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INTRODUCTION 
 
Perioperative neurocognitive dysfunction (PND) refers to 
alterations in cognitive function before and/or after 
surgery, which are clinically manifested by abnormalities 
of learning, memory, language, thinking, spirit, and 
emotions [1]. Postoperative delirium (POD) and 
postoperative cognitive dysfunction (POCD) are now 
included in PND. PND has a higher incidence in 
elderly patients, which causes longer hospitalization, 
higher costs, a higher social burden, and even 
mortality.  Factors that induce PND are capable of exa- 

 

cerbating the pathological changes in several 
neurodegenerative diseases, such as Alzheimer’s 
disease [2]. Although the reported incidence of POD 
and POCD varies widely, depending on the definition, 
test methods, and time points of evaluation, the 
incidence of cognitive dysfunction was up to 26% at 1 
week after non-cardiac surgery, decreasing to 10% 
after 3 months [3]. 
 
The human host is a natural habitat for symbiotic 
microorganisms, including bacteria, fungi, and viruses. 
The number of microorganisms in the gut is about 1013-
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ABSTRACT 
 
With the aging of the world population, and improvements in medical and health technologies, there are 
increasing numbers of elderly patients undergoing anaesthesia and surgery. Perioperative neurocognitive 
dysfunction has gradually attracted increasing attention from academics. Very recently, 6 well-known journals 
jointly recommended that the term perioperative neurocognitive dysfunction (defined according to the Diagnostic 
and Statistical Manual of Mental Disorders, fifth edition) should be adopted to improve the quality and 
consistency of academic communications. Perioperative neurocognitive dysfunction currently includes 
preoperatively diagnosed cognitive decline, postoperative delirium, delayed neurocognitive recovery, and 
postoperative cognitive dysfunction. Increasing evidence shows that the gut microbiota plays a pivotal role in 
neuropsychiatric diseases, and in central nervous system functions via the microbiota-gut-brain axis. We recently 
reported that abnormalities in the composition of the gut microbiota might underlie the mechanisms of 
postoperative cognitive dysfunction and postoperative delirium, suggesting a critical role for the gut microbiota in 
perioperative neurocognitive dysfunction. This article therefore reviewed recent findings on the linkage between 
the gut microbiota and the underlying mechanisms of perioperative neurocognitive dysfunction. 
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1014, and the total number of genes is approximately 10 
times that of somatic cells [4]. The gut microbiota is a 
complex microbial system that exists in the human 
gastrointestinal tract and differs between individuals. It is 
involved in the regulation of multiple metabolic 
pathways, signal transduction, and immune inflammatory 
axes in the host [5, 6]. These axes are physiologically 
connected to the intestines, liver, muscles and brain [7]. 
The composition and activity of the gut microbiota are 
closely related to the host from the time of birth, and are 
subject to complex interactions over time, depending on 
the genome, nutrition, and lifestyle of the host. Imbalance 
in the gut microbiota affects human biochemistry, genetic 
personality, and disease resistance.  
 
The microbial profile of the human gut at 1 year old 
might predict cognitive functions (especially in terms of 
communicative behaviours) at the age of 2 years, and 
may correlate with developmental disorders characterized 
by cognitive or linguistic delays [8]. Bacteria are rapidly 
implanted in the gut and continue to evolve and mature 
in childhood and adolescence; the brain is also at a 
critical stage of development, with implications for 
physical and mental health. Disrupting the host-
microbiota symbiosis during these periods increases the 
risk of neurodevelopmental disorders, and is more 
susceptible to environmental factors, such as antibiotic 
use, stress, poor diet, and infection. Although the body 
and brain have matured during middle and old age, 
chronic progressive inflammatory response, drug use, 
degradation of digestion and gastrointestinal motility, 
malabsorption of nutrients, and impaired immunity 
during ageing will gradually reduce the diversity and 
stability of the microbiota. At the same time, aging is 
accompanied by a decrease in brain weight and cognitive 
function. Senescence-related changes in brain 
morphology are often seen in a variety of cognitive 
disorders associated with ageing, such as Alzheimer’s 
disease [9].  
 
Given the prominent role of the gut microbiota in cognitive 
dysfunction, this review systematically summarizes recent 
findings regarding the relationship between the gut 
microbiota and PND. 
 
CONCLUSIONS 
 
Perioperative medicine is increasingly regarded as a 
multidisciplinary field, and the occurrence of PND is 
also multifactorial. On the premise of the pathogenesis 
of PND, surgeons, anesthesiologists and nursing 
physicians are also constantly changing the manage-
ment model for elderly patients. The findings of the 
interconnection between gut microbiota and PND, in 
prevention or treatment, is an important breakthrough. 
Although how gut microbiota plays a role in regulating 

PND through the brain-gut axis and how PND-related 
mechanisms and factors affecting gut microbiota have 
not been determined, gut microbiota is a promising 
viewpoint based on the pivotal role of gut microbiota 
in other cognitive disorders. Moreover, faecal 
microbiota transplantation (FMT) has also aroused 
widespread concerns in recent years, and its 
indications, methods, efficacy, safety, and ethics are 
also continually being explored and improved. Mature 
FMT technology will also facilitate the clinical 
application for diseases treatment. The application of 
gut microbiota for the prevention and treatment of 
PND needs further exploration. 
 
MATERIALS AND METHODS 
 
PubMed was searched up to February 10, 2020 using the 
following keywords string: ‘cognitive dysfunction OR 
cognitive disorder’ AND ‘brain-gut axis’; ‘perioperative 
neurocognitive dysfunction OR postoperative delirium 
OR postoperative cognitive dysfunction’ AND ‘gut 
microbiota OR probiotics’; ‘cognitive dysfunction OR 
cognitive disorder’ AND ‘gut microbiota OR probiotics’. 
Relevant references were also retrieved for further 
analysis. From the published literature, we identified the 
themes that form the outline of our review. We selected 
the articles for inclusion based on a combination of the 
strength of evidence and the publication time in recent 10 
years. Criteria for selection of papers were mostly 
depended on the influences of the papers. 
 
