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INTRODUCTION 
 

Apoptosis, an evolutionarily conserved process 

determined by apoptotic protein expression, is essential 

for tumor cell elimination and cancer suppression [1–3]. 

An apoptosis-resistant state is commonly seen in the 

initiation, progression, and treatment failure stages of 

human cancer [4–6], and molecular inhibitors that target  

 

anti-apoptotic proteins have been increasingly 

developed over the past three decades. Drugs that target 

the anti-apoptotic protein Bcl-2 have emerged as 

“breakthrough therapies,” and have been approved for 

chronic lymphocytic leukemia patients. However, the 

efficacy of most inhibitors that target anti-apoptotic 

proteins is unsatisfactory in clinical application, 

especially in solid tumors [7–10], and there is a concern 
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ABSTRACT 
 

Splicing dysregulation, which leads to apoptosis resistance, has been recognized as a major hallmark for 
tumorigenesis and cancer progression. Targeting alternative splicing by either increasing pro-apoptotic proteins or 
inhibiting anti-apoptotic proteins in tumor cells may be an effective approach for gastric cancer (GC) therapy. 
However, the role of modulation of alternative splicing in GC remains poorly understood. In this study, to the best 
of our knowledge, the unbalanced expression of the myeloid cell leukemia-1 (Mcl-1) splicing variants, Mcl-1L and 
Mcl-1S, was identified in GC patients for the first time. Increasing anti-apoptotic Mcl-1L and decreasing pro-
apoptotic Mcl-1S expression levels were correlated with tumor proliferation and poor survival. In vitro data 
showed that a shift in splicing from Mcl-1L to Mcl-1S induced by treatment with Mcl-1-specific steric-blocking 
oligonucleotides (SBOs) efficiently decreased Mcl-1L expression, increased Mcl-1S expression, and accelerated 
tumor cell apoptosis in a dose-dependent manner. Additionally, mouse xenotransplant models confirmed that 
modification of Mcl-1 alternative splicing increased tumor cell death and suppressed tumor proliferation. This 
study demonstrated that the modification of Mcl-1 splicing might stimulate the pro-apoptotic factor and inhibit the 
anti-apoptotic protein to induce significant apoptosis. Thus, this finding provided a strategy for cancer therapy, 
according to which SBOs could be used to change the Mcl-1 splicing pattern, thereby inducing apoptosis. 
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that frequently spliced variants of apoptotic proteins 

diminish the ability of drugs to bind tightly to their 

targets, consequently limiting their efficacy [11–13]. 

This has ignited interest in developing new strategies 

that target alternative splicing to regulate tumor cell 

apoptosis [14, 15]. 

 

Alternative splicing, a vast source of biological 

regulation, occurs in nearly all types of human precursor 

messenger RNA (pre-mRNA) and plays a decisive role 

in producing protein diversity and controlling cell 

growth and development [16, 17]. Accumulating 

evidence has demonstrated that many apoptosis-related 

genes are subjected to alternative splicing, resulting in 

subtly different isoforms with antagonistic (anti- or pro-

apoptotic) functions [18, 19]. Moreover, the unbalanced 

anti- and pro-apoptotic isoform expression results from 

alternative splicing of key apoptotic factors, such as Bcl-

x, Bcl-2L11, and myeloid cell leukemia-1 (Mcl-1), 

possibly promoting cancer initiation and/or maintenance 

[20–22]. Thus, the shift from an anti-apoptotic isoform 

to a pro-apoptotic isoform, induced by regulation of 

alternative splicing, may not only surmount the effects 

of the anti-apoptotic isoform but also promote the 

benefits of the pro-apoptotic isoform. Thus, this is a 

promising strategy for facilitating tumor cell death and 

restraining cancer [15, 23].  

 

However, the alternative splicing pattern of apoptotic 

factors in gastric cancer (GC) remains poorly 

understood, and regulation of apoptosis by targeting 

alternative splicing in GC therapy remains unexplored. 

Mcl-1, an important member of the Bcl-2 gene family, 

is traditionally regarded as an anti-apoptotic factor. 

Mcl-1 pre-mRNA undergoes alternative splicing, 

producing anti-apoptotic Mcl-1L and pro-apoptotic 

Mcl-1S isoforms [24–26]. Additionally, Mcl-1L over-

expression and Mcl-1S under-expression have recently 

emerged as key survival and resistance factors involved 

in the evasion of apoptosis in some solid tumors [22, 27, 

28]. Moreover, Mcl-1L short hairpin RNA knockdown 

reduces oral cancer cell viability and growth, and the 

shift in the pre-mRNA splicing pattern from Mcl-1L to 

Mcl-1S can dramatically enhance apoptosis in basal cell 

carcinoma and non-small cell lung cancer [22, 29, 30]. 

These studies have demonstrated that the unbalanced 

isoform expression is involved in tumor development; 

therefore, modulation of Mcl-1 splicing may promote 

apoptosis and suppress tumor development. However, 

Mcl-1 splicing patterns in GC remain unexplored, and 

there is little data available on the regulation of 

apoptosis by targeting Mcl-1 alternative splicing for GC 

treatment. 

