

To explore the reason for the strong gender differences in
hypothalamic gene expression during aging, we analyzed
the gene types of age-related differentially expressed
genes in the female and male hypothalamic (Figure 3E,
3F). Importantly, in addition to the protein coding genes,
lincRNAs accounted for a considerable proportion of
these age-related differentially expressed genes,
suggesting that lincRNAs might be involved in the
process of reproductive aging. Moreover, we performed
western blotting to 8 age-related differentially expressed
genes in females (Supplementary Figure 2A, quantifica-
tion of western blot in Supplementary Table 4), and the
results of western blots were consistent with the
differentially expressed gene lists (Supplementary Data
1-8) and the heatmaps shown in Figure 3B.

Hormone gene expression and lincRNAs

Changes in hormone levels are essential in reproductive
aging [15]. To determine the changes in hormone gene
expression with aging, we compared the RNA levels of
CRH, somatostatin (SST), thyrotropin-releasing hormone
(TRH), GNRH1, arginine vasopressin (AVP) and
oxytocin (OXT) among the 4 groups (see Methods). We
analyzed the expression of GNRH1 instead of GNRH2
since GNRH1 exerts its control in mammalian
reproduction by stimulating the synthesis and release of
LH and FSH [16]. By searching the differentially
expressed gene lists (Supplementary Data 1-8), we found
that apart from CRH and SST (p value < 0.05), the gene
expression of hormones secreted by the hypothalamus
did not show any differences among the groups (Figure
4). The expression level of GNRH1 was slightly higher in
the female_mid group than in the female_young group,
but the difference was not statistically significant (p value
> 0.05). We also performed gPCR to CRH and SST to
confirm our the mRNA expressions of CRH in
female_young and male_mid group were significantly
lower than that in female_mid group. And mRNA
expression of SST in female_young group was
significantly lower than that in female_mid group. Thus,
we inferred that CRH and SST were crucial in
reproductive aging. The role of the HPA axis (containing
CRH) in aging has been proven in some studies [17], but
further research is needed to explore its roles in
reproductive aging.

LncRNAs are considered to be essential in the
development and function of the central nervous
system (CNS) [18]. LincRNAs comprised the major
set of IncRNAs. We identified lincRNAs in the

hypothalamus with low coding potential and a length
> 200 nt (see Methods). Next, we compared lincRNA
expression among the rhesus macaques grouped by
age and gender and revealed differences among the
groups. Differentially expressed lincRNAs were
found between female and male groups, and young-
and middle-aged groups (as shown in Supplementary
Figure 4), however, we could not elucidate the
function and interaction of them since INcRNAs were
poorly represented in the current annotation of the
rhesus macaque genome. As the important role of
lincRNAs in CNS development and function, we
supposed that the effect of age on hypothalamic gene
expression  might be influenced by post-
transcriptional regulation mediated by lincRNAs.
Overall, the function of lincRNAs have been poorly
elucidated in current studies of the rhesus macaque
hypothalamus, and  further  investigation is
warranted.

Housekeeping gene expression in the hypothalamus

Hormone gene expression levels, especially those of
reproductive hormones, are believed to change
gradually during the process of aging. According to the
published literature, age diminishes hypothalamic
GnRH secretion in males [15] but enhances GnRH
secretion in females [9]. However, hormone expression
analysis in this study revealed no differences in the
hormone gene expressions (including GNRH1) among
the groups, except for CRH and SST. This finding was
incompatible with previous studies, since GnRH was
considered as a major hormone correlated with
reproductive function, and the decrease of GnRH
neurons and the increase of GnRH secretion during
aging were revealed by previous studies [9, 19]. We
inferred that housekeeping gene expression might vary
among the groups, which resulted in differences in
protein translation capability and hormone secretion
levels. Moreover, it was assumed that additional
pathways involved in reproductive aging might be
associated with hypothalamic housekeeping genes.