Brain-gut axis 
 
The brain-gut axis is a bidirectional communication 
system regulating the function of the brain and gut [10]. It 
is well recognized that the brain-gut axis consists of the 
central nervous system (CNS), the central endocrine 
system, the central immune system, and intestinal 
microbes. This includes the hypothalamic-pituitary-
adrenal (HPA) axis, the sympathetic nervous system, the 
parasympathetic nervous system (the vagus nerve), and 
the enteric nervous system (ENS) of the autonomic 
nervous system. Signalling from the gut can regulate 
some regions in the brain, such as the insula (related to 
self-perception), limbic system (associated with emotional 
processing), prefrontal cortex (linked with morality), 
amygdala (connected to fear), hippocampus (related to 
memory), and anterior cingulate cortex (related to 
positivity) [11–13]. 
 
The normal intestinal mucosal barrier has mechanical, 
chemical, immune, and biological components, made up 
of the intestinal mucosal epithelium, intestinal mucus, 
the gut microbiota, secretory immunoglobulin, and gut-
associated lymphoid tissue (GALT). Abnormalities in 
the gut micorbiota are related to the occurrence of  
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some neuropsychiatric diseases, such as irritable  
bowel syndrome (IBS), autism, obsessive-compulsive 
disorder, and depression [14, 15]. The mechanisms 
between abnormal composition of gut micorbiota and 
the mental changes caused by these diseases involves the 
gut-brain axis. 
 
Neural signalling pathway  
 
The ENS is a complicated autonomic neural network of 
sensory, motor, and intermediate neurons that can 
independently regulate the basic functions of the 
gastrointestinal tract (movement, mucus secretion, and 
blood circulation). Studies have shown that intestinal 
microorganisms can affect the excitability of the 
intestinal myenteric nerves. The excitability of the 
neurosensory neurons is reduced in the absence of the 
intestinal microbiota in mice, while hyperpolarization is 
increased in antibiotics-induced pseudo-germ mice after 
the normal intestinal microbiota is transplanted [16]. 
Changes in the composition of the gut microbiota can 
also alter mood and cognition via the vagus nerve. 
Transplantation of Campylobacter jejuni into the 
intestine caused anxiety-like behaviour in a mouse model 
[17], while transplantation of non-pathogenic bacteria, 
such as Bifidobacterium longum into the duodenum had 
an antidepressant effect [18], but required a complete 
vagus nerve. Vagus nerve resection has become an 
effective treatment for certain neuropsychiatric diseases 
and refractory digestive diseases. 
 
Immune response 
 
The intestinal mucosal immune barrier consists of 
intestinal mucosal lymphoid tissue (including mesenteric 
lymph nodes, and liver Kupffer cells) and intestinal 
plasma cell secretory antibodies (slgA). In addition to 
forming the intestinal physical barrier, the intestinal 
mucosal epithelial layer and the lamina propria are the 
largest immune cell bank in the body. The immune cell 
population in the epithelial layer is mainly composed of 
CD8+ lymphocytes, while the lamina propria includes 
macrophages, plasma cells, antigen presenting cells 
(APC), and mast cells [19]. Interestingly, T cells and 
APC can be transported from GALT to other lymphatic 
sites, and can cross the blood-brain barrier (BBB) [20]. It 
is well recognized that changes in intestinal microbial 
composition can disrupt the well-maintained balance 
between the microbiota and the host’s innate mucosal 
immune system, leading to activation of toll-like 
receptors and changes in cytokines that may lead to 
abnormal behaviour and cognitive dysfunction [21–23]. 
Cytokines are produced in the gut, and there is growing 
evidence that cytokines can enter the brain through the 
weak part of the BBB. They then activate the HPA axis 
to release cortisol via interleukin (IL)-1 and IL-6 [24]. 

Interestingly, it has been found that exosomes released by 
intestinal epithelial cells regulate the homeostasis of the 
gut microbiota and the adaptive immune response of the 
gut [25]. Moreover, the exosomes have great potential in 
neurological repair of stroke and in improving cognitive 
function in Alzheimer’s disease as they can pass through 
the BBB [26, 27].  
 
Microbial endocrinology 
 
The intestinal microbiota can synthesize and release a 
variety of substances, including hormones, proteins, and 
neurotransmitters. Lactobacillus and Bifidobacterium can 
produce gamma amino butyric acid (GABA); 
Escherichia, Bacillus, and Yeast have the potential to 
produce norepinephrine; Rosary Bacteria, Streptococcus, 
Escherichia coli, and Enterococcus can produce 5-
hydroxytryptamine (5-HT); Bacillus can produce 
dopamine; and Lactobacillus can produce acetylcholine 
[28, 29]. A variety of peptides secreted by the gut 
microbiota are involved in the regulation of circadian 
rhythms, feeding behaviour, sexual behaviour, arousal, 
and anxiety [30]. Growth hormone releasing peptide is 
thought to regulate the response of the HPA to stress [31, 
32]. Galanin may be involved in physiological processes 
such as learning and memory, anxiety behaviour, repair 
and protection of nerve damage [33, 34]. 5-HT 
participates in the regulation of intestinal movement and 
pain perception peripherally, and maintains mood and 
cognition [35]. Drugs that increase serotonergic 
neurotransmitters (tricyclic antidepressants (TCAs)  
and selective serotonin reuptake inhibitors (SSRIs)) 
have shown therapeutic effects on emotional and 
gastrointestinal disorders [36]. 
 
