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INTRODUCTION 
 

Lung cancer is the most common type of cancer 

worldwide, exhibiting a five-year survival rate of less 

than 15% [2]. In China, an estimated 733,300 incident 

cases and 610,200 deaths occurred in China in 2015 [1]. 

Non-small cell lung cancer (NSCLC) - a heterogeneous 

condition [5] consisting mainly of lung adenocarcinoma 

(LUAD) and lung squamous cell carcinoma (LUSC) 

subtypes - accounts for the majority (85%) of lung 

cancer cases [3]. Despite recognition of tobacco smoke 

as  the  major  causative agent of lung cancer  [4],  exact 

 

pathogenic mechanisms remain unclear. Thus, 

identification of effective NSCLC prognostic bio-

markers is urgently required. 

 

Previously-identified NSCLC prognostic biomarker 

candidates include various messenger RNAs (mRNAs), 

microRNAs (miRNAs), long non-coding RNAs 

(lncRNAs), and certain genes. For example, a study of 

154 NSCLC patients reports that miRNA-26b 

represents both a diagnostic and a prognostic indicator 

[9]. Similarly, certain lncRNAs are associated with 

NSCLC tumor size, differentiation, lymph node 
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ABSTRACT 
 

The value of combining multiple candidate genes into a panel to improve biomarker performance is increasingly 
emphasized. Genes associated with WNT signaling are widely-reported to provide prognostic signatures in non-
small cell carcinoma (NSCLC). Screening of genes involved in this signaling pathway facilitated selection of an 
optimal candidate biomarker gene combination and development of an NSCLC prognostic model based on 
expression of these genes. Risk scores derived from the model performed well in predicting survival; in the 
training dataset, samples achieving a high risk score exhibit a shorter survival interval (median survival time 
34.8 months, 95% CI 31.1-41.0) than did samples achieving a low risk score (median survival time 72.0 months, 
95% CI 59.3-87.5, p=2e-11), and exhibited higher oncogene and lower tumor suppressor gene expression. 
Receiver-operator characteristic curves based on three-year survival demonstrate that the model outperformed 
clinical prognostic indicators. In addition, the model was validated in four independent cohorts, demonstrating 
robust NSCLC prognostic value. Correlation analyses reveal that the model offers efficacy independent of other 
clinical indicators. Gene Set Enrichment Analysis (GSEA) reveals that the model reflects variable tissue 
functional states relevant to NSCLC biology. In summary, the signature model shows potential as a valuable and 
robust NSCLC prognostic indicator. 
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metastasis, and poor prognosis [10]. Regarding protein-

coding genes, tissue MYC Proto-Oncogene (MYC) 

expression correlates significantly with Programmed 

Cell Death 1 (PDCD1) expression, and predicts NSCLC 

patient survival [6]. According to a retrospective study 

of 218 NSCLC patients, dysregulated Olfactomedin 4 

(OLFM4) expression correlates significantly with 

decreased overall and disease-specific survival (DSS) 

[7]. Similarly, high-Mobility Group AT hook 2 

(HMGA2) correlates with clinical features, lymph node 

metastasis, and poorer overall survival (OS) [8]. 

 

Because genes belonging to a common signaling 

pathway have complementary functions, integrating 

information regarding expression of multiple genes 

effectively decreases the impact of NSCLC genetic 

heterogeneity on prognostication. The Wnt/β-catenin 

signaling pathway is implicated in regulating NSCLC 

progression, thus influencing prognosis [11]. 

Additionally, it has been demonstrated that genes 

involved in regulating WNT signaling also have 

NSCLC prognostic value. For example, up-regulated 

expression of HIF-2α-dependent lncRNA NEAT1 

activates WNT signaling, thereby promoting NSCLC 

progression [12]. Similarly, Forkhead Box Protein P3 

(encoded by FOXP3) also activates WNT signaling, 

facilitating proliferation and metastasis of NSCLC [13]. 

A similar function has been reported for Telomere-

Associated Protein RIF1 (encoded by RIF1) [14]. 