To investigate the role of housekeeping genes in
reproductive aging, we compared the proportion of
housekeeping genes in the differentially expressed
genes among the rhesus macaques grouped by age and
gender. As shown in Figure 5A, the proportion of
housekeeping genes was higher in the age female
comparison than in the other comparisons, revealing
that housekeeping gene expression in females was more
susceptible to age than that in males. Venn diagram
analysis showed that the number of differentially
expressed genes in the age_female group was much
higher than that in the other group (39 vs. 4/4/3).
Further analysis of the differentially expressed
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housekeeping genes among the 4 groups revealed that
the expression of the 68 housekeeping genes varied with
gender and age (Figure 5A, 5B). We also performed
gPCR and western blotting to the top 6 differentially
expressed housekeeping genes between female_young
and female_mid groups (Supplementary Figure 2B, 3B,
quantification of western blot in Supplementary Table
4), and the expression changes of these genes were
consistent with the heatmap shown in Figure 5G.
Moreover, these age-related housekeeping genes in the
female hypothalamus were highly enriched in
neurodegenerative disorder- and metabolism-related
pathways, such as AD, Parkinson’s disease, mito-
chondrial and ribosomal functions, as well as oxidative
phosphorylation (Figure 5I). The protein interactions of
differentially expressed housekeeping genes between
the hypothalami of middle-aged and young female
macaques were quite complicated. As shown in Figure
5H, NDUFB9, NDUFB8, NDUFA4, COX6B1, COX6C
and COX7C compromised an interaction network with
reaction, transcriptional regulation and posttranslational
modification. These proteins participate in cellular
respiration, and interact with some proteins mediating
mitochondrial function, metabolism and ROS increasing
(MRPL20, MRPS14, UBL5, ROMO1, etc.).

DISCUSSION

In this study, we analyzed the transcriptome of the
hypothalami in healthy rhesus macaques with RNA
sequencing and summarized changes in gene expression
during aging as well as the differences between males
and females. We found strong gender differences in
hypothalamic gene expression during aging as well as
the potential influence of lincRNAs in this process.
Moreover, this study revealed novel changes in
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nonhormonal regulation in reproductive aging.
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females during aging. Moreover, GO functional
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showed that reproductive aging of female and male
rhesus macaques might have different regulatory
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fact that female fertility is the first to be adversely
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an example of stably expressed housekeeping genes. (D—G) The heatmap represents the differentially expressed housekeeping genes of
middle-aged females vs. males (D), young-aged females vs. males (E), middle-aged vs. young-aged males (F), and middle-aged vs. young-aged
females (G). (H) The protein interactions of differentially expressed housekeeping genes of middle-aged vs. young-aged females. (1) The KEGG
pathway enrichment and GO biological process of differentially expressed housekeeping genes of middle-aged vs. young-aged females.

difference between young-aged females and middle-
aged females. This finding suggested a regulation of the
hypothalamic level in reproductive aging in addition to
the HPG axis. In recent years, some studies have
revealed nonhormonal pathways involved in female
reproductive aging. Mitochondria are thought to play a
key role in this process [23]. The compromised
mitochondrial stress response was demonstrated to
contribute to age-related accumulation of damaged
proteins, reduced oxidative phosphorylation, and
increased reactive oxygen species (ROS) production
[24]. Gil Mor et al. also proposed a possible role for
free radicals in hypothalamic reproductive aging [25].
Such a mechanism is supported by evidence that
vitamin E, which can block estrogen-induced free
radicals in the arcuate nucleus of the hypothalamus,
delays the onset of constant estrus in aging female rats,
and melatonin could protect oocytes from oxidative
stress [26, 27]. Moreover, a connection between
reproductive aging and AD is possible since
reproductively senescent females were found to have
higher amyloid-p (AB) formation and AD-like brain
changes [28]. In this study, differentially expressed
housekeeping genes were enriched in mitochondrial
pathways, oxidative phosphorylation and some
neurodegenerative disorders, such as AD, which
supported the above mechanisms.

Other recent studies revealed the underlying basis of
senescence, involving hypothalamic immunity mediated
by IkB kinase-b (IKK-b), nuclear factor kB (NF-kB)
and related microglia-neuron immune crosstalk [29].
Naturally, the "hypothalamic microinflammation”
theory was promoted [30, 31]. Sirtuins were also
demonstrated to be critical in governing multiple
physiological functions in the brain, especially the
hypothalamus [32]. Very recently, a non-neuronal
mechanism regulating aging in the hypothalamus was
further discovered, revealing that exosomal miRNAs
released by hypothalamic neural stem/progenitor cells
exert endocrine control over the speed of systemic aging
[33, 34]. The findings above provide a new perspective
on the role of the hypothalamus in aging and challenge
the previous concept that the hypothalamus regulates
reproductive function solely through the HPG axis.