Bacterial metabolic pathways  
 
Short-chain fatty acids (SCFA) produced by microbial 
fermentation of dietary fibre in the colon, including 
butyrate, propionate, acetate, are essential metabolites of 
intestinal microbial activity, and are trophic factors for the 
intestinal mucosal and epithelial layers [37]. SCFA can be 
transferred from the intestinal mucosa to the systemic 
circulation. They can induce inflammation and immune 
responses via the G protein-coupled receptors (GPR41 
and GPR43) on the surface of intestinal epithelial cells 
and immune cells [38, 39]. SCFA can activate the 
sympathetic nervous system by binding to the GPR41 
receptors in the sympathetic ganglion neurons [40, 41]. 
SCFA can pass through the BBB, affecting 
neurotransmission and the production of neuro-
transmitters, and can induce abnormal behaviours [42–
44]. High doses of propionate in rats induces 
neuroinflammatory responses and behavioural changes 
associated with neurodevelopmental disorders, such as 
autism symptoms [45]. The bacterial metabolite 
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lipopolysaccharide (LPS) can directly affect the CNS by 
activating the Toll-like receptor 4 in microglia, cause a 
mass-production of inflammatory cytokines in the CNS. 
Indirectly, it can induce the release of inflammatory 
cytokines from the gastrointestinal tract [46, 47]. Systemic 
IgA and IgM responses to commensal bacterial LPS were 
found in the blood of patients with depression and chronic 
fatigue syndrome, suggesting that LPS plays a major role 
in the pathogenesis of these diseases [48, 49]. 
 
The connection between brain and gut involves multiple 
disciplines and fields. In order to diagnose and treat 
neuropsychiatric diseases more accurately, it is 
necessary to further explore and study the mechanisms 
of the brain-gut axis, so as to figure out effective 
therapeutic strategies. 
 
The gut microbiota and cognitive dysfunction 
 
Cognition is the process of understanding and acquiring 
knowledge, involving a series of psychological and 
social behaviours such as learning, memory, language, 
thinking, energy, and emotion [50]. Cognitive dys-
function is the abnormality of these, accompanied by 
pathological processes such as aphasia, disuse, loss of 
recognition, and loss of behaviour. Common symptoms 
are hypersensitivity or dullness, over-memory or defect, 
association process disorder, logical thinking disorder, 
hallucinations, delusions, and a high risk of developing 
into dementia. The gut microbiota is involved in the 
development and progression of mental disorders that 
cause cognitive dysfunction [50, 51]. Although there 
may be differences in the results of intestinal 
microbiological studies due to factors such as region, 
diet, and individual patient differences, the effects of gut 
microbiota on cognitive function cannot be excluded 
(Figure 1).  
 
Gut microbiota and depression 
 
Depression is a clinical type of affective disorder which 
is characterized by significant and persistent low mood, 
slow thinking, cognitive impairment, decreased willing 
and physical symptoms [52–54]. Although the cause of 
depression is not determined at present, scholars have 
explored the relationship between depression and gut 
microbiota. At present, a large number of studies on the 
intestinal microbial diversity of depression indicate that 
Bacteroides, Proteus and Actinomycetes are positively 
correlated with the occurrence of depression, while 
Firmicutes are negatively correlated with the occurrence 
of depression, and changes in group proportions of these 
bacteria can affect the occurrence and development of 
depression [55–59]. Humanized depressed mice, 
colonized with human depression-associated flora 
(characterized by Firmicutes, Actinomycetes, and 

Bacteroides), were found that the metabolism of 
carbohydrates and amino acids is clearly disordered, 
suggesting that the gut micobiota can interfere with host 
metabolism [56]. With the further study of the rapid and 
long-lasting antidepressant effect and mechanism of 
ketamine and its metabolites, it has been found that the 
gut microbiota has also undergone a corresponding 
change in the antidepressant process of ketamine and its 
metabolites [54, 55, 60, 61]. We previously reported  
that in the lipopolysaccharide-induced inflammatory 
depression mouse model, the phylum Actinobacteria and 
the class Coriobacteriia are significantly associated with 
the increased immobility time in forced swimming test 
(FST), and it is believed that these two microorganisms 
may be potential microbial markers for the anti-
depressant effects of ketamine [62]. In addition, the 
release of peripheral pro-inflammatory cytokines caused 
by endotoxin and gut microbiota disorders, such as C-
reactive protein (CRP), IL-1, IL-6, tumor necrosis factor 
(TNF)-α, etc., can increase the permeability of BBB, 
leading to neuroinflammation, causing loss or activation 
of astrocytes, thereby triggering neuropsychiatric 
symptoms [63, 64]. Furthermore, the expression of 
BDNF mRNA in mice with chronic gastrointestinal 
inflammation is decreased, while after administration of 
Bifidobacteria, the depression-like behavior and 
hippocampal BDNF levels in mice can be normalized 
[65]. Pretreatment of rats with Lactobacillus farciminis 
can reduce the increased levels of adrenal and 
adrenocorticotropic hormones induced by stress and 
alleviate depression-like symptoms by affecting the HPA 
axis [66]. 
 
