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INTRODUCTION 
 
Around the world, lung cancer possesses the most 
frequent new cases and deaths among cancers [1]. Lung 
adenocarcinoma (LUAD) accounts for a large portion of 
lung cancer, urgently calling for effective treatment  
[2, 3]. 
 
Cancer-related genes are well-deserved targets for 
understanding and treating cancer, and LUAD is no 
exception. Indeed, almost every revolutionary 
breakthrough in the battle with LUAD could not run 
without findings of cancer-related genes [4–6]. For 
example, cytotoxic chemical therapies chiefly aim at 
genes functioning critically in basic cellular activities, 

and molecular targeted therapies depend principally on 
tumor driver genes, while immune checkpoint genes are 
core targets for immune therapies [6, 7]. Furthermore, 
tumor clinical characteristics are made up of a series of 
biological processes, of which underpinnings attribute 
to gene function [8], that is to say, cancer-related genes 
could also help evaluate tumor clinicopathological 
parameters. However, huge quantities of genes and 
intensive heterogeneity of LUAD both seriously curb 
the way to find these key players [9].  
 
Fortunately, remarkable progress in cancer genomics 
and bioinformatic technology endows us with 
possibilities to crack such hard nut [10]. On the one 
hand, more well-rounded and accurate genomic 
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ABSTRACT 
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regulated DEGs. Then, we investigated genetic and biological assignment of theses DEGs by Bioconductor 
packages and STRING database. We found these DEGs were distributed dispersedly among chromosomes, 
enriched observably in extracellular matrix-related processes, and weighted hierarchically in interaction 
network. Finally, we established DEGs-based statistical models for evaluating TNM stage and survival status of 
LUAD. And these models (logistic regression models for TNM parameter and Cox regression models for survival 
probability) all possessed fine predictive efficacy (C-indexes: T, 0.740; N, 0.687; M, 0.823; overall survival, 0.678; 
progression-free survival, 0.611). In summary, we have successfully established gene expression-based models 
for assessing clinical characteristics of LUAD, which will assist its pathogenesis investigation and clinical 
intervention. 
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profiling becomes easier to obtain [11, 12]. On the other 
hand, systematic and integrated analysis confers more 
rationality on understanding carcinogenesis, for single-
gene investigation seems quite stretched facing such 
complex cancer pathogenesis [12, 13]. In this research, 
we used bioinformatic analysis to establish gene 
expression-based models for evaluating TNM 
parameters of LUAD and predicting its survival 
probability, which could provide insight into malignant 
etiology and handling methods.  
 
RESULTS 
 
Up-regulated and down-regulated DEGs were 
derived from LUAD transcriptome profiling 
 
Cancer-related differentially expressed genes (DEGs) 
are highly correlated with tumor initiation and 
progression, which is quite conductive for evaluating 

clinical characteristics of malignancy. We acquired 
DEGs from three LUAD microarrays (GSE32863, 
GSE43458, GSE10072) using limma package (fold 
change >2 or fold change <0.5, Adjusted P-value <0.05) 
(Figure 1A–1C). Analogously, we used DESeq2 
package to get DEGs of LUAD RNA-sequencing data 
from The Cancer Genome Atlas (TCGA) program (fold 
change >2 or fold change <0.5, Adjusted P-value <0.05) 
(Figure 1D). Then, we applied intersection analysis of 
these results and ultimately obtained 52 upregulated 
genes and 180 downregulated genes (tumor versus 
normal) (Figure 1E, 1F). 
 