There are some studies on aging brains of various
species. Methodios et al. performed a single-cell trans-
criptomic analysis of aging mouse brains and highlighted
age-related changes in cellular pathways and processes,

which were also enriched in ribosome biogenesis [35]. A
study by Kristofer et al. also revealed enrichment of
genes in ribosomes, which slightly declined with age.
During aging, genes involved in  oxidative
phosphorylation and mitochondria showed the most rapid
declines [36]. Intriguingly, in this study, the KEGG
analysis of differentially expressed housekeeping genes
between the hypothalami of middle-aged and young-
aged females was also enriched in ribosome pathways
and oxidative phosphorylation. Xiao Xu et al. compared
gene expression during aging in different cell types and
found that the specific molecular consequences of aging
were different between the cell types, and that genes
downregulated with age were enriched for synaptic genes
[37].

Overall, this study revealed strong gender differences in
the gene expression levels of the hypothalami of rhesus
macaques during aging. The hypothalamus of the female
macaque was more susceptible to age than that of males,
and different mechanisms and pathways might contribute
to the changes in hypothalamic gene expression in males
and females. In addition to the hormone genes expressed
in the hypothalamus, more attention should be paid to
housekeeping genes and the underlying mechanisms that
might be involved in reproductive aging.

MATERIALS AND METHODS
Animals

In this study, 8 rhesus macaques with balanced age and
sex were used. The 8 rhesus macaques were all from a
single source, having similar rankings in the group and
originating in South China. The macaques lived in
groups outdoors and were all in good health. Individuals
with the highest or lowest rankings, or in ovulation
period were excluded. The rhesus macaques were
grouped into young and middle-aged groups, and each
group contained two males and two females. The mean
ages of young-aged (not older than 5 years) females,
middle-aged (older than 5 years) females, young-aged
males and middle-aged male macaques were 4.1y, 9.9
y, 3.9 y and 10.0 vy, respectively (the specific age of
each animal was shown in Supplementary Table 1). All
experimental procedures complied with the Animal
Ethics Procedures and Guidelines of the People's
Republic of China. This study was approved by the
Animal Ethics Committee of Peking University Third
Hospital.
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Hypothalamus sample collection

The procedure of animal sacrifice and brain harvest was
standardized. To minimize the ischemic time, we
immediately harvested the brain of each individual when
the rhesus macaque was euthanized. The brain was then
cooled to 4°C. For each of the rhesus macaques, the brain
was dissected into 52 regions. After the removal of
frontal lobe, parietal lobe, occipital lobe, temporal lobe,
limbic cortex and thalamus, the hypothalamus was
carefully collected. The brain was dissected by one
professional animal anatomist with thorough knowledge
of the rhesus macaque brain structures and the whole
process of hypothalamus dissection was completed in
about 20 minutes. For each hypothalamus, 1 or 2 samples
with size of approximately 2 to 3 mm?® were removed.
For 7 of the 8 rhesus macaques (#4, #10, #7, #8, #6, #11,
#2), 1 hypothalamus samples were collected and for the
remaining one (#3), 2 hypothalamus samples were
collected (as shown in Supplementary Table 1). The
dissected samples were stored in liquid nitrogen before
RNA extraction. The brain dissection and hypothalamus
collection were completed with reference to the
anatomical landmarks in the Brain Maps [38] (available
at http://www.brainmaps.org) as well as the rhesus
macaque brain atlas (A Combined MRI and Histology
Atlas of the Rhesus Macaque Brain in Stereotaxic
Coordinates 2nd Edition).

RNA-seq library preparation

For RNA sample preparations, a total amount of 3 pg
RNA per sample was used as the initial material. First,
RQ1 DNase (Promega) was applied to remove DNA
after RNA extraction. Second, 1% agarose gels were
used to detect RNA degradation and contamination.
Then, the Kaiao K5500® Spectrophotometer (Kaiao,
Beijing, China) was applied to assess the purity of the
RNA samples. Subsequently, the RNA integrity and
concentration were assessed using the RNA Nano 6000
Assay Kit of the Bioanalyzer 2100 system (Agilent
Technologies, CA, USA). Finally, ribosomal RNA was
removed using Epicentre Ribo-ZeroTM Gold Kits
(Human/Mouse/Rat) (Epicentre, USA).

