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INTRODUCTION 
 

The World Health Organization first released a diabetes 

report in 2016 that showed that type 2 diabetes mellitus 

(T2DM) has become a chronic worldwide disease [1]. 

T2DM is a chronic disease with a high incidence in the 

elderly and in which pathogenesis is intricate. Elderly 

people with T2DM are more likely to suffer from 

complications, and the treatment is more difficult [2]. 

Currently, the incidence of T2DM is greater than 25% 

in elderly patients over 65 years of age [3]. Therefore, 

more and more research is focused on the early 

diagnosis and treatment mechanism of T2DM [4, 5]. 

 

One of the main factors leading to the surge in T2DM is 

obesity [6, 7]. Insulin resistance (IR) is a key factor in 

obesity and T2DM. Increases in obesity-related immune 

activation  [8]  and  circulating  leptin  levels  [9] induce  

 

systemic IR, which greatly increases susceptibility to 

T2DM. Therefore, controlling obesity, improving IR 

and leptin resistance (LR), and delaying or reversing the 

occurrence of T2DM are major goals that need to be 

addressed urgently. 

 

Growing evidence suggests a link between the intestinal 

microbiome and the metabolic health of the human 

body [10–13]. In 2016, a breakthrough study by a 

European and Chinese team found that specific 

intestinal microbiota imbalances lead to IR, leading to 

an increased risk of health problems such as T2DM 

[14]. Some evidence suggests that the IR phenotype can 

be transferred by transplanting the fecal microbiome 

[15–17]. To demonstrate this benefit, distinction 

between the characteristics of the microbiome that 

cause the disease and the characteristics of the disease 

or its therapeutic consequences is necessary [18]. 
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ABSTRACT 
 

Obesity is one of the susceptibility factors for type 2 diabetes (T2DM), both of which could accelerate the aging 
of the body and bring many hazards. A causal relationship is present between intestinal microbiota and body 
metabolism, but how the microbiota play a role in the progression of obesity to T2DM has not been elucidated. 
In this study, we transplanted healthy or obese-T2DM intestinal microbiota to ZDF and LZ rats, and used 16S 
rRNA and targeted metabonomics to evaluate the directional effect of the microbiota on the susceptibility of 
obese rats to T2DM. The glycolipid metabolism phenotype could be changed bidirectionally in obese rats 
instead of in lean ones. One possible mechanism is that the microbiota and metabolites alter the structure of 
the intestinal tract, and improve insulin and leptin resistance through JAK2 / IRS / Akt pathway. It is worth 
noting that 7 genera, such as Lactobacillus, Clostridium and Roche, can regulate 15 metabolites, such as 3-
indolpropionic acid, acetic acid and docosahexaenoic acid, and have a significant improvement on glycolipid 
metabolism phenotype. Attention to intestinal homeostasis may be the key to controlling obesity and 
preventing T2DM. 
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Changes in Ruminococcus sp., Escherichia coli, 

Bacteroides, and Akkermansia muciniphila have been 

observed in diabetic and obese patients [19–22]. These 

different results suggest that a better understanding of 

the role of specific taxa in regulating host metabolic 

function is needed. Changes in the abundance of these 

microbiota, such as A. muciniphila, Proteus mirabilis, 

or Bacteroides uniformis, are associated with the 

glucose metabolism pathway. The proposed hypothesis 

of key microbial-phenotypic associations necessitates 

future research on microbiota [23]. Studies from Germ 

Free (GF) mice have further demonstrated that the 

intestinal microbiota is the cause of glucose intolerance 

caused by high-fat diets [24–26], and that obesity can be 

metastasized via fecal microbiota transplantation (FMT) 

[27]. These studies suggest that the progression from 

obesity to IR to T2DM is accompanied by changes in 

the species of the intestinal microbiota, and the 

imbalance occurs before the disease occurs. 

 

The possible mechanisms of T2DM induced by the 

intestinal microbiota include disorders of lipid 

metabolism, endotoxemia, bile acid metabolism, insulin 

resistance etc. In order to better understand the role of 

intestinal microbiota in the obesity-T2DM process and 

the possible mechanism, we used Zucker Diabetic Fatty 

(ZDF) rats with mutations in the leptin receptor gene as 

a research model, which can gradually produce 

spontaneous obesity and hyperglycemia with age. In 

this process, FA mutation causes the leptin receptor to 

shorten, and a large amount of free leptin cannot bind to 

the corresponding receptor to exert its role. This 

mutation is phenotypically manifested as obesity with 

high leptin levels in the blood. The phenomenon of high 

serum leptin levels coexisting with obesity and 

abnormal glycolipid metabolism is leptin resistance, and 

leptin resistance is also observed in obese people. Along 

with the increase of age, the disorder of leptin signal 

and insulin signal transduction is aggravated, which can 

develop into T2DM [28]. Continuous FMT of obese-

T2DM models' microbiota could change the phenotype 

of glycolipid metabolism, microbiota composition, 

metabolite structure and colon pathological charac-

teristics of recipient rats during the development from 

obesity to T2DM. There were also differences in leptin 

and insulin signaling pathways at the molecular level. 

At the same time, in order to comprehensively analyze 

the relationship between host phenotype, intestinal 

microbiota and its metabolites, we generated correlation 

matrix by calculating Spearman correlation coefficient 

to determine the significant effect of the latter two on 

the former. This study explored the effects of changes in 

gut microbiota on normal or leptin receptor gene 

deficiency rats, and multi-angle analysis of the 

directivity of intestinal microbiota during the 

progression of obesity to T2DM. 

RESULTS 
 

FMT altered the glycolipid metabolism phenotype in 

ZDF rats 
 

In the donor group, all metabolic evaluation indicators 

showed that the obese T2DM model was successfully 

induced in the ZDF group. These metabolic indicators 

were significantly different from the LZ group 

(Supplementary Figure 1A–1I). The experimental 

procedure was implemented as shown in Figure 1A. 

The group of LZ rats receiving LZ intestinal 

microorganisms was named L-Lg, receiving ZDF 

intestinal microorganisms was named L-Zg, and 

receiving PBS was named L-P. The ZDF recepient 

group was named the same way. Each transplantation 

group was given by gavage with a mixed antibiotic 

solution from D1-D10, and then transplanted the 

microbiota for 4 weeks. Record the corresponding data 

every week. From the third week of FMT, the metabolic 

characteristics of ZDF rats showed significant changes 

in response to transplantation. Figure 1B recorded the 

changes in the weight gain of the rats at different stages. 

The results showed that with the natural growth of the 

rats and the prolongation of the transplantation time, 

each group showed a slowing trend of the growth rate. 