Genetic annotation, biological assignment and 
interaction function of DEGs 
 
To further comprehend these DEGs, we focused on 
their elementary hallmarks. First, genetic mapping atlas 
were drawn to show chromosome locations of these 

 

 
 

Figure 1. DEGs of LUAD. (A–C) DEGs acquired from GEO microarrays (GSE32863, GSE43458, GSE10072); (D) DEGs obtained from TCGA 
LUAD RNA-sequencing; (E) intersection of up-regulated DEGs; (F) intersection of down-regulated DEGs. DEGs, differentially expressed genes; 
GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma. 
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DEGs, and these DEGs had a scattered distribution in 
genomes (Figure 2A) (not all genes can be labeled in the 
figure, genomic information of the whole DEGs could 
be seen in Supplementary Table 1). Further, gene 
ontology (GO) analysis and pathway enrichment 
analysis both displayed significant enrichment of these 
DEGs in cell matrix-associated gene assemblies, which 
strongly indicated prominent weight of micro-
environment upon carcinogenesis (Figure 2B, 2C) 
(Supplementary Table 2). Subsequently, we investigated 
interaction between DEGs in STRING database, and 
results suggested these DEGs had hierarchical function 
in malignant progression, demonstrating necessity for 
further filtrating (Figure 2D). 
 
Estimating TNM parameters of LUAD by multiple 
gene analysis 
 
TNM staging, an assessment for tumor growth, lymph 
node invasion and distant metastasis, constitutes 
momentous facets of LUAD clinical features. We tried 
to unearth relationships between DEGs and TNM 

parameters. We first transferred TNM records to two-
category dimension (T: T3-4 for higher risk indicator 
and T1-2 for lower indicator; N: lymph node invasion 
happening or not; M: having distant metastasis or not), 
and normalized corresponding RNA-sequencing data by 
Z score. Then we selected preliminarily 11 T-related 
DEGs, 58 N-related DEGs and 21 M-related DEGs by 
univariate logistic regression analysis respectively 
(P<0.05) (Figure 3A–3C). However, potent interaction 
among these genes indicated confounding factors existed 
(Supplementary Figure 1–3). So we put these primary 
screening genes in multivariate logistic regression 
models, but all showed poor significance, calling for 
further modification (Supplementary Figure 4–6). After 
step regression by Akaike information criterion 
(AIC), we finally built optimized models for TNM 
parameters. As to T parameter, we chose four genes, one 
gene (GPC3) functioned as a protective factor, the 
other three genes (CAV1, LDLR, LIMCH1) functioned 
as hazard factors (C-index, 0.740; R2, 0.173) 
(Figure 3D). The area under the curve (AUC) of T-
related model was 0.740, indicating fine predictive effect 

 

 
 

Figure 2. Chromosome location, biological annotation and interaction function. (A) genetic mapping of up-regulated and down-
regulated DEGs; (B) gene ontology annotation of DEGs; (C) pathway enrichment of DEGs; (D) hierarchy of gene interaction. DEGs, 
differentially expressed genes. 
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Figure 3. Assessing tumor size, lymph node invasion and distant metastasis. (A–C) coef and p value in univariate logistic regression 
analysis for tumor growth (A) lymph node invasion (B) and distant metastasis (C) respectively; (D) coef and 95% CI derived from the 
optimized model for tumor size; (E) ROC curve to show predictive potential of T-related model; (F) coef and 95% CI of the improved model for 
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lymph node invasion; (G) ROC curve to exhibiting predictive efficacy of N parameter; (H) coef and 95% CI of the optimized model for distant 
metastasis; (I) ROC curve to exhibiting efficacy of M prediction; (J) Nomograph to assess T risk probability and corresponding calibration 
curve; (K) Nomograph to estimate lymph node invasion hazard and examination of efficacy; (L) Nomograph to assess distant metastasis risk 
and calibration curve showing model’s predictive potential. coef, coefficient; DEGs, differentially expressed genes; CI, confidence interval; 
ROC, receiver operating characteristic. 
 