The RNA-seq library was generated following the
manufacturer’s recommendations with varied index
labels using the NEBNext® UltraTM Directional RNA
Library Prep Kit for Illumina (NEB, Ipswich, USA).
First, RNA fragmentation was conducted using NEBNext
First Strand Synthesis Reaction Buffer at 94°C for 15
minutes. Second, first strand cDNA synthesis was
performed with RNA fragments as a template and
random hexamer primers. The second strand cDNA was
then synthesized with buffer, dNTPs, DNA polymerase |
and RNase H. The library fragments were purified with

QiaQuick PCR kits and eluted with EB buffer. Terminal
repair and sequencing adaptor addition were then carried
out. For selection of cDNA fragments preferentially 300
bp in length, the library fragments were purified with
agarose gel electrophoresis, and the second strand of
cDNA was digested by UNG enzyme. Finally, PCR was
performed, and the desired products were retrieved by
agarose gel electrophoresis.

RNA-seq

The library was sequenced on the Illumina HiSeq X Ten
(HiSeq x Ten Reagent Kit v2.5) platform. Then, FastQC
(v0.11.4) was utilized to conduct read-level quality control
of the FASTQ files generated by the Illumina workflow
before mapping. For samples with poor quality, quality
trimming was performed by Trim Galore (v0.4.4, Quality
Phred score cut-off: 30). Subsequently, HISAT2 [39]
(v2.0.5, default parameters) was applied to map the reads
with the Mmul 8.0.1 reference genome and the Mmul
8.0.1.91 transcriptomic annotation GTF (Ensembl,
available at http:/ftp.ensemblorg.ebi.ac.uk/pub/release-
91/gtf/macaca_mulatta/Macaca mulatta. Mmul_8.0.1.91.gt
f.gz). Read counts of the genes were generated by HTSeq
(v0.6.1), and the read count matrix for transcripts was
assembled by prepDE.py script from the StringTie (v1.3.4,
with parameter -e) package. For evaluation of RNA
integrity at the transcript level, TIN (transcript integrity
number) was calculated for each sample using tin.py from
RSeQC (v2.6.4) tools. The median TIN score (medTIN) of
all transcripts was used for measurement [40].

A total of 23651 genes were detected and used in
downstream analysis. Normalization of the read count
matrix and identification of differentially expressed
genes were achieved by DESeq2 (v1.18.1). Genes with
FDR < 0.05 and fold-change > 2 compared to other
groups (pairwise comparison) were used for functional
annotation.

Analysis of age- and sex-related differentially
expressed genes

To generate the profile of gene expression in the
hypothalamus, we selected the top 500 genes of each
group (female_young, female_mid, male_young, male_
mid) and found 423 overlapping genes. GO enrichment
of biological process and KEGG enrichment of these
overlapping genes and genes in each group were
conducted in the Database for Annotation, Visualization
and Integrated Discovery (DAVID) v6.8 website
(available at https://david.ncifcrf.gov/). (performed by
CapitalBio Technology, Beijing)

Next, we selected young_male_high genes, young_
female_high genes, mid_female_high genes and mid_
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male_high genes with DESeqg2 (v1.18.1). For instance,
genes with higher expression in female_young than
male_young were considered young_male_high genes,
and genes with higher expression in female_mid than
female_young were considered mid_female_high genes.
GO functional enrichment analysis of these genes was
conducted using the DAVID v6.8 website. Heatmaps of
these genes were drawn through R Studio (v3.5.1).

Analysis of lincRNAs

Novel transcripts located in the intergenic region or
antisense to known genes were selected. The minimal
distance between candidate lincRNAs and the nearest
protein-coding genes (annotated by Mmul 8.0.1.91) was
set to 1 kb. CPAT (Coding Potential Assessment Tool)
or CPC2 (Coding Potential Calculator) was utilized to
assign the candidate lincRNAs as noncoding.
Additionally, transcripts shorter than 200 bases and
consisting of one single exon were excluded from the
final list of lincRNAs.

We analyzed differentially expressed lincRNAs among
the rhesus macaques grouped by age and gender. For age-
related lincRNAs, for example, we recognized
age_female_up genes with DESeqg2 (v1.18.1) by
comparing the lincRNA expression levels between
young_female and mid_female groups, and genes with
higher expression in the mid_female group than in the
young_female group (p value < 0.05) were considered
age_female_up genes. The identification of age female_
down genes, age_male_up genes and age male_down
genes was performed in a similar manner. For the analysis
of gender-related genes, for instance, genes expressed at
higher levels in the young_female group than in the
young_male group were considered young_female_high
genes. Next, the GO functional enrichment of these genes
was conducted using the DAVID v6.8 website.