For the LZ recipient rats, the weight gain had no 

changes in response to microbial transplantation, 

however, in ZDF recipient rats, the weight gains of rats 

transplanted with normal microbiota decreased 

significantly, while the weight gain of rats transplanted 

with obesity-T2DM microbiota had an increasing trend, 

and the abdominal circumference of the Z-Zg group 

increased significantly (P < 0.0001). The random blood 

glucose in the Z-P and Z-Zg groups was significantly 

higher than that in the Z-Lg group (P < 0.05), and the 

difference was more significant at 38 days (P < 0.001). 

Glycated hemoglobin was a good indicator of intra-

group differences (Figure 1B–1E). These responses 

were not shown in LZ rats. The levels of glycated 

hemoglobin in the Z-P and Z-Lg groups showed a 

slightly lower trend than the L-Zg group, which seemed 

to be different from the level of random blood glucose. 

This may be due to the fact that random blood glucose 

responds to the immediate level of blood glucose and 

glycated hemoglobin reflects the average blood glucose 

level for a long time before the blood collection point, 

which is more stable and is not disturbed by the 

activities. The results of glycated hemoglobin levels in 

the L-Zg, Z-P and Z-Lg groups reflected that the blood 

glucose did not reach the state of hyperglycemia during 

5-8 weeks of age, which was consistent with the natural 

growth of ZDF rats and the performance of random 

blood glucose. The higher level of glycated hemoglobin 

in L-Zg group could also reflect that although the short-

term T2DM microbiota transplantation did not induce 
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healthy LZ rats to form stable obesity and type 2 

diabetes, but the rats also showed a corresponding trend. 

However, combined with body weight, OGTT, ITT and 

insulin-related levels, LZ rats still maintained a 

relatively stable health status. Changes in blood lipids 

indicated that Z-Lg group were superior to the Z-P 

group (Figure 1H–1K). OGTT and ITT showed that 

glucose tolerance and insulin tolerance were better in 

 

 
 

Figure 1. Changes in glycolipid metabolism phenotypes in recipient rats before and after transplantation. (A) Detailed 

information. LZ rats were fed a normal diet, and ZDF rats were fed an induced diet #5008. After adaptive feeding, the four groups were given 
an antibiotic mixture for 10 days, and then the corresponding supernatant from the LZ group and ZDF group was given to LZ and ZDF 
recipient rats, whereas the control group was given PBS. The course of T2DM was judged by OGTT, ITT, RBG, and FSI. After antibiotic 
administration and FMT, feces were collected for 16S rRNA sequencing and metabolomic analysis of intestinal contents at the end of the 
experiment; (B) Weight gain at different stages (g; Time: F3, 115 = 90.60, P < 0.0001; Group: F4, 45 = 110.2, P < 0.0001; Interaction: F20, 190 = 
1.844, P < 0.05; n = 7-10); (C) Abdominal circumference at different stages (cm; Time: F5, 270 = 318.0, P < 0.0001; Group: F4, 270 = 67.39, P < 
0.0001; Interaction: F20, 270 = 16.09, P < 0.0001; n = 10); (D) Random blood glucose at different stages (mM; Time: F2, 90 = 131.3, P < 0.0001; 
Group: F4, 45 = 55.78, P < 0.0001; Interaction: F20, 214 = 12.67, P < 0.0001; n = 8-10); (E) Glycosylated hemoglobin after FMT (%; F5, 54=2396, P < 
0.0001; n = 10); (F) Comparison of OGTT (mM; Time: F4, 216 = 190.3, P < 0.0001; Group: F5, 54 = 55.93, P < 0.0001; Interaction: F20, 216 = 20.59, P 
< 0.0001; n = 10); (G) Comparison of ITT (mM; Time: F5, 270 = 134.4, P < 0.0001; Group: F5, 54 = 11.58, P < 0.0001; Interaction: F25, 270 = 1.942, P = 
0.0056; n = 10); (H) The levels of TG (mM; F5, 45 = 84.27, P < 0.0001); (I) TC (mM; F5, 54 = 20.55, P < 0.0001); (J) LDL-C (mM; F5, 49 = 131.0, P < 
0.0001), and (K) HDL-C (mM; F5, 48 = 68.74, P < 0.0001) after FMT (mM, n = 7-10). *P < 0.05, **P < 0.01, and ***P < 0.001 vs. L-P, #P < 0.05, ##P 
< 0.01, and ###P < 0.001 vs. Z-P, &P < 0.05 vs. Z-Lg in (B–D, F, G). *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 indicated inter-group 
changes in (E) and (H–K). Statistical analysis was performed with two-way ANOVA in (B–D), one-way ANOVA in (E) and (H–K) and repeated 
ANOVA in (F, G). The data were expressed as the mean ± SD. 
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the Z-Lg group than in the Z-P and Z-Zg groups, 

suggesting that transplantation of the LZ intestinal 

microbiota improved the insulin resistance of ZDF rats 

(Figure 1F, 1G). 

 

Effects of FMT on intestinal communities in rats 

 

The response to FMT in the obese context is closely 

related to the baseline composition of the microbiota 

[15]. The metabolic response to FMT can be predicted by 

the baseline composition of the microbiota of the 

recipient [16]. There was no significant difference in 

diversity between the two groups of antibiotics 

administered to LZ and ZDF recipient rats (Figure 2A). 

Principal coordinates analysis (PCoA) showed that there 

was no significant difference in the spatial distribution of 

community samples between groups after antibiotic 

gavage, and there were significant differences between 

groups without antibiotic gavage (Figure 2A). This 

indicated that the pseudo-sterile rat model was 

successfully established, and the baseline of the intestinal 

microbiota of the recipient rats was the same. 

 

 
 

Figure 2. Establishment of the pseudoaseptic rat model and evaluation of intestinal microbiota structure after FMT. (A) 

Shannon index and Simpson index among six groups after intragastric administration of antibiotics and a three-dimensional sequence plot of 
unweighted UniFrac PCoA analysis corresponding to LZ and ZDF rats after antibiotics (Shannon: F5, 52 = 10.03, P < 0.0001; Simpson: F5, 50 = 
12.94, P < 0.0001; n = 10); (B) Shannon index and Simpson index among six groups after FMT (Shannon: F5, 53 = 13.48, P < 0.0001; Simpson: F5, 

