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INTRODUCTION 
 

Alzheimer’s disease (AD), a neurodegenerative disorder 

and the most common cause of dementia [1], seriously 

interferes with daily life, affecting memory, the ability to 

reason and communicate, and eventually causing death. 

According to a recent study [2], the incidence of AD 

doubles every 5 years after the age 65. Unfortunately, 

there is still no effective treatment for AD. Therefore, 

there is ample opportunity to develop pharmacological 

and behavioral interventions for delaying the onset and 

progression of AD during its early stages. According to 

recent statistical analyses [3], ~10-15% of AD patients 

with mild cognitive impairment (MCI) progress from the 

prodromal stage of AD to probable AD [4]. Early 

treatment is believed to delay AD progression at the 

MCI and preclinical stages [5, 6]. 

 

Functional magnetic resonance imaging (fMRI) is a non-

invasive technique that can effectively measure brain 

activity [7–9]. However, it is still challenging to 

diagnose AD patients using fMRI since spontaneous 

brain activity can be random and asynchronous  

across subjects and scanners. By virtue of the brain 
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ABSTRACT 
 

Functional connectivity network (FCN) analysis is an effective technique for modeling human brain patterns and 
diagnosing neurological disorders such as Alzheimer’s disease (AD) and its early stage, Mild Cognitive 
Impairment. However, accurately estimating biologically meaningful and discriminative FCNs remains 
challenging due to the poor quality of functional magnetic resonance imaging (fMRI) data and our limited 
understanding of the human brain. Inspired by the inter-similarity nature of FCNs, similar regions of interest 
tend to share similar connection patterns. Here, we propose a functional brain network modeling scheme by 
encoding Inter-similarity prior into a graph-regularization term, which can be easily solved with an efficient 
optimization algorithm. To illustrate its effectiveness, we conducted experiments to distinguish Mild Cognitive 
Impairment from normal controls based on their respective FCNs. Our method outperformed the baseline and 
state-of-the-art methods by achieving an 88.19% classification accuracy. Furthermore, post hoc inspection of 
the informative features showed that our method yielded more biologically meaningful functional brain 
connectivity. 
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connectome, the functional brain network provides more 

consistent data [10–14]. Indeed, functional connectivity 

network (FCN) has been correlated to some neurological 

and psychological diseases such as autism spectrum 

disorder (ASD) [15, 16], MCI [12, 17–19], and AD  

[20–22], among others, relying heavily on the quality of 

the final estimated FCNs. Therefore, computing reliable 

FCNs can increase the accurate diagnosis of such 

disorders [23]. 

 

Mathematically, FCN can be formulated in a graph 

format, in which each node corresponds to a specific 

region-of-interest (ROI) in the brain and each edge 

delineates the relation between the blood-oxygen-level-

dependent (BOLD) signals associated with a pair of 

ROIs. The most widely-used FCN estimation models are 

based on second-order statistics (or correlations) and, 

according to a recent review [24], these correlation-based 

methods are generally more sensitive than complex high-

order methods. Therefore, in this paper, we mainly focus 

on correlation-based methods, and will briefly review 

some of them, including Pearson’s correlation (PC) [25], 

sparse representation (SR) [26, 27], and their variants. 

However, the FCN commonly has more “topological 

structures” than just sparsity (Sporns 2011). Currently, 

several studies have proposed more discriminative FCNs 

with improved estimations to diagnose neurodegenerative 

diseases. Most of these can be explained under a 

regularization framework, which illustrates that a 

reliable FCN estimation model should not only fit the 

data well, but also effectively encode priors of the brain 

organization [28]. In practice, the commonly-used priors 

include sparsity, modularity, group-sparsity, low-rank 

and scale-free [19, 25, 26, 28, 29], which can be 

transformed into corresponding regularization terms for 

FCN estimation. Moreover, the priors can also be 

transferred from the data modelling [23] or other high-

quality data [30]. Such approaches commonly improve 

the performance of FCNs and their diagnostic accuracy.  

In this study, inspired by the fact that similar ROIs in 

FCNs tend to have similar connection patterns (i.e., 

inter-similarity structure), we present a novel FCN 

estimation scheme by encoding such a prior in the 

form of a graph regularizer. We formulated this prior 

into a graph-learning model with an additional graph/ 

manifold regularizer for FCN estimation, and further 

proposed an efficient global optimization algorithm. 