Analysis of housekeeping genes

We identified 68 housekeeping genes of the
hypothalamus and compared the expression levels among
the 4 groups through DESeq2 (v1.18.1). For instance,
differentially expressed housekeeping genes between
female_young and female_mid were considered
age female genes, and differentially expressed
housekeeping genes between female_mid and male_mid
were considered sex _mid genes. Heatmaps that
represented the differentially expressed housekeeping
genes of middle-aged females versus males, young-aged
females versus males, middle-aged versus young-aged
males, and middle-aged versus young-aged females were
generated by R Studio (v3.5.1). The KEGG enrichment
and GO biological process enrichment of these
differentially expressed housekeeping genes were

conducted using the DAVID v6.8 website. Moreover, the
protein interaction diagram of the differentially expressed
housekeeping genes of middle-aged versus young-aged
females was generated through the STRING v11 website
[41] (available at http://string-db.org).

Quantitative real-time PCR (qPCR)

gPCR was performed to analyse the mMRNA expressions of
the top 6 differentially expressed housekeeping genes
between female_young and female_mid (COX6C, HYPK,
CMC1, LARP1, METTL13, SMC5), and the differentially
expressed hormone genes (CRH, SST). Specific primers
were designed for the amplification of the target and
housekeeping transcripts (Supplementary Table 3). The
reverse transcription was performed using a cDNA
Synthesis Kit (Thermo Scientific, Massachusetts, USA).
The complementary DNA was then amplified in triplicate
using the PowerUp SYBR Green Master Mix (Thermo
Scientific), according to the manufacturer’s protocol.
gPCR was then performed and cycle number beyond 35
was excluded. The levels of mRNA for each gene were
calculated using the 2T method relative to the
corresponding mRNA levels of female_mid group. The
differences among the groups were calculated by one-way
ANOVA analysis, and p value < 0.05 was considered as
significant.

Western blot

Briefly, protein quantification was conducted using a
BCA Kit. Protein lysates were subjected to SDS-PAGE
and subsequently electrotransferred to a polyvinylidene
fluoride membrane (Millipore). The membrane was
incubated with the indicated primary antibodies overnight
at 4 °C and HRP-conjugated secondary antibodies for 1
hat room temperate, followed by visualization using the
ChemiDoc XRS system (Bio-Rad). Quantification was
performed with Gel Image ststem ver.4.00 (Tanon,
china).
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Supplementary Figure 1. The GO biological process of the top 500 genes in the hypothalamus of rhesus macaque. (A) The top
500 genes in the hypothalami of young-aged male macaques; (B) The top 500 genes in the hypothalami of middle-aged male macaques; (C)
The top 500 genes in the hypothalami of young-aged female macaques; (D) The top 500 genes in the hypothalami of middle-aged female

macaques.
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Supplementary Figure 2. Western blots of differentially expressed genes. (A) Age-related differentially expressed genes in female
macaques. (Sample 1-3: female_mid; sample 4-6: female_young). (B) Age-related differentially expressed housekeeping genes in female
macaques. (Sample 1-3: female_mid; sample 4—6: female_young).
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Supplementary Figure 3. Relative mRNA expression of hormone genes and differentially expressed housekeeping genes.
(A) CRH, corticotropin releasing hormone; SST, somatostatin. *, compared with female_mid group, p value < 0.05. (B) *, compared with
female_mid group, p value < 0.05.
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Supplementary Figure 4. The Venn diagrams and heatmaps of differentially expressed lincRNAs by age and gender. (A-D) The
number of differentially expressed lincRNAs in the hypothalami of rhesus macaques grouped by age and gender. (B, C) (E, F) Heatmaps show
the differentially expressed lincRNAs in the hypothalami of rhesus macaques grouped by age and gender.
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Supplementary Tables

Supplementary Table 1. The RNA sequencing quality of the hypothalamus of rhesus macaque.