53 = 14.69, P < 0.0001; n = 10) and a three-dimensional sequence plot of unweighted UniFrac PCoA analysis corresponding to LZ and ZDF rats 
after FMT (n = 10). The percentage in parentheses of coordinate axes represented the proportion of differences in the original data that the 
corresponding principal coordinates could explain. Statistical analysis was performed with one-way ANOVA in (A, B). *P < 0.05, **P < 0.01, 
and ***P < 0.001. The data were expressed as the mean ± SD; (C) Unweighted UniFrac distance box plots. Horizontal coordinates 
corresponded to statistical comparisons between groups and within groups, and longitudinal coordinates indicated the corresponding 
distance values. Borders of boxes represented the interquartile range (IQR), horizontal lines represented the median value, and upper and 
lower whiskers represented 1.5 outside the upper and lower quartiles. In the IQR range, the symbol “+” denoted potential outliers that 
exceed the range. Statistical analysis was performed with Student’s t-test and Monte Carlo permutation test; (D) PLS-DA discriminant analysis 
graph. Each point represented a sample. The same color points belonged to the same grouping, and the same grouping points were marked 
with ellipses (n = 10). Yellow: L-P; Green: L-Lg; Purple: L-Zg; Orange: Z-P; Red: Z-Lg; Blue: Z-Zg. 
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The intestinal community identification of donor rats 

showed that the α-diversity index and β-diversity index 

between the two groups were significantly different 

(Supplementary Figure 2A–2C). After FMT, Shannon 

index and Simpson index showed that Z-P was lower 

than Z-Lg and Z-Zg (P < 0.05) in the recipient group. 

Unweighted UniFrac PCoA analysis and UniFrac 

distance value difference box plots showed that there 

were significant differences between the groups, 

indicating that the intestinal microbial system has 

changed after FMT (Figure 2B, 2C). PLS-DA (Partial 

Least Squares Discriminant Analysis) showed that the 

L-Lg and L-Zg communities had a higher degree of 

aggregation, and the Z-Lg, Z-Zg, and Z-P groups had 

better separation (Figure 2D). 

 

Different proportions of phyla were seen after FMT, of 

which more than 90% of the readings belonged to  

four phyla, Firmicutes, Bacteroidetes, TM7, and 

Proteobacteria. At the genus level, 26 categorical genera 

such as Lactobacillus, Ruminococcus, Enterococcus,  

and Allobaculum accounted for the major abundance 

(Figure 3A, 3B). In order to more clearly judge the 

diversity of microbiota composition between groups, we 

further used petal maps to show common and unique 

genera related to FMT. Different colors represented 

different modules. The petal map (node) in the center was 

shared by all groups, with a total of about 974 OTUs, 

which allowed us to see the different OTUs of each 

receptor group more clearly. The Z-P and Z-Zg groups 

showed more unique OTUs than that of LZ recepient 

rats, while LZ rats transplanted with ZDF microbiota 

showed a decrease in OTU, and ZDF rats transplanted 

with LZ microbiota showed an increase in OTU. This 

result further proved that the ZDF groups were more 

diverse than the LZ groups (Figure 3C). At the same 

time, Firmicutes / Bacteroides (F / B) ratio in the Z-Zg 

group increased significantly (Figure 3D). Consistent 

with the glycolipid metabolism phenotype, these changes 

did not respond to LZ recipient rats. The 16S rRNA gene 

sequence was conducted to determine identity. Metastats 

pairwise comparison test was performed according to the 

composition and sequence distribution of each sample at 

each taxonomic level, and the difference in sequence 

quantity between the samples (groups) of each taxon at 

the phylum and genera levels. Along with the invasion of 

the ZDF rats’ microbiota and the intensification of T2DM 

symptoms, Bacteroides showed high expression, while 

Lactobacillus, Roseburia, Coprococcus, Rothia, and 

Allobacum decreased, showing the opposite trend in the 

group of transplanted with LZ microbiota (Figure 3E). 

This was different from the differences identified in the 

donor group (Supplementary Figure 2A–2D and 

Supplementary Table 1). The microbes were inter-

dependent and mutually antagonistic, maintaining the 

intestinal environment in a stable ecology and thus 

maintaining the health and stability of the body. 

However, the coordination mechanism between them is 

not completely understood. PICRUSt predicts the 16S 

rRNA gene sequence in the KEGG PATHWAY 

(http://www.genome.jp/kegg/pathway.html) database to 

obtain annotation information corresponding to each 

functional spectrum database for each sample. According 

to the abundance distribution of each functional group in 

each sample, R-software was used to calculate the 

number of common functional groups in each group, and 

the proportion of the functional groups shared and unique 

by each group was visually represented by a Venn 

diagram. The KEGG third-level pathway statistics 

showed that the microbiota results predicted that 25 

pathways had significant changes, including nine in the 

carbohydrate pathway, seven in the amino acid metabolic 

pathway, five in the energy metabolism pathway, two in 

synthesis and metabolism, two in nucleotide metabolism 

and one in the enzyme family (Figure 3F, 3G). 

 

According to obesity and T2DM disease progression 

and microbiota changes in LZ and ZDF rats, the control 

group LZ rats did not show a significant response to the 

transplanted LZ or ZDF rats microbiota, which was 

different to that in ZDF rats. It is speculated that the 

susceptibility of ZDF rats to obesity and T2DM is 

increased. On this basis, the change of the microbiota 

structure can inhibit or promote the symptoms with the 

FMT, which adds evidence for the directional role of 

intestinal microbiota in the progression of T2DM. 

 

FMT changed the pathological structure and 

insulin/leptin signaling pathway in ZDF rats 

 

According to the experimental results of glycolipid 

metabolism phenotype and intestinal microbiota, when 

LZ rats were used as recipients, no matter whether the 

normal or T2DM microbiota was transplanted, the 

symptoms and microbial structure did not show 

significant changes compared with the control group. It 

could be speculated that healthy hosts were more 

powerful in regulating the balance in the body, even if 

their gut community composition were changed to a 

certain extent, they could still restore themselves and 

return to health. Therefore, when we delved into the 

directional role of microbial transplantation in disease 

progression, we chose the ZDF recipient group that was 

more significant in response to FMT. In order to 

investigate the relationship between the intestinal tissue 

structure and the changes in intestinal microbiota, we 

examined the colonic pathological characteristics of 

four groups of rats with scanning and transmission 

electron microscopy. In the L-P group, microvilli were 

orderly and undamaged, and the number of goblet cells 

was high, the tight junction between cells was complete 

and compact, and mitochondria were high in number, 

http://www.genome.jp/kegg/pathway.html
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large in volume, and complete in structure. In the Z-P 

group, typical microvilli were damaged and shed, and 

the number of goblet cells was reduced, mitochondria 

were swollen and cristae were arranged disorderly. In 

the Z-Lg group, the damage was less, but still existed 

while the most serious mucosal damage was found in  

Z-Zg group (Figure 4A). At the same time, fasting 

serum insulin (FSI) level showed that Z-Lg was lower 

than Z-Zg (P < 0.001) (Figure 4B–4D). The integrity of 

intestinal barrier is very important to health [29, 30] and 

one of the characteristics of obesity and T2DM is the 

damage of intestinal structure and barrier function [31, 

32]. With the age increasing, the random blood glucose 

of ZDF rats continued to increase, but FSI and leptin 

 