Additionally, the proposed method is not competing 

with any other FCN estimation model, since it only 

provides an effective inter-similarity module in FCN 

estimation. 

 

RESULTS 
 

Network visualization 

 

For visual comparison of the FCN by PC, SR, GR and 

SGR methods, we constructed an FCN adjacency matrix 

W for each method (Figure 1), with all weights 

normalized between −1 and 1, for ease of comparison 

across the different methods. 

 

Figure 1 shows that the full correlation-based FCNs have 

different topology from the partial correlation-based 

FCN (i.e., SR, GR and SGR), since they adopt different 

statistical information by using different data-fitting 

terms. In addition, compared with SR and GSR, the FCN 

estimated by SGR tends to be better organized, 

illustrating the effectiveness of the performance. 

 

MCI identification 

 

A set of quantitative measurements, including accuracy, 

sensitivity, specificity, and area under the curve (AUC), 

are used to evaluate the classification performance of 

four different methods (PC, SR, GR and SGR). The 

mathematical definition of the first three measures are 

as follows: 

 

 
 

Figure 1. The FCN adjacency matrices of a certain subject, constructed by different methods. 
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TruePostive TrueNegative

Accuracy
TruePostive FalsePostive

TrueNegative FalseNegative




 



 (1) 

 

 
TruePostive

Sensitivity
TruePostive FalseNegative




 (2) 

 

 
TrueNegative

Specificity
TrueNegative FalsePostive




 (3) 

 
Here, TruePositive is the number of the positive 

subjects that are correctly classified in the MCI 

identification task. Similarly, TrueNegative, 

FalsePostive and FalseNegative are the numbers of 

their corresponding subjects, respectively. 

 

The MCI vs NC classification results on the ADNI 

dataset are given in Table 1 and Figure 2, with SGR 

achieving the best results. As seen in Table 1, the partial 

correlation-based methods work better than the PC 

method, which reveals the effectiveness of partial 

correlation information. In addition, the SGR method 

strongly outperforms the SR and GR methods, which 

demonstrates the effectiveness of both sparsity and 

inter-similarity priors. 

 

Sensitivity to network model parameters 

 

The ultimate classification accuracy is particularly 

sensitive to the network model parameters. In Figure 3, 

we show the classification accuracy corresponding to 

different parametric combinations in the proposed SGR 

method. In addition, the classification accuracy is 

computed by the LOO test on all of the subjects. 

Consequently, Figure 3 shows that we achieve the best 

accuracy (93.70%) with λ = 21 (for sparsity) and γ = 25 

(for inter-similarity). 

 

Consensus connections 

 

As the selected connections in each inner loop might be 

different, we recorded the consensus connections for the 

classification model in each inner LOOCV loop. As 

mentioned above, we selected the consensus 

connections with p-value < 0.01 in each loop, and the 

consensus connections are shown in Table 2 and Figure 

4. Specifically, 8 positive consensus connections are 

listed in Table 2. Most of these discriminative 

connections were distributed in the frontal, occipital, 

and parietal lobes. All consensus connections had both 

enhanced and weakened functional connections in MCI 

patients. Furthermore, we projected them into the 

corresponding subnetworks and found that most 

consensus connections were mainly distributed in the 

default mode network (DMN), frontoparietal task 

control network, and sensory/somatomotor hand 

network. 

 

Hub regions of functional network 

 

According to the definition of “hubs”, we identified hub 

nodes of the FCN estimated by SGR with λ = 21 and  

γ = 25 in MCI patients and NCs. As shown in Table 3, 

the common hubs of MCI and NCs were located mainly 

in bilateral middle frontal gyrus, bilateral inferior 

temporal gyrus, right superior frontal gyrus, right insula 

and right fusiform gyrus. Most of them were mainly 

distributed in the DMN, fronto-parietal task control and 

salience network. Furthermore, it is notable that some 

hubs were present only in MCI patients and absent in 

NCs, such as left superior frontal gyrus and left insula. 