(Figure 3E). In the improved model for lymph node 
invasion, we got five genes where three genes (CYP4B1, 
NDNF, SMAD6) showed protective efficacy, and two 
genes (EMP1, GPRC5A) presented risk function (C-index, 
0.687; R2, 0.170) (Figure 3F). Similarly, the optimized  
N-related model possessed fine predictive potency (AUC, 
0.687) (Figure 3G). For model predicting distant meta-
stasis, or named hematogenous metastasis, we ultimately 
obtained six genes, one (HOXA5) showed protective 
ability, five (CD36, HEY1, LIMCH1, TBX3, TYMS) 
exhibited hazardous effect (Figure 3H) (C-index, 0.823; 
R2, 0.308). The optimized model of M parameter also had 
high consistency with reality (AUC, 0.823) (Figure 3I). 
Additionally, we plotted nomograph to predict risk 
probability of tumor growth, and calibration curve proved 
reasonable efficacy (Figure 3J). Analogously, lymph node 
invasion risk probability was presented, and the model was 

in good agreement with actual situation (Figure 3K). 
Furthermore, risk probability for distant metastasis also 
demonstrated fine predictive efficacy (Figure 3L). 
 
Establishing gene-based model for predicting overall 
survival probability of LUAD 
 
Overall survival (OS) time is a momentous indicator for 
cancer prognosis. We tried to establish a gene 
expression model to predict OS probability in LUAD. 
We tentatively acquired 15 up-regulated genes and 34 
down-regulated genes by log-rank analysis (P<0.05) 
(Supplementary Figure 7). Noticeably, univariate 
survival analysis of single gene is susceptible to be 
confounded, the correlation analysis showed signs 
(Figure 4A). So we applied multivariate analysis of all 
these genes by Cox proportional hazard regression, 

 

 
 

Figure 4. Predicting OS probability of LUAD. (A) Heatmap to exhibit correlation of genes; (B) coef and p value of genes in the optimized 
Cox proportional hazards regression model; (C) Residual plots to test proportional hazard assumption; (D) K-M curve exhibiting cumulative OS 
probability based on mean covariables; (E) Nomograph for predicting one-year and five-year OS probability; (F) Examining predicting efficacy 
of one year OS probability; (G) Examining predicting efficacy of five year OS probability. Corr, correlation coefficient; OS, overall survival; 
DEGs, differentially expressed genes; coef, coefficient; K-M, Kaplan-Meier. 
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however, little significance reappeared (Supplementary 
Figure 8). We optimized the model by stepwise 
regression. Finally, ten genes were contained, three had 
protective efficacy (CA4, MFAP4, TOP2A), seven 
possessed hazardous potential (FBLN5, EMCN, ASPM, 
HOXA5, GOLM1, SLC2A1, TYMS) (C-index, 0.678; 
R2,0.149) (Figure 4B). Proportional hazards 
examination meets the premise condition (Figure 4C). 
Meanwhile, Kaplan-Meier (K-M) curve was utilized to 
exhibit cumulative survival probability based on means 
of concomitant variables (Figure 4D). Later, we used 
the model to predict one-year and five-year OS 
probability of LUAD (Figure 4E). And calibration curve 
proved fine predictive potency (Figure 4F, 4G). 
 
Reflecting progression-free survival probability of 
LUAD via multivariate analysis 
 
As recurrence is an important indicator of worsening, 
progression-free survival (PFS) time functions as a 
crucial reference for clinical intervention. We screened 
out several related DEGs to reflect PFS probability of 

LUAD. At first, we found 9 up-regulated genes and 20 
down-regulated genes by log-rank test (P<0.05) 
(Supplementary Figure 9). And confounding effect still 
existed (Figure 5A). We then included all these genes in 
a multivariate Cox proportional hazard regression 
model, but none genes showed significance 
(Supplementary Figure 10). So, optimization was done 
by stepwise regression. At last, we chose three genes 
(IGF2BP3, SLC2A1, GOLM1), which were all 
regarded as hazardous factors (C-index, 0.611; R2, 
0.063) (Figure 5B). And the model abided by 
proportional hazards hypothesis well (Figure 5C). 
Further, we showed cumulative survival probability 
based on average scores of these genes (Figure 5D). 
Later, we presented nomograph to show one-year and 
five-year PFS probability (Figure 5E). And predictive 
efficacy of this model was good (Figure 5F, 5G). 
 