 
 

Figure 3. Specific phyla and genera in each group after FMT.  (A) Relative abundance of bacteria at the phylum level (n = 10);  

(B) Relative abundance of bacteria at genus level (n = 10); (C) The petal diagram revealed common and unique genera associated with 
different groups. Different colors represented different modules; (D) Firmicutes / Bacteroidetes ratio (F5, 45 = 6.511, P = 0.0001; n = 8-9). 
Statistical analysis was performed with two-way ANOVA. *P < 0.05, **P < 0.01. The data were expressed as the mean ± SD; (E) Violin 
maps of abundance distribution of seven OTUs with the most significant difference among sample groups. The abscissa represent ed the 
group, and the ordinate represented the number of sequences of each taxon in each sample (group) (n = 10). Using Mothur software, 
the statistical algorithm of Metastats was invoked to test the difference in sequence quantity (absolute abundance) between t he 
samples (groups) of each taxon at the phylum and genus levels; (F) The venn diagram of common functional groups predicted by 
PICRUSt. Each ellipse represented a sample (group). The overlapping regions between ellipses indicated common functional grou ps 
among the samples (groups). The number in each block indicated the number of common or unique functional groups of the samples 
(groups) included in the block; (G) KEGG third-level pathway heat map predicted by PICRUSt. The abscissa was the third level functional 
group of KEGG, and the ordinate was the sample number. The color markers were the number of macrogenomes constructed from 
biom files. The intensity of the colors represented the degree of association (red, higher number of corresponding samples; g reen, 
lower number of corresponding samples). 
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Figure 4. The effects of FMT on the intestinal pathological structure, IR, and LR in rats. (A) The colon surface of rats was magnified 

2000 times (upper), 5000 times (middle), and 10,000 times (lower). IV: mucosal layer, microvilli on cell surface. mit: mitochondria. N: nucleus. 
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BC: goblet cells. White vesicle structures were secretory vesicles. ER: endoplasmic reticulum; (B) Fasting serum insulin (mIU / L; F5, 36 = 351.5, 
P < 0.0001); (C) HOMA-IR Index (F5, 39 = 85.58, P < 0.0001); (D) Leptin in 6 groups (pg / mL; F5, 43 = 141.7, P < 0.0001; n = 7-9); (E) Western 
blotting analysis of IR and LR signaling pathway molecules in liver tissues was performed after FMT; (F) Quantification of western blotting 
analysis in (D) (p-IRS2 / IRS2: F3, 15 = 2.175, P = 0.0132; p-JAK2 / JAK2: F3, 15 = 0.5387, P = 0.6630; p-Akt / Akt: F3, 15 = 7.221, P = 0.0032; FoxO1 / 
β-actin: F3, 15 = 6.224, P = 0.0059; n = 3-4). Statistical analysis was performed with two-way ANOVA. *P < 0.05, **P < 0.01. The data were 
expressed as the mean ± SD. 

 

were also high, indicating the presence of IR and LR. 

The liver is the key gatekeeper for draining intestinal 

blood from the portal vein. Even in a healthy state, the 

liver is often challenged by metabolic stress from gut 

microbiota and their metabolites. A complete intestinal 

epithelial barrier protects the liver from enormous 

bacterial exposure [33]. After the intestinal barrier is 

damaged, bacterial translocation and endotoxins enter 

the portal vein system, causing immune damage and 

inflammation, damage to distal organs, and impairment 

of the function of the body in multiple ways. The liver 

is the main peripheral target tissue for leptin and insulin, 

which regulate glucose metabolism. Transplanting the 

microbiota of LZ rats decreased p-JAK2 in the liver, 

and the expression of FoxO1 was inhibited by IRS / Akt 

pathway, while transplanting the microbiota of ZDF rats 

showed the opposite (Figure 4E, 4F). In other words, 

transplanting the microbiota of thin control rats can 

reduce the glucose metabolism dysfunction due to gene 

defects by regulating insulin resistance and leptin 

resistance, while transplanting the microbiota of obese 

T2DM rats will aggravate IR and LR. 

 

FMT changed intestinal metabolic characteristics of 

ZDF rats 

 

FMT altered the structure and characteristics of rat 

intestinal microbiota metabolites (Figure 5A, 5B). In 

order to determine the differences and similarities 

between the metabolite profiles in different samples, all 

the differential metabolites were clustered naturally. The 

results showed that the Z-P and Z-Zg groups had 

specific clustering effects among some metabolites, such 

as 3-hydroxybutyric acid, docosahexaenoic acid, 3-

indolepropionic acid, L-Norieucine, Malonic acid, etc., 

which were significantly different from the L-P or Z-Lg 

group (Figure 5C). Orthogonal Partial Least Squares 

Discriminant Analysis (OPLS-DA) verifies that the 

model was credible (Supplementary Figure 3). In order 

to visualize the differences between the metabolites in 

the group, a one-dimensional statistical analysis was 

performed to obtain the top-ranked (P < 0.05, Table 1) 

representative differential metabolites as boxplots 

(Figure 5D). Among them, after transplanting the 

microbiota of LZ rats, the metabolites were transformed 

into the metabolic structure of the L-P control group, and 

the metabolic direction was completely changed after the 

microbiota of ZDF rats was transplanted. The number of 

shared and unique metabolites for each set of screens 

was shown as a Venn plot (Figure 5E). Based on 

different metabolite analysis, Metabolite Pathway 

Enrichment Analysis (MPEA) can classify the metabolic 

pathways involved using P values and mathematical 

algorithms. The 6 pathways of Citrate cycle (TCA 

cycle), Synthesis and degradation of ketone bodies, 

Butanoate metabolism, Phhenylanine metabolism, Beta-

Alanine metabolism, Alanine, aspartate and glutamate 

metabolism were consistent with the results of the 

aforementioned microbiota prediction pathway. 
 