 

However, clinical utility of the above biomarker 

candidates remains limited, owing to NSCLC molecular 

heterogeneity and relatively small study sample sizes, 

resulting in relatively low biomarker robustness. It is 

likely that a multi-gene biomarker panel focused on 

WNT signaling will outperform any single biomarker in 

accurately predicting NSCLC prognosis. The present 

study accessed data from five multi-center clinical 

cohorts to identify NSCLC prognostic biomarker 

candidates, and evaluated performance of the resulting 

multi-gene model. 

 

RESULTS 
 

Candidate gene screening and model development 

 

Transcriptomic and clinical data from five independent 

primary NSCLC cohorts were retrieved from public 

databases, including The Cancer Genome Atlas 

(TCGA) and the Gene Expression Omnibus (GEO). 

Different cohorts employed different gene expression 

assay platforms. The largest of these cohorts (the 

training cohort) – deriving from TCGA - was used to 

identify candidate prognostic biomarker genes and 

develop a prognostic model based on their expression 

level. 

Briefly, signaling pathway gene member expression 

was evaluated for significant correlation (p < 0.01) with 

overall survival (OS). Panels of 2-7 combined candidate 

genes were used to generate prognostic models, 

producing risk scores predictively stratifying training 

cohort samples into high- and low-risk groups (risk 

score and survival data are detailed in Supplementary 

Table 1). Model prognostic performance was evaluated 

by calculating significance (p < 0.05) of survival 

difference between risk score-predicted high- and low-

risk groups, retaining the best-performing prognostic 

model for survival prediction. 

 

The best-performing panel consisted of seven genes 

belonging to the WNT signaling pathway: SFRP1, 

CSNK1E, CAMK2A, CCND2, FOSL1, PPP2R1A,  

and PPARD (Table 1). Expression of these seven  

genes exhibited differential regulation in cancerous  

as compared to paired non-cancerous tissue 

(Supplementary Figure 1). Based on the model  

(Table 2), risk score was calculated as (0.04289*SFRP1) 

+ (0.08538*CSNK1E) + (0.05043*CAMK2A) +  

(-0.12109*CCND2) + (0.09305*FOSL1) + (0.23973* 

PPP2R1A) + (0.04935*PPARD). Positive values 

indicate that high expression of those genes predict 

poorer survival, while negative values indicate that high 

expression of those genes predict improved survival. 

 

Performance of the WNT pathway gene prognostic 

model in the training cohort 
 

As expected, OS interval was significantly lower in  

the high-risk group (median survival 34.8 months, 95% 

CI 31.1-41.0) than in the low-risk group (median 

survival 72.0 months, 95% CI 59.3-87.5) (p = 2e-11) 

(Figure 1A). In addition, consistent with these results, 

DSS and progression-free survival (PFS) interval 

differences between high- and low-risk groups indicated 

that risk score correlated significantly with both (p = 1e-

12 and p = 3e-11, respectively) (Figure 1B, 1C). 

Metadata demonstrated that high-risk samples are 

characterized by earlier incidence, higher oncogene 

expression, and lower tumor suppressor gene expression 

(Figure 1D). 

 

Risk score performance was further evaluated - relative 

to performance of demographic and clinical indicators 

using receiver-operator characteristic (ROC) curves 

based on three-year survival. The area under the curve 

(AUC) for risk score, age, gender, tumor size, and stage 

was 0.6698, 0.5173, 0.5078, 0.5058, and 0.6757, 

respectively, indicating that stage and risk score 

outperformed the other indicators in discriminating 

prognosis. Since p-values for genes PPARD, CAMK2A, 

and CSNK1E exceed 0.05 (Table 1) when applying Cox 

multivariate regression, a model incorporating only 
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Table 1. Model gene coefficients as assessed by Cox multivariate  
regression, where b-value represents coefficient of the model. 

Genes HR 95%CI p-value b-value 

PPARD 1.05  0.88~1.26  0.59  0.05  

PPP2R1A 1.27  1.02~1.59  0.03  0.24  

FOSL1 1.10  1.04~1.16  0.00  0.09  

CCND2 0.89  0.83~0.95  0.00  -0.12  

CAMK2A 1.05  0.97~1.14  0.21  0.05  

CSNK1E 1.09  0.91~1.31  0.36  0.09  

SFRP1 1.04  1.00~1.08  0.03  0.04  

 

Table 2. Prognostic performance of gene combinations. 