Meanwhile, some hubs were present only in NCs and 

not in patients with MCI. They were located in the right 

middle temporal gyrus, left precentral gyrus and left 

postcentral gyrus. These discriminative brain regions 

between MCI and NCs were distributed mainly in the 

DMN, fronto-parietal task control and 

sensory/somatomotor hand network.  

 

Altered topological properties of functional 

networks in MCI patients 

 

Based on the FCNs estimated by SGR with λ = 21 and γ 

= 25, several global graph theory metrics as shown in 

Table 4, including clustering coefficients (Cp), shortest 

path length (Lp), normalized clustering coefficient (γ), 

normalized characteristic path length (λ), small-world 

(σ), global efficiency (Eglobal) and modularity (Q), were 

calculated to elaborate on the topological properties of 

functional networks in MCI and NC groups. As shown 

in Table 3, both groups fit γ=Cp
real / Cp

rand > 1, λ=Lp
real / 

Lp
rand ≈1 and σ=γ/λ > 1. Therefore, FCNs estimated by 

SGR in MCI patients and NCs showed small-world 

topological attributes [59]. This means that the brain 

networks of the two groups maintain an economic and 

efficient brain network that optimizes the balance 

between local specialization and global integration [60–

62]. Further comparison suggested that the Lp values of 

MCI patients were lower than those in the NC groups 

(P<0.01), which indicated a reduction of network 

integration in global information processing in MCI 

patients. Moreover, the decreased values of γ and Q in 

MCI patients suggest a reduction of network 

segregation in local information processing. 

 

DISCUSSION 
 

Here, we proposed a new method to estimate functional 

brain networks (FCNs) to improve the accuracy of 

FCN-aided disese diagnosis. To test the effectiveness of 
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Table 1. Classification performance corresponding to  
different FCN estimation. methods on ADNI dataset. 

Method Accuracy Sensitivity Specificity AUC 

PC 71.65 76.56 66.67 0.7852 

SR 84.25 85.71 82.81 0.9208 

GR 80.31 79.69 80.95 0.8918 

SGR 88.19 87.50 88.89 0.9486 

 

our proposed algorithm, we used it to estimate an FCN 

from experimental fMRI data of AD patients and 

controls. Estimated FCNs are used to identify MCI 

patients, which is important for early diagnosis and 

intervention. Our approach yielded competitive results 

through three main contributions: 

We introduced a graph regularizer into the proposed 

FCN learning framework for estimating inter-

similarity FCNs, and combined it with sparse  

penalty for constructing both sparse and inter-

similarity FCNs, which illustrated that the proposed 

method scales well.  

 

 
 

Figure 2. The ROC results of different methods. 
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We used the estimated FCNs to identify MCIs from 

NCs, and our experimental results showed that the 

proposed method outperforms state-of-the-art methods. 

Indeed, it achieved an 88.19% classification accuracy 

based on a simple feature selection (by means of t-tests 

with a fixed p value) and classification (via linear 

support vector machines (SVMs) with default parameter 

C = 1) pipeline. 

 

We explored the selected consensus features (i.e., 

network connections) in our method and found that 

most of the selected features tend to be biologically 

meaningful according to recent studies (Greicius, 2008; 

Albert et al., 2011), which further illustrated our 

method’s effectiveness. Moreover, the analysis of graph 

theory attributes based on our method can be used to 

further characterize altered patterns and pathological 

mechanisms underlying the topological properties of 

brain networks in MCI. 

 

Our simple graph/manifold regularizer was used to 

estimate an inter-similarity FCNs for each subject. 

However, FCNs from different subjects tend to share 

some similar structures [18, 19] and thus the proposed 

method may lose group information. Therefore, we 

proposed the development and application of a “group 

constraint”, such as Group LASSO [63] or tensor low 

rank [5] to improve FCN computation. 

The experiments in our methodological study here 

constitute a simple verification method for validating 

the effectiveness of the inter-similarity scheme, without 

considering other factors (e.g., similarity matrix or 

classification model). Therefore, we adopted the 

simplest Pearson Correlation matrix and linear SVM 

model. Future studies could further improve MCI 

classification performance. 