Potential relationship among host phenotypes, 

intestinal microbiota, and metabolites 
 

To comprehensively analyze the relationship among the 

host phenotype, the intestinal microbiota, and the 

intestinal microbial metabolites, a correlation matrix was 

generated by calculating the Spearman correlation 

coefficient (Figure 6). In the obesity-T2DM process, 

three genera, Lactobacillus, Clostridium, and Rothia, 

showed a negative correlation with all phenotypes and 

might be an effective intervention for delaying the 

progression. Lactobacillus can regulate the balance of 

serum lipids, glucose, etc. through bile acids, benzene 

derivatives, organic acids, and others to promote lipid 

absorption, maintain intestinal barrier function transport, 

and conduct endocrine function signals; Clostridium can 

affect intestinal permeability through bile acids, lipids, 

etc. and activate the intestinal-brain-hepatic nerve axis to 

regulate glucose balance; Rothia can provide energy to 

the colonic epithelium by producing SCFAs and 

participate in the progression of obesity, insulin 

interference, and T2DM. Allobaculum is more closely 

related to obesity indicators. We further demonstrated 

that 3-hydroxybutyric acid, docosahexaenoic acid, n6, 3-

indolepropionic acid, acetic acid, docosahexaenoic acid, 

and hexanoic acid were significantly increased; these 

may be key metabolites that can delay the progression of 

obesity to T2DM. Fumaric acid was negatively 

correlated with HOMA-IR and other blood lipid 

indicators, and may be an effective substance for obesity 

control. Fatty acids such as docosapentaenoic acid N6 

and caproic acid were negatively correlated with blood 

glucose and glycosylated hemoglobin, and may be 

closely related to a delay in progression to T2DM. The 

mechanisms of fatty acids [34–36] and amino acids [14, 

37–39] and their derivatives [40–42] are being explored. 

The intestinal-insulin axis formed by the host and 

microbiota during symbiotic evolution regulates the 
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insulin level [43], which confirmed that there is a close 

relationship between microorganism and host in the 

course of obesity-T2DM. 

 

DISCUSSION 
 

Aging is one of the causes of abnormal glucose 

metabolism [44]. It has been shown that age-related 

glucose intolerance, and even hyperglycemia, can 

disrupt the stability of glucose metabolism, leading to 

the onset of T2DM [45]. Given that dysfunctional leptin 

signaling is highly correlated with metabolic diseases 

such as obesity and T2DM [46], we used ZDF rats as 

the T2DM model. With the increase of age, the obesity 

and blood glucose levels of ZDF rats continue to 

increase, accompanied by severe insulin resistance, and 

even with the increase of blood glucose, a series of 

complications related to T2DM gradually appear, which 

are related to aging. The clinical manifestations 

observed in phenotypic individuals are consistent. 

 

In humans, FMT can be seen as a tool to separate 

associations from the causality of multiple diseases 

[47]. At present, it has been recommended by many 

 

 
 

Figure 5. Metabolite composition of intestinal microbiota in ZDF rats after FMT. (A) The composition of metabolite types in each 

sample; (B) Score plot of 2D and 3D PLS-DA (n = 10). The green dots indicated L-P, the blue dots indicated Z-P, the red dots indicated Z-Lg, and 
the orange dots indicated Z-Zg; (C) Z-score heat map of differential metabolites. In the figure, the horizontal direction represented samples, 
and the longitudinal direction represents metabolites. The intensity of the colors represented the degree of association (red, higher content 
in the corresponding samples; blue, content in the corresponding samples. The relative numerical values represented by the colors were 
shown in the ribbon on the right.); (D) According to the results of single-dimensional statistics, the P-value was statistically significant for 15 
groups of different metabolites as shown in box plots (n = 7-10); (E) Venn diagram of different metabolites. The number of shared and unique 
different metabolites screened by each group was shown; (F) Bubble map of the P-value of the metabolic pathway involved in the different 
metabolites. When the bubble was larger or the color was darker, the corresponding P value was smaller. Gray bubble, 0.05 < P < 0.1, 
Colored bubble, P < 0.05. 
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Table 1. Different metabolites based on one-dimensional statistical analysis. 

No. Name Class HMDB P-value 

1 Malonic acid Organic Acids HMDB00691 6.20E-05 

2 L-Asparagine Amino Acids HMDB00168 1.80E-03 

3 L-Norleucine Amino Acids HMDB01645 2.90E-03 

4 Fumaric acid Organic Acids HMDB00134 5.40E-03 

5 Putrescine Alkylamines HMDB01414 6.00E-03 

6 3-Hydroxybutyric acid Organic Acids HMDB00357 7.40E-03 

7 L-Kynurenine Amino Acids HMDB00684 7.80E-03 

8 Docosapentaenoic acid n6 Fatty Acids HMDB01976 1.40E-02 

9 3-Indolepropionic acid Indoles HMDB02302 2.00E-02 

10 Acetic acid Fatty Acids NA 2.40E-02 

11 Oxalic acid Organic Acids HMDB02329 2.80E-02 

12 Docosahexaenoic acid Fatty Acids HMDB02183 3.00E-02 

13 Caproic acid Fatty Acids HMDB00535 3.40E-02 

14 3-Indoleacetonitrile Nitriles HMDB06524 4.70E-02 

15 cis-Aconitic acid Organic Acids HMDB00072 4.70E-02 

 

 
 

Figure 6. Association map of the three-tiered analyses integrating the gut microbiome, phenotypes, and metabolome. The 

left side of the panel showed associations between gut microbiota and phenotypes. The right side of the panel showed associations between 
metabolites and phenotypes. The intensity of the colors represented the degree of association (red, positive correlation; blue, negative 
correlation). *P < 0.05, **P < 0.01, ***P < 0.001. 
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clinical medical guidelines and consensus for the 

treatment of refractory Clostridium difficile infection 

(CDI). In addition, FMT is used in the treatment of 

inflammatory bowel diseases (IBD), irritable bowel 

syndrome (IBS), functional constipation (FC) and 

autism. Various clinical studies have also shown certain 

efficacy [48–49]. For example, the clinical remission 

rate of FMT for active ulcerative colitis is 24% to 32%, 

and its symptom relief is related to the specific intestinal 

microbiota and abundance of metabolites [50–55]. FMT 

treatment of Crohn’s disease has shown an average 

clinical remission rate of 47% to 52% [55]. These 

therapeutic potentials are attributed to restoring intestinal 

microbial balance by replacing pathogens with more 

beneficial bacteria [56]. In addition to intestinal diseases, 

researchers are currently focusing on metabolic diseases, 

nervous system diseases and cardiovascular diseases. 

T2DM is closely related to the imbalance of intestinal 

microbiota. The change of intestinal microbiota is one of 

the most important environmental factors that promote 

the development of T2DM [57]. The composition of  

the intestinal microbiota can be beneficially modified  

by microbial-based therapies to maintain glucose 

homeostasis. A study showed that a double-blind 

randomized controlled trial in men with insulin 

resistance was conducted who received autologous or 

allogeneic fecal transplantation from thin donors, and 

obesity and insulin resistance were significantly 

improved [15–16]. Other clinical trials are needed to 

verify the effect of FMT on patients with insulin 

resistance and T2DM. At present, researchers at Nanjing 

Medical University in China have evaluated a 2-year 

clinical trial, one of which is the result of a phase 3 

clinical trial of FMT performed on T2DM by FMT 

under nasal gastroscope. Other clinical trial studies on 

the effect of FMT on T2DM is being studied [58]. 