Combination pvalue 

SFRP1,CSNK1E,CAMK2A,CCND2,FOSL1,PPP2R1A,PPARD 1.04E-11 

UBE2G1,CDC20,WWP1,TRIM32,HERC4,UBE2C 0.006474 

SERPINB5,RRM2,CHEK1,SERPINE1,THBS1 0.007014 

MAD2L1,HSP90AA1,CCNA2,BUB1,CDC25C,CCNB2,CCNB1 0.007968 

GRIA1,NTSR1,VIPR1 0.00961 

CDC20,WWP1,TRIP12 0.00962 

AK2,CANT1,PDE6B,GUCY1A3,RRM2,ENTPD3 0.009938 

 

 
 

Figure 1. Model prognostic performance in the training cohort. Overall (A), disease-free (B), and progression-free (C) survival 
intervals were compared between risk score-predicted high- and low-risk groups. Detailed survival, risk score, and gene expression pattern 
data are shown (D). The heatmap shows scaled relative gene expression values for each sample. Area under the receiver-operator 
characteristic (AUROC) curve for clinical indicator- and risk score-based survival prediction is shown (E). 
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Figure 2. Survival interval between risk score-predicted high- and low-risk groups (upper panel) was compared in independent cohorts 
GSE30219 (A), GSE4127 (B), GSE42127 (C), and GSE50081 (D). Detailed survival, risk score, and gene expression pattern data are shown 
(lower panel). 
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the remaining four (significantly associated) genes was 

also constructed. However, since this resulted in a 

significant survival difference between high- and low-

risk groups in only one out of five cohorts 

(Supplementary Figure 2) the other three genes do 

appear to contribute to NSCLC prognosis and the full 

seven-gene model was retained. 

 

Within the training cohort, 28 patients exhibited distant 

metastasis, a clinically important indicator of the extent 

of NSCLC progression. Although risk scores of the 

metastasis-positive group trended higher than those of 

the metastasis-negative group, differences were not 

statistically significant (p = 0.1, data not shown). 

 

Collectively, these results indicate that the WNT 

signaling gene expression-based model is effective in 

predicting NSCLC survival. 

 

Validation of risk score performance using 

independent cohorts 

 

In all independent cohorts, survival intervals are 

significantly lower in the high-risk group (p = 0.004, 

 

 
 

Figure 3. Within-subgroup prognostic value of the risk score, for radiotherapy-treated and –untreated (A) samples, as well as for samples 
stratified by stage (B). 
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4.9e-5, 0.0063, and 0.0092, respectively) (Figure 2A–

2D). Consistent with this observation, gene expression 

and survival patterns of the independent cohorts 

resemble those of the training cohort. 

 

Collectively, these results indicate that the WNT 

signaling gene expression-based model is robust, 

performing reproducibly across independent NSCLC 

cohorts and gene expression platforms. 

 

Risk score characterization 
 

Firstly, risk score was analyzed for correlation with 

existing clinical indicators (variables), and risk score is 

not significantly associated with age, tumor size, or 

pathological stage (Figure 3A). Furthermore, Cox 

multivariate regression was implemented using risk 

score as well as clinical indicators (Figure 3B). Results 

suggest that risk score has value independent from 

clinical indicators in predicting NSCLC clinical 

outcome. 

 

Model bias estimation within subgroups 

 

Radiotherapy is one the most important adjuvant 

therapies offered to NSCLC patients. Thus, samples 

were divided into radiotherapy-treated and –untreated 

subgroups for within-subgroup evaluation of risk score 

 

 
 

Figure 4. Comparison of the prognostic value of risk score relative to other clinical indicators. Risk score is independent of other 
clinical indicators (A) and is significantly associated with OS as assessed by Cox multivariate regression (B). 
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performance. Consistent with abovementioned results, 

both high-risk groups exhibited longer survival intervals 

in the training cohort, relative to the low-risk groups 

(Figure 4A). Similarly, analyzing samples subdivided 

according to stage (Figure 4B) or LUAD versus LUSC 

subtype (Figure 4C) demonstrated no model bias in 

predicting prognosis. 