Sample

Trimmed

Aligned concordantly

Overall

number Raw reads paired exactly 1 time (--dta) alignment rate Age Gender
#4 39,345,822 36,553,768 27,008,702 (73.89%) 85.92% Young (3.2 y)

#10 34,739,393 32,699,812 26,374,273 (80.66%) 90.08% Young (5) Female
#7 32,586,392 30,925,534 25,020,200 (80.90%) 90.26% Young (4y)

#8 33,283,310 30,876,062 24,721,694 (80.07%) 89.66% Young (3.8 ) Male
#6 46,426,721 43,647,729 34,112,556 (78.15%) 88.34% Middle (10 y)

#11 43,444,130 41,253,888 32,722,384 (79.32%) 89.46% Middle (9.8 y) Female
#2 32,777,557 31,597,336 24,785,971 (78.44%) 88.30% Middle (10 y)

#3-1020 27,741,388 25,913,402 20,369,952 (78.61%) 88.90% Male

Middle (10 y)

#3-1026 40,113,034 37,304,146 29,307,116 (78.56%) 88.88%
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Supplementary Table 2. The number of differentially expressed genes by sex and age (p value < 0.05).

Female Male Number
Young #4, #10 #7, #8 409
Middle #6, #11 #2, #3 420
Number 605 329
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Supplementary Table 3. The primers used in RT-gPCR amplification.

Gene Primer Length

CRH F agtaccctcagcccttggat 131bp
R gctcttgttgaggttcceca

SST F ccccagactccgtcagttte 100bp
R gttggottcagagagcagct

COX6C F ggattcgtgctatcecctggg 132bp
R accagccttcctcatctect

HYPK F gcagaaagccaaacaggagc 132bp
R cccatgtgttcccgtaagct

CMC1 F gcagaccagcatctcagaca 83bp
R tcagaacacctctctttggec

LARP1 F ccaaccactgtcccagagtc 96bp
R ccgtgatgtctggcettgagt

METTL13 F ttttcatcatcccccaggge 110bp
R aagggccactgtaatcagcc

SMC5 F gccagtttctccctcaggac 104bp
R tctgtgcatttctgggggac

GAPDH F tcgtcatcaatggaagcccc 136bp
R aaatgagccccagcecttctc
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Supplementary Table 4. Quantification of western blots (Sample 1-3: female_mid; sample 4-6: female_young ).

Gene Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6
NDUFA1/GAPDH 0.82 1.43 1.29 0.22 0.34 0.16
UQCRH/GAPDH 0.91 0.98 1.02 0.61 0.53 0.25
COX6C/GAPDH 1.31 1.70 1.60 0.53 0.40 0.26
ENHO/GAPDH 1.28 1.50 1.44 0.51 0.54 0.30
ATP2B4/GAPDH 0.20 0.43 0.57 0.87 0.89 0.74
LARP1/GAPDH 0.39 0.39 0.37 0.73 0.78 0.64
HYPK/GAPDH 0.62 0.55 0.55 0.33 0.49 0.36
HTR2A/GAPDH 0.95 0.77 1.02 0.64 0.47 0.53
VSIG4/GAPDH 0.16 0.29 0.29 0.71 0.52 0.54
CD46/GAPDH 0.60 0.56 0.48 0.94 0.82 0.82
EGFR/GAPDH 0.34 0.29 0.28 0.59 0.67 0.61
METTL13/GAPDH 0.15 0.16 0.29 0.50 0.41 0.46
SMC5/GAPDH 0.12 0.32 0.48 0.61 0.65 0.62
CMC1/GAPDH 0.85 0.86 0.95 0.70 0.61 0.64
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Supplementary Data

Please browse Full text version to see the Supplementary data related to this manuscript.

Supplementary Data 1. The differentially expressed genes between female_mid and male_mid macaques (female_mid
higher than male_mid, p value<0.05).

Supplementary Data 2. The differentially expressed genes between female_mid and male_mid macaques (female_mid
lower than male_mid, p value<0.05).

Supplementary Data 3. The differentially expressed genes between female_young and male_young macaques
(female_young higher than male_young, p value<0.05).

Supplementary Data 4. The differentially expressed genes between female_young and male_young macaques
(female_young lower than male_young, p value<0.05)

Supplementary Data 5. The differentially expressed genes between female_mid and female_young macaques (female_mid
higher than female_young, p value<0.05)

Supplementary Data 6. The differentially expressed genes between female_mid and female_young macaques (female_mid
lower than female_young, p value<0.05)

Supplementary Data 7. The differentially expressed genes between male_mid and male_young macaques (male_mid higher
than male_young, p value<0.05)

Supplementary Data 8. The differentially expressed genes between male_mid and male_young macaques (male_mid lower
than male_young, p value<0.05)
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