 

Our study showed that the IR phenotype, intestinal 

microbiota structure, and metabolic profiles of leptin 

receptor-deficient mice could be transferred with FMT, 

and that this transferable trait was not realized in control 

non-mutant mice. The microbiota structure and 

metabolic spectrum corresponding to worse symptoms 

changed negatively. The beneficial bacteria producing 

Short Chain Fatty Acids (SCFAs) such as Lactobacillus, 

Rothia, Roseburia, and Coprococcus decreased, and the 

metabolites of 3-hydroxybutyric acid, n-6,3-

indolepropionic acid, acetic acid, docosahexaenoic acid, 

and hexanoic acid decreased significantly. The reverse 

experiment showed the opposite. With the development 

of omics technology, researchers now more often 

combine multiple parameters to analyze the state of the 

disease [59]. In 2017, Finnish scientists discovered 

through metabolomics that high concentrations of 

indolepropionic acid in serum were potential biomarkers 

for the development of T2DM, which could mediate its 

protective effect by maintaining β-cell function [60]. 

Docosahexaenoic acid (DHA) is an n-3 series of 

polyunsaturated fatty acids. Current research has shown 

that DHA has obvious blood glucose lowering and anti-

inflammatory effects [61], short-term supplementation of 

fish oil rich in DHA could significantly reduce 

Mononuclear cells / macrophage activating factor 

soluble CD163, triglyceride levels, etc. in patients with 

T2DM and help to interfere with T2DM and obesity-

related complications [62]. Short-chain fatty acids are 

the main metabolites of dietary fiber fermented by the 

flora. Among them, acetic acid can be produced from 

pyruvate in two different ways, one is through intestinal 

bacteria Acetyl-CoA, and the other is the Wood-

Ljungdahl pathway, which can promote insulin, GLP-1, 

GIP and PYY secretion, promote β-cell growth and 

regulate inflammation [63]. Studies have found that 

acetate can prevent obesity and insulin resistance in mice 

caused by high fat diets. Acetate could reduce the weight 

gain of mice by 40%, and fasting insulin and leptin 

levels were significantly reduced [64]. Another study 

used internal transcription spacer (ITS)-based 

sequencing to characterize the microbiota of obese and 

non-obese subjects. The results found a preliminary 

relationship between obesity and metabolites such as 

hexanoic acid [65]. 3-Hydroxybutyric acid (3HB) is a 

ketone body and acts as an indicator of energy balance 

and a central regulator of energy homeostasis [66]. 

Studies have shown that the peroxisome proliferator-

activated receptor alpha (PPARα) -dependent activation 

and promotion of fatty acid utilization in the liver 

induces the production of 3-HB [67], but the relevant 

mechanism deeply related to obesity-T2DM is not clear 

yet. It should be further verified and discussed in the 

later experimental design. In short, in disease-susceptible 

individuals, the intestinal microbiota became a catalyst 

for the development of disease. Although the intestinal 

microbial genome differs among individuals [68], it can 

modulate multiple functions that affect host metabolism 

[40, 69], including normal homeostasis [70]. In the 

previous study, we monitored the intestinal microbiota 

of diabetic rats for 8 weeks in real time, proving that the 

role of intestinal microbiota in the development of 

diabetes provides support [71]. 
 

Interestingly, transplanting the intestinal microbiota of 

ZDF rats with T2DM to heathy LZ rats was not induced 

them to develop obesity or T2DM, and the structure of 

the microbiota was not significantly different from that 

of the control group. In addition, transplantation of the 

microbiota of LZ rats into ZDF rats only improved the 

course of the disease to a certain extent, rather than 

restoring it to normal. This indicates that the microbiota 

is not the most critical factor leading to disease. Healthy 

hosts are more capable of regulating homeostasis, and 

they can correct themselves and return to health, even 
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when the composition of the intestinal community is 

altered. Regulation of the intestinal microbial 

composition and function by FMT may only partially 

affect the intrinsic and complex pathophysiology of 

obesity and T2DM [72]. The composition and function 

of the intestinal microbiome are influenced by many 

factors, and thus, a single FMT is unlikely to cure 

obesity or T2DM. However, the combination of FMT 

and personalized probiotics or the addition of “missing” 

intestinal bacterial strains (drug microbiology) may 

enhance the effectiveness of conventional treatment 

strategies [73]. 

 

Overall, we demonstrated a role for intestinal 

microbiota in directing the progression of obesity to 

T2DM. The intestinal microbiota was more involved in 

catalyzing progression than in causing disease de novo. 

At present, our research is still focused on rodents, and 

whether similar effects occur in humans should be 

explored. The key role of the intestinal microbiota 

balance in health has been repeatedly emphasized. We 

expect that adjusting the dietary structure or providing 

therapeutic FMT can reduce IR, control obesity, delay 

and reverse the development of T2DM in the future. 

 

MATERIALS AND METHODS 
 

Animals and ethics 

 

In this study, rats were used in animal experiments and 

approved by the Animal Ethics Committee of Nanjing 

University of Traditional Chinese Medicine (Grant No. 

201103A026). Male 5-year-old ZDF rats (fa/fa) and 

their lean control LZ rats (fa/+) were purchased from 

Vital River Laboratories (China), 20 rats in the donor 

group and 60 rats in the recipient group, which were 

raised in the specific pathogen-free animal experiment 

center of Nanjing University of Chinese Medicine, 

constant temperature (24±2°C), constant humidity 

(65%±5%) and accepted a 12h light/dark cycle (7:00 

AM-7:00 PM). The animals were fed a radiation 

sterilized control feed (MD17121, Mediscience, China) 

or Formulab feed (Purina #5008, Lab diet, USA). Free 

use of food and autoclaved water. Body weight, 

abdominal circumference, and random blood glucose 

were measured weekly during the experiment. 

 

Preparation of donor group’s microbiota 

 

Rats in the donor group were raised to 9 weeks of age in 

an optimal environment, and the success of induction of 

T2DM was evaluated, and they were euthanized after 

significant difference from the control group. The cecal 

and colon contents were collected and combined in a 

sterile test tube, 2 g was stored in a sterile cryotube for 

the detection of the microbiota. The remaining samples 

were combined and diluted 20-fold in sterile PBS and 

centrifuged at 188 ×g for 5 minutes [74]. The 

supernatant was filtered through 70 mm filters and 

aliquoted for use. 