 

The distribution of consensus connections and hub 

nodes indicated that the discriminative features obtained 

by our proposed method were mainly distributed in the 

frontal lobe, occipital lobe and parietal lobe of MCI 

patients. Projecting them into the corresponding 

subnetworks, we found that most of these brain regions 

were mainly distributed in the DMN, frontal parietal 

task control network, and sensory/somatic motor hand 

network, especially the DMN. Previous studies, such as 

[64] and [65], have pointed out that DMN facilitated the 

early diagnosis and prediction of AD. Our results also 

showed that DMN provided the most discriminating 

information, which was verified by our proposed 

method, whose reproducibility we demonstrated here.  

 

The topological properties analyzed in our study 

suggested that both MCI patients and NCs fitted the 

small-world attribute in the global topological property. 

That is, the brain network of MCI and NC groups 

 

 
 

Figure 3. Assification accuracy based on the networks estimated by the proposed method with different regularized 
parametric values in the interval [2−5, 25]. The results are obtained by LOO test on all subjects. 
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Table 2. Consensus connections between MCI and NC for 116 AAL template ROIs. 

Region Region 
Mean values 

P value 
MCI NC 

Frontal_Sup_Medial_L Frontal_Sup_Medial_R 0.274 0.181 9.7210-8 

Postcentral_L Postcentral_R 0.171 0.135 1.1410-6 

Parietal_Sup_L Occipital_Sup_L 0.024 0.052 4.4910-6 

Cuneus_L Cuneus_R 0.154 0.173 8.8910-6 

Fusiform_L Insula_R 0.036 0.007 1.0410-5 

Cuneus_L Calcarine_L 0.099 0.048 2.1810-5 

Cerebelum_Crus1_L Cerebelum_6_L 0.083 0.118 2.4010-5 

Occipital_Inf_L Occipital_Mid_L 0.142 0.114 1.5910-4 

 

 
 

Figure 4. The consensus connections, selected via LOOCV, between MCI and NC for 116 AAL template ROIs. The arc thickness 

indicates the discriminative power of an edge, which is inversely proportional to the estimated p-values. The arc colors were randomly 
generated to differentiate ROIs. This figure was created using a Matlab function, circularGraph, shared by Paul Kassebaum 
(http://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph). 

http://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph
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Table 3. Hubs in MCI and NCs defined with the degree. 

 AAL Number Corresponding brain regions  Sub-networks 

M
C

I 

8 Frontal_Mid_R Fronto-parietal task control 

56 Fusiform_R Default mode network 

3 Frontal_Sup_L Default mode network 

4 Frontal_Sup_R Default mode network 

7 Frontal_Mid_L Default mode network 

23 Frontal_Sup_Medial_L Default mode network 

29 Insula_L Salience network 

30 Insula_R Salience network 

89 Temporal_Inf_L Default mode network 

90 Temporal_Inf_R Default mode network 

N
C

 

7 Frontal_Mid_L Fronto-parietal task control 

8 Frontal_Mid_R Fronto-parietal task control 

4 Frontal_Sup_R Default mode network 

30 Insula_R Salience network 

86 Temporal_Mid_R Default mode network 

1 Precentral_L Sensory/somatomotor Hand 

56 Fusiform_R Default mode network 

57 Postcentral_L Sensory/somatomotor Hand 

90 Temporal_Inf_R Default mode network 

89 Temporal_Inf_L Default mode network 

AAL: the automated anatomical labeling atlas. 
 

Table 4. Comparison of topological properties between MCIs and NCs. 

 MCI NC 

Cp 0.125±0.003 0.147±0.006 

Lp
* 0.746±0.003 0.759±0.005 

γ* 1.109±0.071 1.205±0.094 

λ 1.040±0.010 1.051±0.015 

σ 1.066±0.058 1.149±0.091 

Eglobal 0.271±0.001 0.278±0.002 

Q* 6.616±0.638 6.736±1.102 

* P<0.01 
 

conform to “economic small-world”, which can provide 

rapid, real-time information processing across separate 

brain regions to maximize efficiency with minimal cost, 

eliciting resilience against pathological attacks [60, 61, 

66]. Further comparison suggested that the value of Lp 

in MCI patients was lower than that in NC groups, 

which indicated a reduction of network integration in 

global information processing in the former. Moreover, 

the decreased values of γ and Q in MCI patients further 

suggested a reduction of network segregation in local 

information processing. Therefore, the altered pattern of 

topological properties obtained by our proposed method 

indicated a disruption of network integration and 

segregation of functions in MCI patients, which further 

demonstrated the pathological mechanisms of FBN. 