Gut microbiota and Alzheimer's disease 
 
AD is a progressive neurological degenerative disease 
characterized by accumulation of amyloid beta (Aβ) 
plaque, hyperphosphorylation of tau protein, 
neurofibrillary tangles knots and activation of 
inflammatory cells in brain tissue and along the blood 
vessels, and ultimately neuronal and other brain cell 
death [67, 68]. Clinically, AD is distinguished by 
comprehensive dementia such as memory impairment, 
aphasia, apraxia, agnosia, visual spatial impairment, 
executive dysfunction, and personality and behavioral 
changes [69, 70]. Although the etiology of AD has not 
yet been clarified, it is certain that changes in the 
composition of the gut microbiota affect the brain and 
behavior of patients with AD. Experts found that the 
gut microbiota in the feces of Aβ precursor protein 
(APP) transgenic mice changed significantly, while the 
Aβ amyloid deposition was found to be decreased 
sharply in the brain of pseudo-aseptic APP transgenic 
mice. Importantly, colonization of the gut microbiota 
of APP transgenic mice into the intestinal tract of 
sterile APP transgenic mice increased brain Aβ 
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amyloid deposition. While microbial populations from 
wild-type mice were colonized into sterile APP 
transgenes, intestinal microbes do not increase brain 
Aβ amyloid levels, suggesting that gut microbes are 
involved in the development of Aβ amyloid pathology 
[71]. In most of intestinal microbial studies of AD, 
bacteria such as Bacteroidete have been found to be 
related to the occurrence of AD [72–75]. 
Accumulation of Aβ is one of the main pathological 
features of AD, and the production and clearance of 
Aβ in the CNS are in a state of dynamic equilibrium. 
A large number of bacteria and fungi in the gut, such 
as Escherichia coli, Salmonella enterica, Salmonella 
typhimurium, Mycobacterium tuberculosis and 
Staphylococcus aureus, can secrete functional extra-
cellular amyloid, LPS and other related pro-
inflammatory pathogenic signals [76, 77], which 
increase the CNS and systemic amyloid levels, 
breaking the homeostasis, leading to Aβ accumulation 
[78, 79] and may trigger host immune responses and 
neuroinflammation, increasing the risk of AD [80]; In 
addition, clearance of Aβ protein may be hampered by 

defects in triggering receptors enriched in the plasma 
membrane of microglia/myeloblast-2 cells (TREM2) 
[81]. Furthermore, antibiotic interference can alleviate 
neuroinflammation and Aβ plaque deposition in the 
mouse models of AD [82]. 
 
Gut microbiota and Parkinson's syndrome 
 
PD, also known as paralysis agitans, is a common 
progressive degeneration of the nervous system in the 
elderly. The pathological characteristics are the 
accumulation of misfolded protein alpha-synuclein 
(αSyn) in brain cells. The principal clinical non-motor 
symptoms include depression, anxiety, cognitive 
impairment, hallucinations, indifference, sleep disorders 
and other autonomic symptoms [83]. Gastrointestinal 
inflammation often occurs before the onset of motor 
symptoms in patients with PD [84]. In recent years, 
more and more attentions have been focused on the 
hypothesis that PD originates from the intestine and 
spreads to the brain through different pathophysiological 
pathways [85]. Recently, medical researchers have found 

 

 
 

Figure 1. The mechanisms of microbiota-gut-brain axis. Gut microbiota can influence the cognitive function of brain through neural 
signalling, endocrine, metabolic and immune pathways. 5-HT: 5-hydroxytryptamine; ACTH: adrenocorticotropic hormone; BBB: blood-brain 
barrier; CRH: corticotropin releasing hormone; EC: enteroendocrine cell; ENS: enteric nervous system; GABA: gamma amino butyric acid; Glu: 
glutamic acid; HPA: hypothalamic-pituitary-adrenal; SCFA: short-chain fatty acids. 
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new evidence that PD originates in the intestine and 
transmits signals into the brain, misfolded αSyn in the 
intestine can travel from the small intestine to the brain 
via vagus nerve [86]. Blockade of this transmission route 
may be the critical to prevent PD [87]. As early as 1971, 
it was known that gut microbes could metabolize 
levodopa to dopamine and m-tyramine in the 
gastrointestinal tract of patients with PD [88]. A study 
further found that the tyrosine decarboxylase that 
converts levodopa to dopamine is mainly present in 
Enterococcus and Lactobacillus [89–91], and the 
presence of these gut microbiota will lead to the increase 
of effective dose of levodopa medication for PD 
treatment [92]. A large number of studies have found that 
changes in levels of gut microbiota were associated with 
the severity of motor and non-motor symptoms in PD 
patients [93–95]. Mice over-expressing αSyn have shown 
that gut microbiota is essential for motor deficits, 
microglial activation and pathology of αSyn, and that gut 
microbes from PD patients can aggravate physical  
injury in mice over-expressing αSyn [96]. In recent  
years, insufficient production of hydrogen (H2) by  
gut microbiota has been taken into account to play a  
role in the pathogenesis of PD. H2 is a bioactive gas  
with anti-oxidation, anti-apoptosis, anti-inflammatory, 
cytoprotective and signal transduction properties. 
However, the fecal microorganisms of PD patients are 
deficient in H2-releasing bacteria, such as Prevotella  
and Clostridium, which reduce endogenous H2.  
Animal experiments have shown that H2 can attenuate 
the acute and chronic neurotoxic effects of 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydro-
xydopamine on dopaminergic neurons and neuron fibers 
in the substanto-striatum pathway in PD rat model. 
Clinically, it has also been confirmed that H2 bubbling 
water can improve the score of PD symptoms in 
hospitalized patients [97]. 
 