 

Antibiotic administration and microbiota 

transplantation 

 

LZ and ZDF Rats in the recipient group were 

continuously intragastrically administrated 1 mL broad-

spectrum antibiotic mixture containing ampicillin 

(Cas7177-48-2), gentamicin (Cas1405-41-0), metro-

nidazole (Cas443-48-1), and neomycin (Cas1405-10-3) 

(1:1:1:1, Solarbio, China) for 10 days [75]. After 

antibiotic treatment, 16S rRNA was measured in the 

feces to ensure that the effects of antibiotics on the 

microbiota were similar. Cecal / colon supernatant (750 

μL) from ZDF and LZ donor rats were intragastrically 

administered to ZDF and LZ recipient rats for 28 

consecutive days, and the feces of each group after 

transplantation were collected. In addition to the above-

mentioned rats, other ZDF and LZ rats were 

intragastrically administered PBS instead of the antibiotic 

mixture and the donor supernatant. Oral Glucose 

Tolerance Test (OGTT) and Insulin Tolerance Test (ITT) 

experiments were performed, and after 12 h of fasting in 

the evening, the rats were anesthetized with isoflurane, 

and abdominal aorta blood was taken. Precipitated blood 

cells (10 μL) were immediately measured for 

glycosylated hemoglobin (Bio-Rad D-10 glycosylated 

hemoglobin meter, Bio-Rad, USA). Blood cells were also 

centrifuged at 1300 ×g for 10 min, serum was extracted, 

and blood lipid levels were measured with a fully 

automated biochemical analyzer (Chemray 240, Rayto, 

China). Fasting serum insulin levels (FSI, 10-1250-01, 

Mercodia, Sweden) and leptin levels (Leptin, Catalogue 

#PMOB00, R&D Systems, USA) were measured with an 

enzyme-linked immunosorbent assay. The Homeostasis 

Model Assessment-Insulin Resistance (HOMA-IR) index 

was calculated as Fasting Blood Glucose (mmol / L) × 

FSI (mIU / L) / 22.5. After the rats were sacrificed, the 

liver was quickly collected, and the contents of the colon 

were placed in a sterile cryotube and quickly frozen in 

liquid nitrogen for subsequent analysis. 

 

16S rRNA amplification and sequencing and 

biosignal analysis 
 

As previously described [71], bacterial DNA was 

extracted from feces and intestinal contents, purified, 

quantified, and sequenced using the Illumina MiSeq 

platform. Sequencing libraries were prepared using the 

TruSeq Nano DNA LT Library Prep Kit (Illumina). The 

aforementioned sequences were merged by 97% 

sequence similarity and partitioned by Operational 

Taxonomic Units (OTU), with QIIME software and 
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UCLUST, a sequence alignment tool. The obtained 

abundance matrix was used to calculate α-diversity. 

According to the results of OTU classification and 

taxonomic status identification, the specific composition 

of each sample at each taxonomic level can be obtained. 

Using Mothur, QIIME, and R-software, which we refer 

to as a Metastats (http://metastats.cbcb.umd.edu/) 

statistical algorithm, non-weighted UniFrac principal 

coordinates analysis (PCoA) was used to construct a 

partial least squares discriminant analysis (PLS-DA) 

discriminant model to quantify the differences and 

similarities between samples. The 16S rRNA gene 

sequence was predicted in KEGG Pathway Database 

(KEGG), Cluster of Orthologous Groups of Proteins 

(COG), and RNA families (Rfam), which are three 

functional spectrum databases, using Phylogenetic 

Investigation of Communities by Reconstruction of 

Unobserved States (PICRUSt). Annotation information 

corresponding to each functional spectrum database was 

obtained for each sample, and the abundance matrix of 

predicted functional groups was obtained. A Venn 

diagram was created. The shared/unique OTU between 

samples and groups was visualized with a “Venn 

Diagram” that was created with R software. 

 

Targeted determination and analysis of metabolites 

 

The samples were homogenized and centrifuged, and 

the supernatants were combined and subjected to 

automated sample derivatization and separation using a 

robotic multi-purpose sample MPS2 (Gerstel, 

Muehlheim, Germany) with a double head. Microbial 

metabolites were quantified using gas chromatography 

using a time-of-flight mass spectrometry (GC-TOFMS) 

system operating in electron ionization mode (Pegasus 

HT, Leco Corp., St. Joseph, MO, USA). The reserved 

solutions of all 132 representative reference chemicals 

of microbial metabolites were prepared in methanol, 

ultrapure water or sodium hydroxide solution at a 

concentration of 5 mg/mL or 1 mg/mL. Internal 

standards were added to monitor data quality and 

compensate for matrix effects. The original data 

generated by GC-TOFMS was processed with 

proprietary software XploreMET (v2.0, Metabo-Profile, 

Shanghai, China) [76], to automatically remove baseline 

values, to smooth and pick peak values, and to align 

peak signals. XploreMET can perform data processing, 

interpretation, and visualization. Statistical algorithms 

were adapted from the widely used statistical analysis 

software package (R) (http://cran.r-project.org/) using 

multivariate statistical analysis, such as PLS-DA, 

OPLS-DA and univariate statistical analysis, including 

Student’s t-test, the Mann-Whitney-Wilcoxon U-test, 

Analysis of Variance (ANOVA), and correlation 

analysis, for data analysis, data and project objectives 

constituted the best statistical method. 

Scanning and transmission electron microscopy 

 

Colon samples were fixed with 2.5% glutaraldehyde and 

dehydrated in ethanol twice for 10-15 min each. Samples 

were immersed in a 1:1 mixture of acetic acid (isoamyl 

ester): ethanol for 10 min followed by isoamyl acetate 

for 10 min with shaking. Samples were transferred into a 

sample basket and placed in the sample chamber of a 

pre-cooled critical point dryer (K850 critical point dryer, 

Quorum, UK) in which liquid carbon dioxide was injected 

to submerge the sample. The sample was pasted with 

conductive adhesive after gasification with carbon dioxide 

at elevated temperature. An Ion Sputtering Instrument 

(108Auto Ion Sputtering Instrument, Cresstington, UK) 

was used to prepare samples from post-coating endoscopy 

(SU8010 scanning electron microscope, Hitachi, Japan). 

For transmission electron microscopy, other samples 

were dehydrated in a graded series of ethanol (50% 

ethanol-70% ethanol-90% ethanol-90% ethanol + 90% 

acetone-90% acetone-100% acetone), embedded, cured, 

and cut into semi-thin sections (1 μm) and thin sections 

(70 nm) with an ultramicrotome (EM UC6, Leica, 

Germany). Photomicrographs were taken after double-

staining with 3% uranium acetate-lead citrate (JEM1230 

transmission electron microscope, JEOL, Japan). 