DISCUSSION 
 
Disorder of signaling network caused by aberrant genes 
triggers malignant transformation and progression, 

 

 
 

Figure 5. Estimating PFS probability of LUAD. (A) Heatmap of gene correlation; (B) coef and p value of genes in the improved Cox 
proportional hazards regression model; (C) Residual plots to examine proportional hazard hypothesis; (D) K-M curve exhibiting cumulative 
PFS probability based on average covariables; (E) Nomograph for estimating one-year and five-year PFS probability; (F) Examining predictive 
ability of one year PFS probability; (G) Examining predictive ability of five year PFS probability. Corr, correlation coefficient; PFS, progression-
free survival; DEGs, differentially expressed genes; coef, coefficient; K-M, Kaplan-Meier. 
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which provides theoretical basis for acquiring 
association between genes and clinical characteristics of 
tumor [13, 14]. We used gene expression data to 
establish models reflecting tumor growth risk, 
metastasis hazard, and survival probability of LUAD, 
which will avail clinical intervention and provide 
insight for understanding pathogenesis. 
 
As we all know, findings of tumor driver genes facilitate 
revolutionary advances in therapeutic handling of cancer. 
However, core genes predominating carcinogenesis are 
difficult to dig out. Cancer-related genes probably present 
different expression in cancerous tissue compared to 
normal tissue. The good news is that filtrating DEGs 
from tens thousands of genes becomes convenient, with 
transcriptomic and bioinformatic technology developing 
rapidly [12]. We first derived DEGs of LUAD from four 
datasets (Figure 1). Next, we investigated genetic 
assignment, biological enrichment and interaction 
function of these DEGs (Figure 2). We found these  
genes have not concentrated on several specific 
chromosomes and presented dispersive distribution. 
Pathway enrichments highlighted importance of 
microenvironments, which were tightly related to almost 
all malignant hallmarks of lung cancer [15]. Furthermore, 
result of gene interaction showed hierarchy, suggesting 
further digging for dominant genes was imperative.  
 
It goes without saying that tumor growth and metastasis 
constitute central aspects of cancer biological 
characters. Tumor TNM staging remains canonical 
criterion for clinical evaluation and intervention [8, 16]. 
At present, TNM staging is mainly based on surgical 
exploration and imaging examination, which both could 
have invasive effect. However, gene expression data, 
acquired handily by current genomic technology, could 
great help to evaluate TNM parameters by appropriate 
statistical models. Therefore, we tried to establish 
correlations between TNM scores and genes by logistic 
regression analysis in LUAD. And optimized models 
showed fine potential to assess TNM parameters 
(Figure 3). Noticeably, survival status is regarded as an 
ultimate indicator for prognosis. OS and PFS both 
occupy crucial parts in tumor investigation and handling 
strategies. We utilized multivariate Cox proportional 
hazards regression models to predict OS and PFS based 
on gene expression data. Both models had reasonable 
predictive efficacy (Figures 4, 5). 
 
Of course, limitations of our research still exist. First, 
sample size remains not adequate enough as to great 
heterogeneity of LUAD, which could inevitably cause 
confounding effect, that is why our R2 scores seemed 
not very perfect. Second, post-transcriptional regulation, 
post-translational modification and non-coding RNAs 
all contribute weightily to carcinogenesis, whereupon 

transcriptomic profile of only protein coding content 
seems not comprehensive enough to read cancer  
[17–19]. Third, the structure of gene-encoded products 
significantly affects the function of genes, which in turn 
affects the regulation of genes on important biological 
activities, such as DNA replication [20, 21], cell 
migration [22, 23], and etc., while nanomedicine based 
on molecular structure also plays an increasingly 
important role in cancer prevention and treatment  
[24–26]. Therefore, the clinical prediction based on 
gene expression alone, without gene structure, may not 
be extremely thorough and thoughtful. At last, gene 
expression profiling was derived from tissues, which 
could cause more damage compared to emerging liquid 
biopsies, predictive models based of which will bring 
much blessedness in the battle against cancer [27, 28].  
 