 

This study focused on Mcl-1 to explore a new anti-GC 

strategy, which involved targeting alternative splicing of 

apoptotic factors. For the first time, based on clinical 

research, we demonstrated that prominent Mcl-1L and 

reduced Mcl-1S expression levels were closely correlated 

with GC development. Next, we systematically verified 

that the shift in the Mcl-1 splicing pattern from Mcl-1L to 

Mcl-1S induced significant apoptosis, consequently 

suppressing tumor viability and proliferation in vitro and 

in vivo. Therefore, our study could contribute to the 

development of a new therapeutic strategy and molecular 

target for GC by modifying Mcl-1 pre-mRNA alternative 

splicing. 

 

RESULTS 
 

No significant change in Mcl-1 expression in GC 

tissues was observed 

 

To investigate the characteristics of Mcl-1 distribution 

in GC, data on Mcl-1 expression in GC were collected 

from the Cancer Genome Atlas (TCGA) database and 

summarized. Mcl-1 expression showed a statistically 

non-significant increasing trend related to poor survival 

and higher tumor grades and cancer stages 

(Supplementary Figure 1). These results indicated that 

the Mcl-1 expression, without distinguishing Mcl-1L 

and Mcl-1S isoform expression, presented no 

substantial changes in GC tissues and no obvious 

association with GC development.  

 

Mcl-1L expression was increased while Mcl-1S 

expression was decreased in GC 
 

Given that the isoforms of Mcl-1L is pro-apoptotic and 

the S form anti-apoptotic, respectively, we examined 

Mcl-1L and Mcl-1S expression in GC. Descriptive 

statistics of the enrolled patients, 59 with gastric 

adenocarcinoma and 31 with gastritis, are summarized 

in Supplementary Table 1. All GC patients showed 

similar Mcl-1S/Mcl-1L mRNA levels with respect to 

age (p = 0.597), sex (p = 0.927), and pathological 

grades (p = 0.334), and lower ratio was positively 

correlated with TNM staging (p <0.001). This result 

showed that Mcl-1L and Mcl-1S expression in GC was 

independent of age, sex, and pathological grades, but 

was related to GC progression. 

 

Next, to confirm the role of Mcl-1L and Mcl-1S in 

human GC, a series of histological and molecular 

analyses were performed. Quantitative reverse 

transcription-polymerase chain reaction (RT-qPCR) 

results showed that Mcl-1L mRNA expression was 

significantly higher (p <0.05) and Mcl-1S mRNA 

expression was lower (p <0.01) in tumor specimens 

than in normal gastric mucosal tissues. Consistent with 

this difference, the Mcl-1S/Mcl-1L mRNA ratio was 

significantly decreased (p <0.001) in GC (Figure 1A). 
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Moreover, this decrease was accompanied with 

progression of T stages, instead of N stages (Figure 1B). 

This result indicated that Mcl-1L over-expression 

and/or Mcl-1S under-expression was closely related to 

tumor size increase but not to lymph node metastasis 

[31]. Only one patient in the M stage developed distant 

metastases and showed invalid statistics. Kaplan–Meier 

survival analysis showed that the overall survival of 

patients with lower Mcl-1S/Mcl-1L levels was 

decreased compared with that of patients with higher 

levels (Figure 1C). These results suggested that high 

Mcl-1L and low Mcl-1S expression levels in GC tissue 

were correlated with tumor proliferation and prognosis.  

 

Subsequently, we validated Mcl-1L and Mcl-1S 

expression using differently differentiated GC cell lines, 

including MKN-28 (well-differentiated), SGC-7901 

(moderately-differentiated), and MKN-45 (poorly-

differentiated). As shown in Figure 1D, higher Mcl-1L 

and lower Mcl-1S mRNA expression levels were 

observed in all three GC cell lines than in human gastric 

epithelial cells (GES-1 cells). Additionally, compared 

with GES-1 cells, GC cell lines showed significantly 

reduced Mcl-1S/Mcl-1L ratio. However, there was no 

difference in the Mcl-1L and Mcl-1S mRNA levels 

among the GC cell lines, demonstrating that up-

regulated Mcl-1L and down-regulated Mcl-1S 

expression patterns, similar to those in GC tissues, were 

observed in the GC cell lines. However, they were not 

correlated with GC cell differentiation.  

 

Consistent with this difference at the mRNA level, the 

Mcl-1 protein expression pattern was characterized by 

markedly higher Mcl-1L levels, lower Mcl-1S levels, 

and a relatively similar Mcl-1S/Mcl-1L ratio in both GC 

tissues and cell lines, compared with those in normal 

tissues and cells (Figure 1E and 1F). These results 

further confirmed the up-regulated Mcl-1L and down-

regulated Mcl-1S expression in GC and the reversed 

pattern in normal tissues and cells. 

 

Taken together, these findings suggested prominent 

Mcl-1L and reduced Mcl-1S expression in GC tissues 

and cell lines. Moreover, the lower Mcl-1S/Mcl-1L 

ratio contributed to gastric tumor proliferation and poor 

prognosis.  