 

Western blotting 

 

Liver tissues were homogenized in RIPA buffer 

(P0012B, Beyotime, China) supplemented with a 

mixture of protease inhibitor cocktail (100×) (5871s, 

CST, USA) and phosphatase inhibitor cocktail (100×) 

(5870s, CST). The lysates were subjected to Sodium 

Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis 

(SDS-PAGE) and blotted with the following antibodies: 

phospho-Janus Kinase Signal Transducers 2 (JAK2) 

(Tyr1007/1008) (3776S, CST, 1:1000), JAK2 (3230S, 

CST, 1:1000), phospho-Insulin Receptor Substrate 2 

(IRS2) (Ser371) (Ab3690, Abcam, 1:1000), IRS2 

(4502S, CST, 1:1000), phospho-Protein Kinase B (Akt) 

(Ser473) (4060s, CST, 1:1000), Akt (9272s, CST, 

1:1000), Forkhead Transcription Factor 1 (FOXO1) 

(2880S), CST, 1:1000), and β-actin (3700S, CST, 

1:1000). The membranes were incubated with secondary 

antibodies conjugated to HRP (BA-1054/BA1050, 

Boster, China, 1:2000). The immunoreactive bands were 

treated with a chemiluminescence solution (ECL, Tanon, 

China) and detected with X-ray films. The blots were 

visualized with an Amersham Imager 600 (General 

Electric Company, USA) and analyzed with ImageQuant 

TL 1D software (GE Healthcare, USA). 

 

Data and statistics 

 

The data for the physiological characteristics of the rats 

were expressed as the mean ± standard deviation (SD). 

http://metastats.cbcb.umd.edu/
http://cran.r-project.org/
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Statistical analysis of differences between the different 

groups was performed with two-way ANOVA and then 

tested using Tukey’s true significant differences test. 

When only two groups were compared, Students’ t-test 

was used. The correlation between data for the 

physiological characteristics and different microbiota or 

metabolites was tested using Spearman correlation 

analysis. All analyses were performed using Prism 8.0 

(GraphPad, La Jolla, CA, USA) software. 
 

Data availability 
 

The datasets generated in this study are available 

through the NCBI Sequence Read Archive (accession 

number SRP227423). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Basic information of the donor group rats. (A) Body weight (g; Time: F4, 45 =1254, P < 0.0001; Group: F1, 45 = 

1972, P < 0.0001; Interaction: F4, 45 = 26.78, P < 0.0001); (B) Abdominal circumference (cm; Time: F4, 45 =179.3, P < 0.0001; Group: F1, 45 = 
535.6, P < 0.0001; Interaction: F4, 45 = 4.437, P = 0.0042); (C) TG (mM; t = 13.79, P < 0.0001), TC (mM; t = 6.024, P < 0.0001), LDL (mM;  
t = 8.414, P < 0.0001), and HDL (mM; t = 0.8776, P > 0.05); (D) Random blood glucose (mM; Time: F4, 45 = 48.78, P < 0.0001; Group: F1, 45 = 
304.2, P < 0.0001; Interaction: F4, 45 = 48.17, P < 0.0001); (E) Glycosylated hemoglobin (%; t = 5.757, P < 0.0001); (F) Fasting serum insulin (μg / 
L; t = 2.717, P < 0.05); (G) HOMA-IR index (t = 4.437, P < 0.01); (H) Oral glucose tolerance (mM; Time: F4, 45 = 37.46, P < 0.0001; Group: F1, 45 = 
426.5, P < 0.0001; Interaction: F4, 45 = 12.86, P < 0.0001); (I) Insulin tolerance (mM; Time: F5, 54 = 14.72, P < 0.0001; Group: F1, 54 = 92.95, P < 
0.0001; Interaction: F5, 54 = 1.799, P = 0.1287) comparison of donor LZ and ZDF rats. n = 10. Statistical analysis was performed with two-way 
ANOVA in (A, B, D, H, I) and Student’s t-test followed by Tukey’s test in (C, E, F, G). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. The 
data are expressed as the mean ± SD. 
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Supplementary Figure 2. Intestinal microbiota structure of the donor group. (A) Comparison of α-diversity between donor LZ and 

ZDF rats (ACE: t = -4.121, P = 0.001; Chao1: t = -3.963, P = 0.002; Shannon: t = -1.600, P = 0.136; Simpson: t = 0.292, P = 0.774); (B) Three-
dimensional sequence diagram of samples of Unweighted UniFrac PCoA analysis of LZ and ZDF rats (n = 10); (C) Box plot of the difference in 
UniFrac distance values for different groups corresponding to the two groups of rats (n = 10); (D) Violin map of the abundance distribution of 
the top 20 taxa with the most significant difference between the sample groups (n = 10). Red, LZ group; Blue, ZDF group. Statistical analysis 
was performed with Student’s t-test, and Monte Carlo permutation test, or Student’s t-test followed by Tukey’s test. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001. The data are expressed as the mean ± SD.  
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Supplementary Figure 3. Orthogonal partial least squares discriminant analysis (OPLS-DA) among the normal group, model 
group, and intervention group. (A) Diagnostic parameters and regression curves of pairwise comparison between the L-P group and Z-P 

group; (B) the Z-P group and Z-Lg group; (C) the Z-P group and Z-Zg group. 
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Supplementary Table 
 

Supplementary Table 1. Different genera corresponding to the intestinal microbiota of the donor and recipient. 

Group Dominant group Taxa P-value q-value 

Donor LZ Adlercreutzia 0.000999 0.000404 

LZ Allobaculum 0.000999 0.000404 

LZ Bacteroides 0.000999 0.000404 

LZ Dorea 0.000999 0.000404 

LZ [Ruminococcus] 0.000999 0.000404 

LZ Turicibacter 0.000999 0.000404 

LZ Bifidobacterium 0.001998 0.000588 

LZ SMB53 0.001998 0.000588 

LZ Sutterella 0.001998 0.000588 

LZ Blautia 0.016983 0.003667 

LZ Parabacteroides 0.018981 0.003775 

LZ Roseburia 0.020979 0.003775 

LZ Ruminococcus 0.020979 0.003775 

LZ Akkermansia 0.025974 0.004206 

ZDF Coprobacillus 0.000999 0.000404 

ZDF Prevotella 0.000999 0.000404 

ZDF Faecalibacterium 0.006993 0.001887 

ZDF Candidatus_Arthromitus 0.010989 0.002738 

ZDF Marvinbryantia 0.015984 0.003667 

ZDF Holdemania 0.023976 0.004087 

Recipient LZ Lactobacillus 0.000999 0.009365 

LZ Roseburia 0.012827 0.101737 

LZ Coprococcus 0.015984 0.037874 

LZ Allobaculum 0.000999 0.037204 

LZ Rothia 0.004995 0.032776 

LZ Clostridium 0.003996 0.043003 

ZDF Bacteroides 0.002997 0.074407 

non-parametric t-test for testing. 