 

Results indicate that risk score performs favorably and 

is independent of existing clinical indicators, at least 

one treatment modality, and clinical as well as 

pathological disease subtypes. 

 

Risk score reflects biological significance of gene 

expression patterns 

 

Gene Set Enrichment Analysis (GSEA) was used to 

investigate high- and low-risk group transcriptomic 

data biological meaning, and results were visualized 

using the Cytoscape plugin EnrichmentMap.  

Enriched biological cassettes include up-regulation of 

cancer-promoting pathways, and down-regulation of 

cancer- suppressing pathways (Figure 5). Results 

indicate that the gene expression-based risk score 

reflects the biological status of pathways underlying 

NSCLC. 

DISCUSSION 
 

Relevance of WNT signaling pathway functions has 

been widely emphasized for various cancers [11, 15, 

16], including NSCLC. However, due to genetic and 

environmental heterogeneity [17–19] at all biological 

levels, even within the same tumor, it is anticipated 

that integrating information from multiple genes 

belonging to the WNT signaling pathway may 

significantly improve prognostication. The present 

study identifies an optimized panel of candidate 

biomarkers consisting of genes belonging to the  

WNT signaling pathway, and develops and evaluates  

a prognostic model based on expression of these 

genes. 

 

The model incorporates seven genes: SFRP1, 

CSNK1E, CAMK2A, CCND2, FOSL1, PPP2R1A, and 

PPARD. Many of these likely play roles in cancer 

progression. For example, SFRP1 is known to inhibit 

Epithelial to Mesenchymal Transition (EMT) [20] in 

NSCLC cell lines, and has previously been suggested 

as a potential biomarker for NSCLC [21]. The 

prognostic role of CCND2 has been frequently 

reported in many cancer types [22], though effects are 

context specific. For example, it acts as a tumor 

 

 
 

Figure 5. Enriched biological pathways associated with the risk score. 
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suppressor gene in NSCLC, while acting as an 

oncogene in gastric, bladder, and breast cancers. 

Functions of the remaining genes - including CSNK1E 
[23], FOSL1 [24], PPP2R1A [25], and PPARD [26] – 

are widely reported as being relevant to cancer (if not 

specifically NSCLC) biology. 

 

MATERIALS AND METHODS 
 

Sample enrollment and data processing 
 

Primary NSCLC transcriptomic and clinical metadata 

from five independent cohorts - deriving from multiple 

centers employing different gene expression assay 

platforms - were retrieved from the GEO (Gene 

Expression Ominous) and TCGA (The Cancer Genome 

Atlas) public databases, requiring no additional 

informed consent or ethical approval. 

 

Raw transcript counts downloaded from GEO were log2 

transformed and normalized as described below. Detailed 

assay platform, sample number, tumor type, country, and 

normalization method data are shown in Supplementary 

Table 6. Raw transcript counts for the TCGA cohort were 

downloaded using the University of California Santa 

Cruz (UCSC) Xena tool (https://xena.ucsc.edu/) and log2 

transformed after 1% minimum value imputation. Only 

samples associated with complete survival information 

were included, with such clinical metadata consisting of 

three types of carefully curated survival endpoints: OS 

(overall survival), DSS (disease-specific survival, PFS 

(progression-free survival). 

 

Candidate gene screening and prognostic model 

development and evaluation 

 

Due to its large sample size, the TCGA cohort was used 

as the training cohort to identify candidate prognostic 

biomarker genes. 

 

Over 170 human signaling pathways were downloaded 

from the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database (https://www.kegg.jp/) in order to 

generate lists of each pathway’s member genes. 

Correlation between OS and gene expression was 

evaluated using Cox univariate regression analyses (as 

described below). Genes with a p-value of less than 

0.01 were deemed significantly associated with OS and 

were retained as candidate prognostic biomarkers for 

downstream analysis. 