 

Modification of Mcl-1 pre-mRNA alternative 

splicing using steric-blocking oligonucleotides 

(SBOs) in GC cell lines 
 

Given the effects of the Mcl-1 isoforms on apoptosis, 

we speculated that blocking Mcl-1L expression and 

inducing Mcl-1S expression would cause the cancer 

cells to switch to a pro-apoptotic state and restrain 

tumor progression. Therefore, we transfected GC cell 

lines with fluorescein-tagged Mcl-1-specific SBOs to 

shift the Mcl-1 pre-mRNA splicing pattern from Mcl-

1L to Mcl-1S. Fluorescein-tagged SBOs were delivered 

into the GC cell nuclei. They bound to complementary 

fragments with different transfection efficiencies 

depending on the SBO dosage (Supplemental Figure 2). 

After 48 h of transfection of 5 or 10 μM SBOs, Mcl-1L 

mRNA expression was down-regulated and Mcl-1S 

mRNA expression was up-regulated in a dose-

dependent manner in the three GC cell lines (Figure 

2A). Similar to the quantitative change in the mRNA 

levels, a decrease in the Mcl-1L protein expression level 

and an increase in the Mcl-1S protein expression level 

were observed in SBO-treated GC cell lines (Figure 

2B). These results demonstrated that the Mcl-1-specific 

SBOs shifted the Mcl-1 splicing pattern from Mcl-1L to 

Mcl-1S efficiently, resulting in decreased anti-apoptotic 

Mcl-1L and increased pro-apoptotic Mcl-1S expression 

levels. 

 

Effects of the shift in Mcl-1 pre-mRNA splicing from 

Mcl-1L to Mcl-1S on regulation of apoptosis in vitro 

 

To validate whether the shift in the Mcl-1 splicing 

pattern from Mcl-1L to Mcl-1S enhanced GC cell 

apoptosis, the apoptotic cells were quantified by flow 

cytometry (FCM). Annexin V and 7-amino-actinomycin 

(7-AAD) were used to identify the early and late 

apoptotic cells, respectively. The results indicated that 

48 h post-transfection of SBOs, the number of apoptotic 

cells increased in the three GC lines (Figure 3A). The 

apoptosis rates are summarized in Figure 3B, which 

shows that SBOs result in a significant dose-dependent 

increase in the number of both early and late apoptotic 

cells. Western blotting (WB) was performed to evaluate 

apoptosis by detecting the key markers of apoptosis 

(Bak, cleaved caspase 9, and cleaved caspase 3) (Figure 

3C). The integrated density values indicated that the 

expression of apoptotic factors in SBO-treated GC cell 

lines showed statistically significant acceleration with a 

clear dose-response relationship (Figure 3D). 

Collectively, these data verified that modification of the 

Mcl-1 splicing pattern from Mcl-1L to Mcl-1S using 

SBOs strikingly stimulated GC cell apoptosis.  

 

Modification of Mcl-1 pre-mRNA alternative 

splicing from Mcl-1L to Mcl-1S in vivo 
 

The tumorigenicity assay in male severe combined 

immune-deficient mice was performed to investigate 

whether modification of Mcl-1 splicing via SBO 

treatment affected tumor cell apoptosis and growth in 
vivo. Mcl-1S mRNA was up-regulated while Mcl-1L 

mRNA was prominently down-regulated, depending on 

the SBO dosage in the mouse xenograft models of both 

MKN-45 and HGC-27 cells (Figure 4A). As expected, 
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Figure 1. Up-regulated myeloid cell leukemia (Mcl)-1L and down-regulated Mcl-1S expression is correlated with tumor 
proliferation and poor survival in human gastric cancer (GC). (A) Comparison of Mcl-1L and Mcl-1S messenger RNA (mRNA) 
expression between GC and normal tissues was performed. Dot plots represent Mcl-1L and Mcl-1S mRNA expression levels and Mcl-1S/Mcl-
1L ratios in 59 GC samples and 31 healthy tissues. Mcl-1L and Mcl-1S expression was normalized to glyceraldehyde 3-phosphate 
dehydrogenase expression. Data are presented after logarithmic transformation as the mean ± standard deviation (SD). *p <0.05, **p <0.01, 
***p <0.001, versus the control. (B) The Mcl-1S/Mcl-1L mRNA ratios in cells in different T or N stages of the TNM staging system are 
presented. Data are shown after logarithmic transformation. (C) Kaplan–Meier survival curves for 59 individuals grouped based on the 
median value of Mcl-1S/Mcl-1L are shown. (D) Increased Mcl-1L and decreased Mcl-1S mRNA expression levels and Mcl-1S/Mcl-1L values in 
GC cell lines, compared with in the GES-1 cell line, are shown. mRNA expression was normalized by the 2-ΔΔCt method. Data are shown as the 
means ± SD. (E) Western blot showing decreased Mcl-1S protein levels and Mcl-1S/Mcl-1L in GC tissues and cell lines is shown. (F) Increased 
Mcl-1L and decreased Mcl-1S protein expression levels and Mcl-1S/Mcl-1L values in GC cell lines, compared with those in the GES-1 cell line, 
are shown. Data are shown as the means ± SD. 
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Mcl-1L and Mcl-1S protein levels were altered in 

parallel with their mRNA expressions (Figures 4B and 

4C). Mcl-1S/Mcl-1L ratio was also significantly 

increased in the SBO-treated MKN-45 cells (Figure 

4C). These results indicated that Mcl-1-specific SBOs 

succeeded in blocking Mcl-1L expression and inducing 

Mcl-1S expression in mice. 