 

In summary, the FCN commonly has more topological 

structures than just sparsity [13, 14]. Due to the limited 

understanding of the human brain, estimation of the 

“ideal” FCNs to explore brain pattern or neuro-disease 

diagnosis is still an active field of research. Here, we 

focused on the inter-similarity of the FCNs and 

formulated it into graph regularizer constraints and 

validated the proposed method on MCI classification. 

Our results illustrated that additional topological priors 

can effectively improve diagnosis performance. Our 
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post-hoc analyses further showed that more biologically 

meaningful functional brain connections were obtained 

by incorporating the inter-similarity prior. 

 

MATERIALS AND METHODS 
 

Data acquisition 

 

To test the proposed method, we analyzed publicly-

available neuroimaging data from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database 

(http://adni.loni.ucla.edu) [31]. ANDI was launched in 

2003 by the National Institute on Aging, the National 

Institute of Biomedical Imaging and Bioengineering, 

the Food and Drug Administration, private 

pharmaceutical companies and nonprofit organizations. 

Initially, the goal of ADNI was to define biomarkers for 

use in clinical trials and to determine the best way to 

measure the treatment effects of AD therapeutics.  

 

For this study, we analyzed data for 127 participants, 

including 63 MCIs and 64 NCs. The scanning 

parameters included: TR/TE = 3000/30mm, flip angle = 

80, imaging matrix=64×64, 48 slices, 140 volumes,  

and voxel thickness = 3.3mm. SPM8 toolbox 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm8/) and 

DPARSFA (version 2.2) [32] were used to preprocess 

the fMRI data according to the standard, well-

established pipeline. The preprocessing pipeline 

includes removing the first 10 volumes, Slice timing, 

Realign, Normalize to the MNI space, Spatially smooth, 

Temporally Detrend, Regression out covariates based 

on friction 24 and Temporally filtering (0.01-0.08 Hz). 

For alleviating the head motion effect and artifacts, we 

followed previously published strategies [33, 34]. We 

calculated framewise displacement (FD) and excluded 

subjects with more than 2.5 min (50 frames) data of 

FD>0.5 from subsequent analyses [35]. Finally, 

depending on the automated anatomical labeling (AAL) 

atlas [36], the pre-processed BOLD time series signals 

were partitioned into 116 ROIs. At last, we put these 

time series into a data matrix 137 116X R  . 

 

Functional brain network estimation 

 

After obtaining the fMRI data matrix X from the R-fMRI 

data, the subsequent task is the FCN estimation. The 

most commonly used FCN estimation methods are those 

based on correlation, and since they are more sensitive 

than some complex higher-order methods [14], we 

focused on the former in this study. For better notation, 

we first define the data matrix (i.e., BOLD signal matrix), 

X T NR   where T is the number of volumes and N is 

the number of ROIs. The fMRI time series associated 

with the ith ROI is represented by x , 1, ,T
i R i N  . 

In addition, such approach can also be adopted on data of 

different modality, such as EEG [37, 38]. 

 

Related methods 

 

As the simplest FCN estimation scheme, Pearson’s 

Correlation (PC)-based FCN estimation methods are 

widely using to study FCNs [39]. Then, the edge weights 

of the FCN ( ) N N
ijW R  W  can be calculated by PC 

as follows: 

 

 
 

   

( )

( ) ( )

T

i i j j

ij
T T

i i i i j j j j

x x x x
W

x x x x x x x x

 


   

 (1) 

 

In Eq. (1), i ix x  is a centralized counterpart of xi. Due 

to the effect of the noises mixed in the fMRI data, PC 

always generates dense FCNs. Thus, a threshold is often 

used to sparsify the PC-based FCNs for filtering out 

noisy or weak connections. 