 

For each pathway, a matrix of all possible remaining 

member gene combinations was generated. Although 

some pathways retained over 40 member genes 

significantly associated with OS, subsequent 

combinatorial evaluation of panel performance was 

restricted to 2-7 genes per combination, in order to 

remain within available computational resource 

constraints, as well as to facilitate eventual clinical 

utility. Multivariate Cox regression analysis was 

implemented for each panel, and risk score models were 

developed based on linear formula coefficients in 

combination with gene expression values. Risk score 

provided by a model was defined as 
1

,
n

i ii
b x


  where 

bi is the coefficient of gene x and xi is the expression 

value of that gene. In each case, training cohort samples 

were divided into high- and low-risk groups using 

median risk score as the threshold value. The 

performance of each model was then evaluated by 

determining significance of survival difference 

(incorporating all three survival metrics) between risk 

score-predicted high- and low-risk groups. The best-

performing model was retained. 

 

Risk score performance was further evaluated relative 

to performance of demographic and clinical indicators 

(age, gender, primary tumor size represented by tumor 

diameter, and pathological stage) using receiving 

operating characteristic ROC curves based on three-year 

survival. Finally, risk score performance was evaluated 

with respect to training cohort subgroups. The training 

cohort was divided into metastasis-negative and -

positive subgroups, and between-group risk score 

predictive performance was compared. 

 

Since the predictive model was derived from the 

training cohort, favorable risk score performance is 

expected in this cohort. Thus, model robustness was 

validated using four independent GEO cohorts: 

GSE30219, GSE4127, GSE42127 and GSE50081. As 

described for the training cohort, gene expression values 

and coefficients were adapted to generate a risk score 

for each sample (Supplementary Tables 2–5), median 

risk score was used as the threshold value 

discriminating high- and low-risk groups, and model 

performance was evaluated by significance of survival 

difference between groups. Additionally, risk score was 

analyzed for correlation with existing clinical indicators 

(variables), first binarizing each variable using 

subjective cut-off values. Age was divided into younger 

(< 60 years) and older (≥ 60 years) groups, primary 

tumor size was divided into small (< 1 cm diameter) and 

large (≥ 1 cm diameter) groups, and pathological stage 

was divided into early (stage 1-2) and late (stage 3-4) 

groups. Finally, risk score performance was evaluated 

with respect to clinically-relevant independent cohort 

subgroups, as described for training cohort metastasis-

positive versus –negative groups. Here, subgroups 

included samples deriving from radiotherapy-treated 

and –untreated patients, samples stratified by stage, and 

samples stratified by LUAD versus LUSC subtype. 

https://xena.ucsc.edu/
https://www.kegg.jp/
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Lastly, Gene Set Enrichment Analysis (GSEA) was used 

to investigate high- and low-risk group transcriptomic 

data biological meaning, and results were visualized 

using the Cytoscape plugin EnrichmentMap. 

 

Analytical software and statistics 

 

All analyses were performed using the R Project for 

Statistical Computing (https://www.r-project.org). R 

package “affy” was used for raw data processing and 

normalization. R function combn() was used to generate 

matrices of all possible combinations of genes within a 

pathway. R packages “survival” and “pROC” [27] were 

used for survival and ROC analyses, respectively. 

Heatmap was generated using R package“pheatmap”. 

Survival differences between risk score-predicted high- 

and low-risk groups were assessed using Student’s t-

test, with a significance threshold of p < 0.05. Gene Set 

Enrichment Analyses was performed with GSEA java 

software [28], and visualized with Cytoscape [29] 

plugin EnrichmentMap [30]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Gene expression values of candidate genes in tumor and normal tissues. 
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Supplementary Figure 2. Model performance of a four gene model. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–5. 

 

Supplementary Table 1–5. Detailed information of gene expression survival and risk score for TCGA, GSE30219, GSE4127, 

GSE42127 and GSE50081 shown in Supplementary Table 1-5. 

 

Supplementary Table 6. Detailed information for datasets, platform and processing steps. 

Name Platform SampleNumber Country DiseaseType Normalization 

TCGA IlluminaHiSeq 987 Mostly US LUSC+LUAD Log2Counts 

GSE30219 AffyU133P2 167 France LUSC+LUAD+LULN RMA 

GSE41271 IlluminaHumanWG-6v3 264 US LUSC+LUAD Quantile 

GSE42127 IlluminaHumanWG-6 v3.0 176 US LUSC+LUAD Quantile 

GSE50081 AffyU133P2 172 Canada LUSC+LUAD RMA 

 