 

The role of altered Mcl-1 pre-mRNA splicing in 

promoting apoptosis and suppressing GC in vivo 
 

To validate whether Mcl-1 pre-mRNA alternative 

splicing using SBOs could induce tumor cell apoptosis 

in vivo, apoptotic cells were detected in the xenograft 

models. In the mouse xenograft models of both MKN-

45 and HGC-27 cells, hematoxylin and eosin (HE) 

staining revealed a dose-dependent increase in the dead 

cell area of the SBO-treated tumor tissue, compared 

with that of the control (Figure 5A). Immuno-

fluorescence assay of the HGC-27 xenograft tumors 

demonstrated that SBO treatment resulted in a dose-

dependent increase in the number of apoptotic cells 

(annexin V-positive) (Figure 5B); identical results were 

observed in the MKN-45 xenograft models (not 

presented in current study). Correspondingly, 

quantitation by FCM showed that treatment with 0, 

6.25, and 12.5 mg/kg SBOs led to apoptosis rates of 

2.76, 14.44, and 28.75% in the MKN-45 xenograft 

models and 2.49, 31.26, and 50.57% in the HGC-27 

xenograft models, respectively. The results showed that 

the early and late apoptosis rates increased in a 

statistically significant dose-dependent manner (Figure 

5C). Additionally, after Mcl-1-specific SBO treatment 

for 3 d, Bak, activated caspase 9, and caspase 3 

expression levels in the tumor tissues were markedly 

elevated in a dose-dependent manner (Supplementary 

Figure 3). These results indicated that the shift in Mcl-1 

splicing from Mcl-1L to Mcl-1S induced significant cell 

apoptosis in gastric xenograft tumors. 

 

Next, we examined the effects of Mcl-1-specific SBO 

treatment, which caused a shift in Mcl-1 splicing, on 

tumors in vivo. The volumes of the SBO-treated tumors 

remained stable, while those of the Con-SBO-treated 

tumors experienced growth rates of over 30%. In the 

mouse HGC-27 xenograft models, the volumes of the 

tumors treated with 6.25 and 12.5 mg/kg SBOs reduced 

by 1.32% and 2.21%, respectively, while in the mouse 

MKN-45 xenograft models, the volumes increased  

by 2.85% and 0.85%, respectively (Figure 6A). 

 

 
 

Figure 2. The myeloid cell leukemia (Mcl)-1 splicing pattern shifts efficiently from Mcl-1L to Mcl-1S after delivery of the 
steric-blocking oligonucleotides (SBOs) into the gastric cancer (GC) cell lines. (A) Mcl-1L and Mcl-1S messenger RNA (mRNA) 
expression levels in GC cell lines after treatment with SBOs at different dosages are shown. Data of at least three independent experiments 
are shown as the means ± standard deviation. (B) Western blot showing the Mcl-1L and Mcl-1S protein levels in GC cell lines treated with 
phosphate-buffered saline or SBOs at the indicated concentrations is presented. This experiment was repeated thrice. 
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Figure 3. The shift in the myeloid cell leukemia (Mcl)-1 splicing pattern from Mcl-1L to Mcl-1S promotes apoptosis of 
different gastric cancer (GC) cell lines. (A) Flow cytometry showing the apoptosis rates of the GC cell lines treated with 5 and 10 μM 
steric-blocking oligonucleotides (SBOs) is shown. Early and late apoptotic cells are shown in the right lower and upper quadrants, 
respectively. (B) Pair-wise comparison of early and late apoptosis rates of SBO-treated GC cell lines is shown. Data are shown as the means ± 
standard deviation (SD). (C) Activated apoptin expression in GC cell lines treated with SBOs at the indicated dosages was detected by western 
blotting. (D) Activated apoptin expression was summarized as an integrated density value. Data are shown as the means ± SD.  
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Additionally, immunohistochemical detection of Ki-67, 

performed to evaluate tumor viability and proliferation, 

demonstrated a significant dose-dependent decrease in 

the Ki-67 expression rate in the SBO-treatment groups 

(Figures 6B). These results indicated that Mcl-1S over-

expression and Mcl-1L under-expression, regulated by 

Mcl-1-specific SBO treatment, inhibited tumor 

proliferation in vivo in this model. 