In summary, we established gene expression-based 
models for evaluating clinical features of LUAD via 
integrative analysis, which will assist diagnosis and 
treatment of LUAD as well as enlightening 
investigation of cancer pathogenesis. 
 
MATERIALS AND METHODS 
 
Transcriptomic and clinical data  
 
LUAD microarrays reflecting transcriptome profiling in 
tumor tissue and normal tissue were obtained from 
Gene Expression Omnibus (GEO) database (GSE32863, 
58 tumor tissues versus 58 normal tissues; GSE43458, 
80 tumor tissues versus 30 normal tissues; GSE10072, 
58 tumor tissues versus 49 normal tissues) [29–31]; 
LUAD RNA-sequencing data and corresponding 
clinicopathologic annotation were derived from TCGA 
program, where 58 tumors and 58 normal tissues were 
applied for screening out DEGs, 402 samples containing 
availably prognostic records for survival analysis and 
371 samples possessing complete TNM scorings for 
risk analysis respectively [32, 33].  
 
Genetic mapping, enrichment analysis and 
interaction investigation 
 
BiomaRt, org.Hs.eg.db and RCircos packages were 
applied to annotate and map genetic information of 
genes [34–36]. And GO analysis was used to describe 
molecular function, cellular component, and biological 
process via clusterProfiler package [37]. Subsequently, 
clusterProfiler and ReactomePA packages were 
employed for pathway enrichment analysis based on 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Reactome database [37, 38]. Then STRING 
database was utilized for investigating gene interaction 
[39]. Adjusted P-value <0.05 was considered statistically 
significant.  
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Statistical methods  
 
DEGs derived from different transcriptome data were 
acquired by suitable methods respectively (Adjusted P-
value <0.05, fold change >2 or <0.5). That is, limma 
package was used for microarrays, and DESeq2 
package was applied for RNA-sequencing [40, 41]. 
Univariate and multivariate logistic regression model 
were used to handle two-category data. K-M curve was 
utilized to establish cumulative survival probability. 
The survival impact of single gene was estimated by 
log-rank test, while the Cox proportional hazards 
regression model was applied for multivariable analysis. 
Proportional hazards assumption in Cox regression was 
assessed by Schoenfeld residual tests. Pearson 
correlation analysis was used to investigate correlation. 
AIC was used to select and optimize models. 
Likelihood ratio test, Wald test, scoring test were 
applied for statistical hypothesis testing. P<0.05 was 
considered significant. All related arithmetic functions 
were practiced in R language [42]. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 
 

 
 

Supplementary Figure. (S1) (S2) (S3) correlation analysis for preliminarily filtrated DEGs for T (S1), N (S2), and M (S3) parameters 
respectively; (S4) (S5) (S6) coef and 95% CI of the preliminary multivariate logistic regression models of T (S4), N (S5), and M (S6) parameters 
respectively; (S7) screened OS-related DEGs by log-rank test (P<0.05 was considered as significance); (S8) coef and p value of OS-related 
genes in the preliminary Cox proportional hazards regression model; (S9) sifted PFS-related DEGs by log-rank test (P<0.05 was regarded as 
significance); (S10) coef and p value of PFS-related genes in the initial Cox proportional hazards regression model DEGs, differentially 
expressed genes; coef, coefficient; Corr, correlation coefficient; CI, confidence interval; OS, overall survival; PFS, progression-free survival. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1, 2. 
 
Supplementary Table 1. Genomic information of DEGs selected from comparison of tumor vs. normal tissues. 

 
Supplementary Table 2. Results of GO analysis and pathway enrichment analysis of DEGs. 