 

Compared with PC measures, the full correlation across 

ROIs, the interaction among multiple ROIs is neglected 

due to their cofounding effects. In contrast, the partial 

correlation is proposed by regressing out the 

confounding effects from other ROIs. However, partial 

correlation-based methods can be easily ill-posed due to 

the need to invert the covariance matrix  Σ T X X . A 

base solution is to incorporate an l1-norm regularizer into 

the partial correlation model [26], which also naturally 

incorporates the sparsity prior (SR) of FCN. The model 

of SR is shown as follows: 

 

 
2

1
,

ijW i ij j ijj i

n

j ii
min x W x W

 
     (2) 

 

the matrix form is proposed as follows: 

 

 

2

1

. . 0, 1, , ,

F

ii

min

s t W i n

 

  

W X XW W
 (3) 

 

Note that the l1-norm regularizer in Eq. (4) below plays 

a key role in achieving a sparse and stable solution [26]. 

 

According to a recent review [1], functional brain 

network (FBN) estimation methods, from simple to 

complex, include Pearson’s Correlation (PC), partial 

correlation [40], regularized partial correlation [41], 

Bayesian network [42], structural equation modeling 

[43], and dynamic casual modeling [44]. Each of these 

methods, in our view, can be considered as a trade-off 

among biological interpretability, computational 

efficiency, and statistical robustness. Consequently, we 

http://adni.loni.ucla.edu/
https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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can naturally incorporate a regularized term and 

statistical information into the objective function for 

constructing a new platform to estimate FCNs. More 

specifically, the platform can be formulated using a 

matrix-regularized learning framework as follows: 

 

    min , ,   . .  ,f R s t W X W W W  (4) 

 

where f(X, W) models the statistical information of 

FCN, and R(W) is the regularization term for 

incorporating biological priors of FCN and stabilizing 

the solutions. In addition, some specific constraints such 

as symmetry or positive semi-definiteness may be 

included in Δ for shrinking the search space of W, 

which provides an effective way for obtaining a better 

FCN. The λ is a hyper-parameter for controling the 

balance between the first (data-fitting) term and the 

second (regularization) term. 

 
In fact, many recently-proposed FCN estimation models 

[45–48] can be unified under this regularized 

framework with different design of the two terms in  

Eq. (5) below. The popular data-fitting terms include 

2
T

F
W X X  used in Eq. (2) and 

2

F
X XW  used in 

Eq. (4), while the popular regularization term is l1-norm 

[49]. Beyond unifying the existing methods, the 

regularized framework also provides a platform for 

developing new FCN estimation methods. In the 

following section, we will explain our proposed our 

model based on this framework. 

 
Our methods 

 
As we mentioned above, the regularization-based FCN 

estimation framework provides an effective scheme for 

incorporating the biological or physical priors of FCN. 

In this paper, we try to encode the inter-similarity prior 

(similar nodes tend to have similar connections) into 

the FCN estimation. The basic motivation is given in 

Figure 5. 

 

In particular, we supposed that if two ROIs are defined 

to be similar, indicating that the connections from these 

two ROIs should have a similar connection pattern. In 

this way, we naturally formulate the inter-similarity 

 

 
 

Figure 5. The motivation of the proposed method. 
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prior into a graph regularizer (namely MR) penalty, 

which is given as follows: 

 

 
 

nROI

,: ,:
2

i, j 1

,

. . 0, 1, ,  

i j ij

ii

min f W W S

s t W i n




 

  

W X W
 (5) 

 

where ijS  denotes the similarity between ROI i  and 

ROI j , ,:iW  represent the weight vector connections 

from ROI i . Based on the Eq.(5), it is apparent that the 

more similar ROI i  is to ROI j , the estimated ,:iW  and 

,:jW  will also increase in similarity. To simplify, we can 

reformulate this into matrix form as follows: 

 

 
 , tr( ).

. . 0, 1, ,ii

min f

s t W i n



  

T
W X W W LW

 (6) 

 

where L is the Laplacian matrix computed as 
1 1

2 2
 

 L I D SD , and D is a diagonal matrix with each 

item 
1

nROI

ii ijj
W


D . The graph S  can be defined in 

many ways such as Pearson’s Correlation, morphological 

network [50], the network from the high quality data [30] 

or the predefined graph (must connect or must cannot 

connect). In particular, in this study, we only consider the 

positive connection of PC to construct L. 

 
Moreover, since the estimated FCN should also be 

sparse, we further incorporate the l1-norm penalty into 

the FCN estimation, and the sparse and graph 

regularizer (namely SGR) is estimated as follows: 

 

 
  T

1
, tr( ).