DISCUSSION 
 

GC is the second leading cause of cancer mortality in 

the world [32]. Surgery and chemoradiotherapy remain 

the current major therapeutic options for GC, but 

outcomes are still unfavorable [33, 34]. It has been well 

established that alternative splicing contributes to 

pathological alterations that promote cancer initiation 

 

 
 

 

Figure 4. The myeloid cell leukemia (Mcl)-1 splicing shifts from Mcl-1L to Mcl-1S after injection of the vivo-morpholino-
modified steric-blocking oligonucleotides (SBOs) in the mouse xenograft models of MKN-45 and HGC-27 cells. (A) Mcl-1L and 
Mcl-1S messenger RNA (mRNA) expression in the MKN-45 and HGC-27 xenograft models treated with vivo-morpholino-modified SBOs at 
different dosages is presented. Data are shown as the means ± standard deviation (SD). **p <0.01, ***p <0.001, versus the control. (B) Mcl-
1L and Mcl-1S protein expression in the xenograft models after treatment with SBOs at indicated doses is shown. (C) Decreased Mcl-1L and 
increased Mcl-1S protein expression levels and Mcl-1S/Mcl-1L values after SBO treatment are presented. Data are shown as the means ± SD. 
*p <0.05, **p <0.01, ***p <0.001 versus the control. 
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Figure 5. Altered myeloid cell leukemia (Mcl)-1 splicing from Mcl-1L to Mcl-1S promotes apoptosis in vivo. (A) Hematoxylin and 
eosin staining of tumor sections of the xenograft models is shown. The red arrows indicate dead cells. The dead cell area/overall tumor area 
increased in a dose-dependent manner after steric-blocking oligonucleotide (SBO) treatment. (B) Immunofluorescence with annexin V 
staining (the white arrows indicate green fluorescence) showing apoptotic cells in the tumor sections of the HGC-27 xenograft models is 
presented. The results of the between-group and repeated-measure analyses are shown as the means ± standard deviation (SD). (C) Flow 
cytometry showing the apoptosis rates of tumor cells treated with SBOs at indicated dosages is presented. Between-group comparison 
results are shown as the means ± SD.  
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and/or maintenance [35]. More importantly, new trends in 

cancer research have shown that alternative splicing has 

clinical potential in cancer therapy [15, 36]. Our study 

indicated that the anti-apoptotic Mcl-1L and pro-apoptotic 

Mcl-1S proteins, the major Mcl-1 splicing isoforms, were 

up-regulated and down-regulated, respectively, in GC. 

Moreover, increased Mcl-1L and decreased Mcl-1S levels 

contributed to gastric tumor proliferation and poor 

prognosis. Additionally, this study confirmed that 

modification of Mcl-1 splicing from Mcl-1L to Mcl-1S 

using SBOs could markedly enhance apoptosis and inhibit 

proliferation in GC. The present work supplemented an 

innovative direction towards tumor treatment involving 

targeting apoptotic proteins through the manipulation of 

alternative splicing. 

 

This is the first study to illustrate the roles of Mcl-1L 

and Mcl-1S in GC systematically and verify the 

therapeutic effects of the modulated Mcl-1 splicing 

pattern in this disease; up-regulated Mcl-l L and down-

regulated Mcl-1S expression in AGS cells, a human 

gastric adenocarcinoma epithelial cell line, has been 

previously demonstrated [29]. In this study, Mcl-1L and 

Mcl-1S expression was detected in three GC cell lines, 

and the results validated the previous findings. 

Furthermore, RT-qPCR and WB were performed for 

GC tissues, confirming that Mcl-1L over-expression 

and Mcl-1S under-expression induced tumor 

proliferation and shorter survival for the first time. 

Previously, the effects of a shift in the splicing pattern 

from Mcl-1L to Mcl-1S on enhancing apoptosis were 

solely reported based on in vitro analysis [29, 30]; 

however, the current study verified the function of the 

splicing pattern in regulating apoptosis both in vitro and 

in vivo. This result further strengthened the feasibility of 

targeting alternative splicing of apoptotic proteins to 

facilitate tumor cell death, and consequently suppress 

GC. Additionally, we found increased effects of SBOs 

 

 
 

Figure 6. Shifted myeloid cell leukemia (Mcl)-1 splicing from Mcl-1L to Mcl-1S suppresses gastric cancer (GC) proliferation in 
vivo. (A) Change in tumor volume ([end-point volume – initial volume]/initial volume) after treatment with steric-blocking oligonucleotides 
(SBOs) at indicated dosages is presented. The results of the between-group analyses are shown as the means ± standard deviation. (B) 
Immunohistochemical staining showing Ki-67 expression levels (red arrows) in tumor sections of the xenograft models, exhibiting changes in 
tumor viability and proliferation, after treatment with SBOs at indicated dosages is shown. 
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in HGC-27 cells, compared to those in MKN-45 cells. 

Previous studies suggested that alternative splicing was 

regulated according to the cell type, developmental stage, 

and disease state [37–39]. Hence, we assumed that 

different cell lines might respond differently to the splicing 

pattern. 