Perioperative factors and treatment strategies 
of POD 
 
POD refers to an acute mental disorder that occurs 1 week 
after surgery or before discharge and conforms to the 
Diagnostic and Statistical Manual of Mental Disorders, 
fifth edition (DSM-5) diagnostic criteria. The occurrence 
of POD has an obvious time-dependent characteristic, 
usually beginning in the recovery room after anaesthesia, 
and the symptoms are obvious 1 to 3 days after surgery, 
mostly in the elderly over 65 years. Its principal 
manifestations are disturbance of consciousness, 
behavioural disorders, inability to concentrate, abnormal 
perception, and sleep cycle disorders, which cannot be 
explained by pre-existing or developing dementia. It is 
clinically divided into agitation type, quiet type, and 
mixed type. According to the DSM-5 diagnostic criteria, 
15% to 53% of elderly patients have delirium after 

surgery, of which 70% to 80% are located in intensive 
care. At present, the recognition rate of POD is low, but 
its harmfulness has caused extensive concerns in the 
medical community. The ‘cognitive care’ procedure of the 
Australian Commission on Safety and Quality in Health 
Care, the National Institute of Health and Clinical 
Excellence (NICE)’s clinical guidelines, and the 
American Society of Anesthesiologists (ASA)’s ‘Brain 
Health Plan’ are dedicated to the identification of high-
risk patients, prevention strategies, and research areas to 
reduce delirium [98]. The following briefly describe the 
perioperative factors related to the occurrence of POD 
found in the current studies. 
 
Preoperative factors 
 
Preoperative factors related to POD usually include 
patients’ preoperative medication, basic comorbidities, 
and basic education. There is abundant evidence that 
serum homocysteine (Hcy) levels are higher in the elderly 
and are associated with neurological diseases [99–101]. It 
has been reported that hyperhomocysteinemia increased 
susceptibility to PND, while preoperative supplementation 
with VitB12 and folic acid reversed this susceptibility 
[102]. In addition, a positive vagally mediated dose-
dependent relationship between baseline cholinesterase 
activity and immune response in the plasma of delirium 
patients was noted, and lower preoperative plasma 
cholinesterase activity should be considered as a risk 
marker for POD in elderly patients [103]. As we all know, 
statins are commonly used to reduce blood lipids, 
thrombosis, inflammation, and for immune regulation, 
and have protective effects on the CNS. The usage of 
statins before surgery can reduce the incidence of POD 
after cardiac surgery [104]. It’s surprising but under-
standable that patients with higher education levels may 
have better tolerance to multiple perioperative dis-
turbances, due to higher cognitive reserves and possible 
neuroplasticity, and had a lower incidence of POD and 
POCD [105, 106]. 
 
Intraoperative factors  
 
The general idea is that anesthesia method and anesthetics 
can impaire cognition. However, general anaesthesia, 
regional anaesthesia (RA), and local anaesthesia (LA) did 
not differ significantly in the incidence of POD in patients 
undergoing vascular surgery [107]. Drugs commonly used 
during surgery such as atropine, antihistamines, cortisol, 
benzodiazepines, propofol, and opioids have been shown 
to induce delirium [108]. Target-controlled infusion of 
propofol has been widely adopted in clinical anesthesia. 
Although intraoperative sedation depth has no significant 
effect on 1 year postoperative mortality and gait function 
recovery of patients, it can affect the incidence of POD, 
with lighter sedation associated with a lower incidence of 
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POD [109]. Moreover, the use of electroencephalography 
(such as auditory evoked potential index and bispectral 
index) during surgery to guide anesthesia may reduce the 
incidence of POD [110]. It was formerly widely believed 
that the mean arterial pressure (MAP) below the lower 
limit of cerebral autoregulation during cardiopulmonary 
bypass (CPB) was related to numerous complications that 
occurred after cardiac surgery [111, 112]. However, Hori 
et al. demonstrated that the level and duration of MAP 
beyond the upper limit of cerebral autoregulation during 
CPB were significantly associated with the risk of POD, 
and advocated maintaining MAP within the range of 
cerebral autoregulation to reduce the risk of delirium 
[113]. In addition, clinical measures such as the use of 
heparin, hypothermia, and glucose-containing cardio-
plegic solution could cause stress-induced hyperglycemia, 
which is considered to be an important cause of 
perioperative inflammation, and closely associated with 
POD [114]. Regardless of the fact that brain-derived 
neurotrophic factor (BDNF) decreased with prolonged 
surgery time in both delirium and non-delirium patients, 
the former decreased by a larger percentage. Therefore, it 
is considered that the decrease of BDNF in plasma during 
surgery is a predisposing factor for POD in elderly 
patients [115]. In addition, blood transfusion as a common 
treatment for intraoperative anaemia is also suggested to 
be a protective factor for delirium. The consistent 
association between lower intraoperative haemoglobin 
levels and higher risk of delirium may be related to the 
oxygen supply, material synthesis, and metabolism of the 
brain [116]. 
 
Postoperative factors  
 
Postoperative nursing and drug-assisted treatment are 
often regarded as an indispensable step to accelerate the 
patient’s recovery by medical care personnel. Studies 
have suggested that delirium occurring in the 
postanaesthesia care unit (PACU) can increase the rate of 
POD by 4 times, so strengthening management during 
the PACU stay may reduce the risk of PND [117]. In 
addition, in elderly patients admitted to the ICU after 
non-cardiac surgery, prophylactic low-dose infusion of 
dexmedetomidine can significantly reduce the incidence 
of POD without significantly increasing the prevalence of 
bradycardia or hypotension [118]. Conventional post-
operative care is beneficial for functional recovery, while 
postoperative individualized exercise training has been 
shown to be beneficial for reversing postoperative 
cognitive impairment in elderly patients during acute 
hospitalizations [119]. 
 
According to the European Society of Anaesthesiology’s 
evidence-based guidelines, POD is preventable. 
Therefore, the optimization of preoperative physiological 
condition is not only beneficial for the intraoperative 

period, but also accelerates postoperative recovery, 
including the recovery of the neuropsychiatric state. We 
should find the possible causes of POD before surgery 
and try to correct them before surgery. We also need to 
avoid applying drugs that have a significant effect on the 
mind after surgery and depriving patients of sleep. 
Sufficient analgesia is necessary, but we should closely 
monitor and avoid adverse effects. Reducing the incidence 
of delirium not only reduces healthcare-related costs, but 
also prevent undesirable sequelae. 
 