. . 0, 1, ,ii

min f

s t W i n

  

  

W X W W W LW
 (7) 

 
In addition, we adopt the partial correlation for the date-

fitting term due to its efficiency and effectiveness. 

 

 

2

1
tr( ).

. . 0, 1, ,

F

ii

min

s t W i n

   

  

T
W X XW W W LW

 (8) 

 
For Eq, (8), based on the regularization framework for 

FCN estimation, we give the optimization algorithm for 

estimating FCN by SGR. Note that, the objective 

function of Eq. (8) is convex but indifferentiable due to 

the 1l -norm regularizer. A range of algorithms have 

been proposed for addressing such indifferentiable 

convex optimization problem in the past few years  

[51–54]. Here, we select the proximal method [55, 56] 

to solve Eq. (8) due to its simplicity and efficiency. In 

particular, for the data-fitting term   2X,W X XWFf    

(or 
2W X XT
F ) and graph regulaizer term 

Ttr(W LW) , 

whose gradient w.r.t W  is 

 W X,W 2X XW X XT Tf    (or W X XT ) and 

 T
Wtr W LW LW  . Therefore, we have the 

following updated formula for W , according to the 

gradient descent criterion: 

 

  1 1( , ),k k k kf     WW W X W LW  (9) 

 

where k  denotes the step size of the gradient descent. 

The initial value of the step size k  will be adaptively 

updated based on the line search scheme proposed by 

Nemirovski [57] according to the used SLEP toolbox 

(http://www.yelab.net/software/SLEP). 

 

Then, for the regularization term 
1

 W  in SGP, the 

proximal operator for weighted l1-norm is defined as 

follows [25]:. 

 

 pr( ) [ ( ) max( ( ) , ] ,0)ij ij N Nsgn W abs W    W  (10) 

 

where ( )ijsgn W  and  ijabs W  return the sign and 

absolute value of ijW , respectively. As a result, two 

main steps are involved for solving the proposed SGR 

FCN estimation methods, as given in Table 5. 

 

Experimental setting 

 

To validate the proposed FCN method, we conducted 

experiments on training a classifier for identifying MCI 

from NCs, based on estimated FCNs. Also, we adopted 

the SR and PC methods as a baseline for comparison. 

Since the FCN matrix is symmetric, we used its upper 

triangular elements as input features for classification. 

Unfortunately, in our experiment, each FCN had 116 

nodes, and thus could produce 6,670 features 

(corresponding to 6,670 functional connections between 

116 ROIs). Compared to the sample size (less than two 

hundred), the feature dimension was very high, which 

not only implied expensive computations but would 

also affect the generalization of the proposed methods. 

As pointed out in [18], both the feature selection and 

classifier design have a big influence on accuracy. Thus, 

in this study, we adopted the simplest feature selection 

method (t-test with p value < 0.01) and the most popular 

used SVM classifier [58], since our main focus was 

FCN estimation. In other words, had we not done 

http://www.yelab.net/software/SLEP
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Table 5. Algorithm of SGR-based FCN estimation. 

Input: X //observed data 

Output: W //functional brain network 

Initialize W; 

while not converge  

( );    T
W W W X X LW  

   
1

, ,[ ( ) ( , )] ;0i j i j p pproximal sgn W max abs W


 
   W W  

end 

 

so, it would have been difficult to conclude whether the 

FCN construction methods or the feature selection/ 

classification methods contributed to the ultimate 

performance. 

 

Due to the small sample size, we used the leave one out 

(LOO) cross-validation strategy to assess the 

performance of the methods, in which only one subject 

is left out for testing while the others are used to train the 

models and get the optimal parameters. To choose 

optimal parameters, an inner LOO cross-validation was 

conducted on the training data by grid-search strategy. 

More specifically, for the regularized parameters    and 

 , the candidate values ranged in 
5 4 4 5[2 ,2 , ,2 ,2 ]   ; 

for the hard threshold of PCthreshold, we used 11 sparsity 

levels ranging in [1%,1  0%, ,90%,100%] . For 

example, 90% means that 10% of the weak edges were 

filtered out from the FCN. It should be note that selected 

variables with p-values can be highly complementary to 

other features, improving the classification result. Thus, 

to alleviate this issue, the feature selection approach was 

only applied to the training data. 
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