 

It has been noted that there are three alternative splicing 

variants of the human Mcl-1 gene, including Mcl-1L, 

Mcl-1S, and Mcl-1ES. Even though Mcl-1ES has been 

identified as a minor RT-qPCR product in several 

cancers and immortalized cell lines, no endogenous 

protein has been detected for it. Moreover, Mcl-1ES 

protein functions have been studied only in over-

expression conditions, revealing that Mcl-1ES 

dimerizes with Mcl-1L and induces mitochondrial cell 

death [26, 40, 41]. In this study, we demonstrated 

predominant Mcl-1L expression and low Mcl-1S levels; 

however, Mcl-1ES expression was undetectable in both 

GC tissues and cell lines. It was possible that Mcl-1ES 

was not detected by RT-qPCR due to the weak 

expression level and short half-life of Mcl-1ES pre-

mRNA. Thus, it remained unclear whether Mcl-1ES 

was expressed in GC. However, it is well established 

that Mcl-1L and Mcl-1S are the major products of the 

Mcl-1 gene and key factors involved in regulating 

apoptosis [26, 42]. Therefore, as demonstrated in this 

study, the modification of Mcl-1 pre-mRNA alternative 

splicing from Mcl-1L to Mcl-1S might suffice in 

triggering apoptosis and anticancer effects. 

 

SBOs have been successfully employed to manipulate the 

pre-mRNA splicing pattern [43, 44]. Due to the highly 

degenerate nature of pre-mRNA, SBO treatment does not 

result in the general inhibition of splicing, but instead in 

the shift of the spliceosome to another splice site, 

consequently blocking an alternative splicing pattern and 

promoting the target splicing pattern [45, 46]. 

Additionally, SBOs with the deoxyribose sugar moieties 

replaced by morpholino oligos, which are not recognized 

by enzymes, are completely resistant to nucleases [47]. 

Furthermore, in this study, the Endo-Porter transfection 

system replaced the conventional transfection system to 

improve the transfection efficiency in vitro. Endo-Porter 

delivers SBOs into the cytosol of the cells by an 

endocytosis-mediated process that avoids damage to the 

cell plasma membrane and the loss of vital cell contents 

and associated toxicity [48]. Vivo-morpholinos are exon-

skipping reagents of choice for in vivo experiments 

because they show outstanding results due to their 

attractive profile of stability, low toxicity, and good cell 

penetration. These are assembled by coupling the vivo-

delivery group to a morpholino while the oligo is still 

bound to its synthesis resin, allowing excellent purification 

on washing the solid-phase resin [49]. These advanced 

technologies helped guarantee the fidelity of our study. 

The molecular mechanisms underlying unbalanced Mcl-1 

mRNA splicing, which lead to up-regulated Mcl-1L and 

down-regulated Mcl-1S in GC, were not investigated in 

this study. Current research indicates that serine arginine-

rich splicing factor (SRSF) and RNA-binding motif 

protein 4 (RBM4) are pivotal splicing factors involved in 

the regulation of Mcl-1 alternative splicing. SRSF1 and 

SF3B1 favored Mcl-1L formation, while RBM4 and 

SRSF2 promoted the skipping of exon 2 in Mcl-1 pre-

mRNA and contributed to Mcl-1S expression [50, 51]. 

Coincidentally, recent studies suggested that SRSF1 in 

GC tissues was up-regulated and associated with poor 

outcome [52]. It induced apoptosis in the AGS and MKN-

28 human GC cells in vitro [53]. Je et al. (2013) found 

that SRSF2 expression reduced (up to 7-fold) in gastric 

tumors [54], while Yong et al. (2016) reported that both 

RBM4 protein and mRNA expression levels were 

significantly lower in GC tissues than in the adjacent non-

cancerous tissues [55]. These results suggested that the 

abnormal expression of these splicing factors in GC might 

disturb Mcl-1 alternative splicing and consequently up-

regulate Mcl-1L expression and down-regulate Mcl-1S 

expression, resulting in apoptosis resistance in GC. 

Hence, further research is necessary to elucidate the 

molecular mechanisms underlying aberrant Mcl-1 splicing 

by targeting these splicing factors in GC and understand 

the potential role of Mcl-1 mRNA splicing in GC therapy. 

 

However, the current study has two limitations. Firstly, 

Mcl-1L and Mcl-1S expression in the normal tissues 

adjacent to the GC tissues was absent. The effects of the 

docetaxel and cisplatin combination treatment on Mcl-1L 

and Mcl-1S expression were also absent. Additionally, we 

found that SBO treatment promoted normal GES-1 cell 

apoptosis, but the apoptosis rate was obviously lower in 

the GES-1 cells than in the GC cells (Supplementary 

Figure 4). However, the GC xenograft mice showed no 

obvious damage to organs, including the liver, kidneys, 

lungs, and pancreas, after SBO treatment (Supplementary 

Figure 5). Meanwhile, no significant change in the body 

weight of the GC xenograft mice was observed after SBO 

treatment (Supplementary Figure 6). Hence, SBO toxicity 

requires further investigation. 