Pathogenesis of POCD and treatment strategies  
 
POCD refers to the CNS complications after 
anaesthesia and surgery, which are mainly manifested 
as a decrease in cognitive ability, mental behaviour, 
social ability, and other aspects compared with the 
preoperative levels. This was first proposed by P.D. 
Bedford in 1955 [120]. Until 1998, J.T. Moller and 
other scientists designated it as postoperative cognitive 
dysfunction in an international multi-centre study 
involving 12 European and American Medical Centres 
[3]. According to the latest diagnostic criteria of DSM-
5, POCD is defined as a mild or severe neurocognitive 
disorder occurring within 30 days to 12 months after 
surgery. It can occur in patients of all ages and has a 
higher prevalence in elderly patients over 65 years old, 
and a significantly higher disability rate. However, the 
pathogenesis of POCD is still unclear.  
 
The role of inflammatory immune response and 
oxidative stress 
 
Surgery and anaesthesia are strong initiators of 
inflammation. Tissue damage and oxidative stress due to 
surgery and anaesthesia can induce the release of local or 
systemic pro-inflammatory factors and the activation of 
corresponding inflammatory signalling pathways. Pro-
inflammatory cytokines can take advantage of the 
specific receptors and transporters on the surface of 
endothelial cells of the BBB and directly cross the BBB. 
Consequently, they can induce microglial activation and 
neuroinflammatory responses, and affect cognitive 
function. Microglia, especially macrophages in the CNS, 
are the main source of pro-inflammatory cytokines and 
reactive oxygen species (ROS) in the brain [121]. 
Preclinical trials have shown that the expression of 
cannabinoid 2 receptor (CB2R), high mobility group 
box-1 chromatin protein (HMGB1), S100β, and the 
activation of microglia are all related to POCD. The 
corresponding antagonists or agonists can prevent 
microglial activation and experimentally related 
cognitive deficits [122–124]. Antioxidants, including 
hydrogen-rich saline, elamipretide (SS-31), iron chelator 
(DFO), were found through NF-kappa B, mitochondria, 
p38 lightning mitogen-activated protein kinase (MAPK) 
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signalling to achieve the release of reactive oxygen and 
pro-inflammatory cytokines, finally alleviating POCD 
symptos [125–128]. 
 
The role of the neurotransmitter system  
 
Inhibition of neuronal plasticity, neuronal damage, and 
the maladjustment of central neurotransmitter 
homeostasis are all closely related to the occurrence of 
POCD. BDNF signalling can be inhibited by numerous 
pro-inflammatory cytokines through activating 
P38MAPK and NF-κB, thereby reducing neural 
regeneration and neuronal plasticity [129]. CPB 
technology used in cardiac surgery reduces the mortality 
of myocardial infarction and heart failure, but 
complications, such as POCD and gastrointestinal tract 
injury, are common. Activation of the α7 nicotinic 
acetylcholine receptor (α7nAChR) can significantly 
reduce neuronal apoptosis, the expression of pro-
inflammatory factors, and the number of CD4+ IL-17+ 
cells induced by CPB, thus alleviating intestinal injury 
and POCD symptoms. However, deficiency of α7nAChR 
significantly aggravates the pro-inflammatory response 
and POCD caused by CPB [130, 131]. Interestingly, pre-
treatment with the acetylcholinesterase inhibitor 
(donepezil) could prevent spatial memory impairment in 
aged mice by alleviating the down-regulation of choline 
acetylase (CHAT) caused by isoflurane [132]. 
 
Stress and endocrine disorder theory 
 
Early life adversities, an important stressor, not only can 
cause chronic diseases and affective disorder in children 
[133–135], but also may be an independent risk factor 
for POCD in adulthood, for example maternal 
separation. On the one hand, maternal separation can 
promote the release of sevoflurane-induced hippo-
campal cytokine, activation of astrocytes and of the NF-
κB signalling pathways in adult rats; On the other hand, 
it altered the DNA methylation status of exon 17 in the 
glucocorticoid receptor (GR) promoter region, and 
reduced GR expression [136]. Circadian disruption or 
metabolic endocrine stress may be an important 
mechanism of POCD in following patients. In a study of 
patients over 60 years of age undergoing major non-
cardiac surgery, it was found that changes in the 
circadian rhythm of cortisol levels were significantly 
correlated with the occurrence of POCD [137]. In 
addition, anaesthesia and surgery can delay the 
secretion of melatonin at night, seriously interfere with 
the normal circadian rhythm of melatonin, and 
eventually disrupt the normal sleep cycle of patients 
[138]. Furthermore, melatonin can normalize the time 
shift of the clock gene mRNA peak, enhance the 
expression of clock gene mRNA, restore the circadian 
rhythm of resting activity and body temperature in 

elderly mice, and alleviate isoflurane-induced cognitive 
impairment [139]. 
 