 

The unbalanced anti- and pro-apoptotic protein expression, 

which resulted from aberrant splicing of apoptosis-related 

genes, is a major feature of many cancers. Thus, 

modulating isoform expression of apoptotic proteins by 

targeting alternative splicing is a promising strategy to 

facilitate tumor cell death and suppress cancer. This study 

demonstrated that modification of Mcl-1 mRNA splicing 

from Mcl-1L to Mcl-1S facilitated GC cell apoptosis in 

both a cell-culture system and mouse models, representing 

an exploratory work on targeting alternative splicing to 

stimulate pro-apoptotic factors and inhibit anti-apoptotic 

proteins for GC therapy. 
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MATERIALS AND METHODS 
 

Gene set enrichment analysis (GSEA) 

 

Mcl-1 mRNA data used for GSEA are accessible from 

TCGA database (https://tcga-data.nci.nih.gov/docs/ 

publications/tcga/). The correlations among Mcl-1 
mRNA level, tumor grade, and cancer stage were 

analyzed using the software Gene Expression Profiling 

Interactive Analysis (GEPIA) (http://gepia.cancer-

pku.cn/). The median Mcl-1 expression level was used 

as the parameter to divide the high and low groups of 

clinical GC specimens. Statistical significance (false 

discovery rate) was set at 0.05. 

 

Patients and clinical data 

 

Fifty-nine gastric adenocarcinoma and thirty-one 

gastritis patients were recruited for this study after 

admission at the Gansu Provincial Hospital. The 

diagnosis, grading, and staging of gastric adeno-

carcinoma were established according to the NCCN 

Clinical Practice Guidelines in Oncology: Gastric 

Cancer (Version 2.2018). Kaplan–Meier survival curves 

for GC patients with low and high Mcl-1S/Mcl-1L 
mRNA ratios (grouped according to the median value of 

the Mcl-1S/Mcl-1L ratio) were generated by 

retrospective follow-up. The protocol of this study 

followed the ethical guidelines of the 1975 Declaration 

of Helsinki, and the study was approved by the Ethics 

Review Committee of Gansu Provincial Hospital. All 

participants provided their written informed consent to 

participate in this study. 

 

Cell culture  

 

Authenticated and differently differentiated GC cell 

lines (MKN-28, SGC-7901, and MKN-45) were 

obtained from Beijing Fenghui Biotechnology Co. Ltd. 

(China). The cells were incubated at 37°C in 5% CO2 

for 4–6 h and then immediately cultured in RPMI-1640 

medium supplemented with 10% fetal bovine serum 

(9:1) and penicillin/streptomycin (100 U/mL) 

(Invitrogen Corporation, Carlsbad, CA, USA) at 37°C 

in 5% CO2. Cells in the logarithmic growth stage were 

digested, seeded into 6-well plates (4×105 cells/mL in 

each well), incubated at 37°C for 24 h, digested with 

pancreatin, and collected for further research. 

 

Modification of Mcl-1 pre-mRNA alternative 

splicing  
 

SBOs were used to cause down- and up-regulation of 

Mcl-1L and Mcl-1S expression, respectively. The SBOs 

were synthesized, and the Endo-Porter delivery system 

was purchased from Gene Tools (Philomath, OR, USA). 

A pair of SBOs was designed such that they could bind 

to the 3'-acceptor and 5'-donor-splicing site of exon 2 of 

Mcl-1 pre-mRNA and splice out exon 2, thereby 

shifting the splicing pattern from Mcl-1L to Mcl-1S. 

The SBO sequences were 5'-CGAAGCATGCCTGAG 

AAAGAAAAGC-3' and 5'-AAGGCAAACTTACCC 

AGCCTCTTTG-3'. The SBOs blocked the 5'-donor and 

3'-acceptor sites of exon 2 to skip exon 2, thereby 

shifting the splicing pattern from Mcl-1L to Mcl-1S 

mRNA. A non-targeting oligonucleotide sequence was 

cloned as the control: 5'-CCTCTTACCTCAGTT 

ACAATTTATA-3' (Con-SBO). The Endo-Porter 

delivery system was used to optimize the conditions, 

according to the manufacturer’s instructions. GC cell 

lines were treated with 5 and 10 µM Mcl-1-specific 

SBOs for a verified optimum period of 48 h [29]. 

Localization and transfection efficiency of fluorescein-

tagged SBOs were defined by laser confocal 

microscopy. RT-qPCR and WB analyses were 

performed to confirm Mcl-1L and Mcl-1S expression. 

FCM was used for counting the apoptotic cells. 

 

Xenotransplantation and tumor analysis  
 

All animal experiments were performed according to the 

Gene Tools and ARRIVE guidelines [56]. The protocol of 

this study was approved by the Ethics Review Committee 

of Gansu University of Chinese Medicine. Briefly, MKN-

45 or HGC-27 cells (1×107 cells) in serum-free medium 

(100 μL) were implanted into the subcutaneous tissue of 

the antedorsal walls of immunodeficient mice (4–5-week-

old males, one tumor per mouse, n = six mice per group). 