The role of anaesthesia and surgery 
 
Anaesthetics that block NMDA receptors or enhance 
γ-aminobutyric acid type A receptors (GABA(A)Rs) 
have been shown to cause extensive apoptotic neuro-
degeneration and hippocampal synaptic dysfunction in 
the brain during synaptic development. Animal studies 
of agents used in anaesthesia can cause apoptosis in 
the developing brain [140]. Etomidate can 
continuously enhance the effect of the α5 subunit-
containing GABA(A)Rs, damage the hippocampal 
memory and synaptic plasticity, and affect memory 
after anaesthesia. Inhibiting α5GABA(A)Rs can 
completely reverse the memory deficit after 
anaesthesia [141]. Most volatile inhaled anaesthetics 
can have neurotoxic effects on the CNS. Sevoflurane 
and isoflurane induce central nervous inflammation by 
enhancing the permeability of the BBB, and by 
damaging cerebral vascular endothelial cells [142]. 
Sevoflurane can increase the activation of caspase-3 (a 
marker of apoptosis) in the brain of mice and increase 
the expression levels of amyloid precuser protein 
(APP) and Aβ. Isoflurane induces cognitive 
impairment and aging-related hippocampal inflam-
mation in aged mice by activating the NLRP3-caspase-
1 pathway [143]. Preclinical studies have found that 
surgery under desflurane anaesthesia may actually 
reduce neuroinflammation and cognitive dysfunction 
[144]. The surgical methods are also a major factor 
leading to POCD. Hovens et al. used male Wistar rats 
to find that cognitive dysfunction caused by abdominal 
surgery is limited to the hippocampal brain region, 
while cognitive dysfunction caused by cardiac surgery 
involves changes in the broader cognitive domain, 
including the hippocampus, hypothalamus and 
prefrontal cortex, and increased markers of systemic 
inflammation, such as neutrophil gelatinase-associated 
apolipoprotein (NGAL) [129]. In addition, during 
cardiac surgery, extracorporeal circulation, 
temperature management, anaesthetic dose, tissue 
ischaemia-reperfusion, regulation of cerebral blood 
flow, and oxygen saturation may all cause neuro-
inflammation and cognitive impairment [145]. 
Intraoperative and postoperative long-term mechanical 
ventilation increase the expression of peripheral and 
hippocampal inflammatory cells, activation of the 
apoptotic cascade, and reactive hyperplasia of the 
microglia by activating the vagus nerve and triggering 
type 2 dopamine receptors, which further aggravates 
cognitive decline [146, 147]. 
 
Current treatment strategies for POCD are early 
diagnosis and timely treatment. Preventive measures 
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Table 1. Gut microbiota and probiotics associated with PND. 

Model/Disease Animal Surgery & 
Anesthesia 

Behavioral 
tests 

Microbiota in PND Probiotics 

POCD 
(Yang et al., 
2018)[124]  

SD rats 
(8 months old) 

Abdominal surgery 
& 2% isoflurane 

and oxygen 

NORT Phylum: Actinobacteria↓ none 

POCD 
(Zhan et al., 
2019)[152] 

C57BL/6J mice 
(18 months old) 

Tibial fracture 
fixation & 2% 
isoflurane and 
100% oxygen 

OFT; MWMT Phylum: Tenericutes↓; 
Chlamydiae, TM7↑ 

Genus: Anaeroplasma, 
Dehalobacterium, 

Sutterella↓; Chlamydia↑ 

none 

POD 
(Zhang et al., 
2019)[151] 

C57BL/6J mice 
(8 weeks old) 

Abdominal surgery 
& 1.4% isoflurane 
and 100% oxygen 

OFT; EPMT; 
BFT 

Phylum: Tenericutes↓ 
Genus: Ruminiclostridium, 

Ruminococcaceae UCG 
014, Desulfovibrio↓; 

none 

POCD 
(Meng et al., 
2019)[155] 

F344xBN F1 
rats 

(aged) 

Laparotomy & 
2.1% isoflurane 

FCT; OFT not mentioned none 

POCD 
(Jiang et al., 
2019)[153] 

C57BL/6J mice 
(18 months old) 

Tibial fracture 
fixation & 2% 
isoflurane and 
100% oxygen 

MWMT; Eubacterium 
coprostanoligenes, 

Actinomyces, Bacteroides, 
Butyrivibrio, 

Parabacteroides↑ 
Alistipes, Ambiguous_axa, 

Lachnospiraceae_NK4A136, 
Lachnospiraceae_UCG, 

Anaeroplasma↓ 

Bifidobacterium 
breve, B. longum, 

B. infantis, 
Lactobacillus 

acidophilus, L. 
plantarum, L. 
paracasei, L. 
bulgaricus, 

Streptococcus 
thermophilus 

POD 
(Liufu et al., 
2020)[157] 

Mice 
(9 and 

18 months old) 

Laparotomy & 
1.4% isoflurane and 

100% oxygen 

BFT; OFT; 
YMT; BMT 

lactobacillus↓ Lactobacillus 
rhamnosus GG 

POCD 
(Yu et al., 
2019)[158] 

SD rats 
(10 weeks old) 

cardiac surgery & 
3% pentobarbital 

sodium 

OFT; MWMT; Saccharibacteria, 
Eubacteriaceae, 

Enterobacteriales, 
Escherichia/Shigella, 

Micrococcaceae↑; 
Lachnospiraceae, 
Paraprevotella, 
Oscillibacter↓ 

Bifidobacterium 
longum, 

Lactobacillus 
bulgaricus, 

Streptococcus 
thermophiles 

POCD  
(Liang et al., 
2018)[154] 

CD-1 mice 
(6 to 8 weeks 

old) 

Laparotomy & 
0.25% bupivacaine 

BMT; FCT not mentioned none 

POCD  
(Fonken et al., 
2018)[156] 

F344XBN F1 
rats 

(3 and 
24 months old) 

Laparotomy & 
halothane 

contextual fear 
conditioning 
pre-exposure 

paradigm 

not mentioned none 

↑ indicates increase; ↓ indicates decrease. 
Abbreviations. BFT: buried food test; BMT: Barnes maze test; EPMT: elevated plus maze test; FCT: fear conditioning test; 
MWMT: Morris water maze test; NORT: novel object recognition test; OFT: open field test; YMT: Y maze test. 
 

should be taken and adequate evaluation should be 
undertaken before surgery [148]. Intraoperative 
optimization using various indicators, such as BIS 
index and cerebral oxygen saturation monitoring, 

should be employed [149]. It is necessary to create a 
good postoperative environment, ensure patients’ sleep 
quality, and pay attention to nutrition, water and 
electrolyte balance, strengthen psychological guidance 
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and support, and reduce or stop taking high-risk drugs 
that are likely to cause POCD. 
 
The role of gut microbiota in PND 
 
In recent decades, scientists and food and drug industry 
have conducted extensive research on probiotics and 
their interactions with humans. Probiotics can be used 
as prevention and treatment methods for disorders, such 
as inflammatory bowel disease, IBS and depression 
[150]. Nine preclinical studies reported the role of gut 
microbiota in PND (Table 1). We previously used 
hierarchical cluster analysis to analyse the behavioural 
results of mice that had undergone abdominal  
surgery, so that the mice were divided into sham  

group, POD group and non-POD group, and 16S 
ribosomal RNA gene sequencing was performed on 
their faeces. It was found that the α-diversity and β-
diversity of gut microbiota were different between the 
POD and non-POD groups. In addition, there were 
significant differences in 20 species of bacteria at 6 
different levels between the POD and non-POD groups, 
including Tenericutes, Mollicutes, Bifidobacteriales, 
and Gammaproteobacteria. Furthermore, we found that 
the pseudo-germ-free mice (induced by antibiotics) 
exhibited abnormal behaviors, and the gut microbiota of 
the non-POD group could improve the abnormal 
behaviors of pseudo-germ-free mice, while the gut 
microbiota of the POD group did not do so [151]. The 
results further support the hypothesis that the gut 

 

 
 

Figure 2. The pathogenesis of perioperative neurocognitive dysfunction. Postoperative delirium and postoperative cognitive 
dysfunction are two repensentive symptoms of perioperative neurocognitive dysfunction, and that multiple factors and pathways are 
probably involved in the pathogenesis of PND. α7 nAChR: α7 nicotinic acetylcholine receptor; AChE: acetylcholin esterase; BDNF: brain-
derived neurotrophic factor; CHAT: choline acetylase; DFO: deferoxamine; GR: glucocorticoid receptor; Hcy: homocysteine; MAP: mean 
arterial pressure; MV: mechanical ventilation; PACU: postanaesthesia care unit; PND: perioperative neurocognitive dysfunction; POCD: 
postoperative cognitive dysfunction; POD: postoperative delirium; ROS: reactive oxygen species. 
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microbiota plays an important role in cognitive 
functions. Similarly, we also studied the role of the gut 
microbiota in POCD caused by surgery and anaesthesia, 
and found that the types and quantities of gut 
microbiota in the POCD group were significantly less 
than that in the non-POCD group in elderly mice. 
Bacterial abnormalities may be involved in the 
pathogenesis of POCD [152]. In order to further 
confirm the role of intestinal microorganisms in POCD, 
mice pre-treated with compound antibiotics or mixed 
probiotics (VSL # 3) suggested that the changes of 8 
bacteria caused by anaesthesia and surgery were 
restored, and this prevented learning and memory 
dysfunction after anesthesia and surgery [153]. 
 
At the same time, many scholars have also confirmed 
the effects of gut microbiota on cognitive function in 
other animal models. A study demonstrated that the 
prebiotic Galacto-Oligosaccharide mixture can 
effectively inhibit the increase of the levels of 
microglial markers M1 and M2 in the hippocampus 
induced by surgery. It can also increase the relative 
abundance of Bifidobacterium, Actinobacteria, 
Lactobacillaceae, and Lachnospiraceae, and decrease 
the relative abundance of Ruminococcaceae, thereby 
increasing the expression of BDNF, reducing neuro-
inflammation caused by surgery, and improving 
postoperative cognition [124]. There is increasing 
evidence that long-term use of antibiotics can lead to 
cognitive dysfunction by causing imbalances in intestinal 
flora. The antibiotic cefazolin is often used clinically 3 to 
5 days before surgery to prevent perioperative infection. 
Based on this, a study explored the relationship between 
cefazolin and POCD, and found that cefazolin can 
alleviate systemic, brain and colon inflammatory 
reactions caused by laparotomy in mice, and potentially 
reduce postoperative memory and learning disabilities. 
But unexpectedly, cefazolin can impair learning and 
memory when used alone in mice without surgery, which 
may be related to transient gut dysbiosis [154]. 
 
Trimethylamine N-oxide (TMAO) is a specific dietary 
nutrient metabolite derived from intestinal micro-
organisms. It is excreted by the kidney under normal 
physiological conditions. When the gut microbiota is 
imbalanced or renal function is impaired, TMAO levels 
in the circulation will increase, inducing oxidative stress 
and inflammatory response in the surrounding tissues. 
Recently, TMAO has been shown to further increase 
microglial-mediated neuroinflammation and hippocampal 
ROS production by reducing the expression of the 
antioxidant enzyme methionine sulfoxide reductase (Msr) 
A, leading to cognitive dysfunction in the elderly 
laparotomy group [155]. Mycobacterium vaccae 
NCTC11659 (M. vaccae) is a saprophytic fungus that is 
found in the soil to regulate immune and anti-

inflammatory effects. Interestingly, Mycobacterium 
Vaccae immunization not only plays a role in preventing 
depression-like behaviors caused by stress, but also 
enables the hippocampal microenvironment of old rats to 
change from a pro-inflammatory to an anti-inflammatory 
phenotype, reducing neuroinflammation and cognitive 
impairment caused by surgery [156] (Figure 2) [157, 
158]. 
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