Mice were grouped after tumor formation and then 

injected with vivo-morpholino-modified Mcl-1-specific 

SBOs or a non-targeting vivo-morpholino-modified 

oligonucleotide (as the control) (Gene Tools, LLC, Pacific 

Grove, CA) by local multipoint administration. Dosing 

(1.25 or 6.25 mg/kg SBOs) was repeated daily for 3 days, 

and the mice were sacrificed on day 4. The tumor 

volumes were measured with calipers and calculated 

using the following equations: volume = length × (width)2 

× 0.5; change in tumor volume = (terminal volume – 

initial volume)/initial volume. Each tumor sample was 

snap-frozen in liquid nitrogen or fixed immediately in 

paraformaldehyde and then processed for further blind 

histological analysis. 

 

RT-qPCR 

 

Total RNA was extracted using TRIzol reagent, and 

cDNA was synthesized using the RNeasy mini kit 

(Qiagen, Germany). cDNA was used for RT-qPCR 

using Taqman universal PCR master mix (ABI, 

4444556, USA). Mcl-1L and Mcl-1S mRNA was 

detected with Mcl-1 isoform-specific gene expression 

probes (ABI, Mcl-1L: Hs00172036_m1; Mcl-1S: 

https://tcga-data.nci.nih.gov/docs/publications/tcga/
https://tcga-data.nci.nih.gov/docs/publications/tcga/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
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Hs00766187_m1) and normalized to glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) mRNA (ABI, 

Hs99999905_m1). RT-qPCR reactions were performed 

at 95°C for 10 min with 40 cycles at 95°C for 15 s, 

60°C for 30 s, and 70°C for 30 s. Mcl-1L and Mcl-1S 

expression was analyzed using the comparative 

threshold cycle (Ct) method of relative quantification. 
 

WB 
 

Proteins were extracted from tumor tissues and purified 

using total protein extraction kits (KeyGEN, China). 

Protein concentration was detected and normalized by 

the bicinchoninic acid method. Denatured samples were 

resolved on 12% (w/v) SDS-PAGE gels and transferred 

onto PVDF membranes (Millipore, USA) by the wet 

transfer-coating finishing method. The PVDF 

membrane was immersed in 5% skimmed milk in tris-

buffered saline at room temperature for 1 h and then 

incubated overnight with rabbit anti-human Mcl-1 

antibody (1:1,000) (Bio-Rad, AHP998, USA), which 

can recognize both the Mcl-1L (41 kDa) and Mcl-1S 

(35 kDa) proteins, at 4°C. Rabbit polyclonal antibody 

against GAPDH (Bio-Rad, USA) was loaded as the 

control; the secondary antibody was horseradish 

peroxidase-conjugated IgG (1:5,000) (Bio-Rad, USA). 

Densitometry analysis was performed using ImageJ 

software (Bio-Rad, USA). 
 

Apoptosis detection by FCM 
 

GC and transplanted tumor cell apoptosis was detected 

using the Annexin V-APC/7-AAD apoptosis detection 

kit (Multisciences Biotech, China). Cells (10,000 cells 

per sample) were re-suspended in a binding buffer, 

stained with annexin V-APC and 7-AAD for 15 min in 

the dark, and diluted with the binding buffer to obtain a 

final volume of 500 mL. Data acquisition and analysis 

were performed using a flow cytometer (FACS Caliber, 

BD, USA). 

 

Immunofluorescence 
 

The paraffin sections of the tumor samples were stained 

with rabbit anti-annexin V antibody, goat anti-rabbit 

IgG H&L (Alexa Fluor® 488) (Abcam, USA), and 

DAPI (BD, USA) to determine tumor tissue apoptosis. 

Images were captured using a confocal microscope 

(Leica Microsystems, SP8, Germany) on standard 

settings.  
 

Immunohistochemistry  
 

Paraffin tumor sections (6 μm) were HE stained to 

detect dead cells and immunostained with antibodies 

against Ki-67 (Protein Tech Group, China) to analyze 

tumor proliferation. The dead cell area and Ki-67 

positive rate were analyzed using KF-PRO-020 

(KFBIO, China). 

 

Statistical analyses 

 

Statistical analysis was performed using SPSS 18.0 

software. Data of at least three independent experiments 

for each of the cellular and animal groups were 

presented as the mean ± standard deviation. The 

differences in the measurement data among the groups 

were analyzed by the homogeneity test of variances. 

The significance of differences among individual 

groups was analyzed by Student’s t-test (two-tailed). 

One-way ANOVA was performed for multiple group 

comparisons. Survival curves were plotted using the 

Kaplan–Meier method and compared using the log-rank 

test. We defined a high expression level as that above 

the median and a low expression level as that below the 

median. All statistical tests were two-sided, and P <0.05 

indicated statistical significance. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 

 

 
 

Supplementary Figure 1. Myeloid cell leukemia (Mcl)-1 shows an increasing trend in gastric cancer (GC) tissues, and is 
associated with GC development. (A) Mcl-1 expression levels in GC (n = 408) and normal gastric (n = 36) tissues, according to the data 
from the Cancer Genome Atlas database, are shown (P >0.05). (B) Kaplan–Meier analysis of overall survival based on Mcl-1 expression in GC 
is shown (P = 0.44). (C) Intra-group comparison of Mcl-1 expression in different GC stages is shown (P >0.05). (D) Mcl-1 expression in GC 
based on tumor grades is shown (P >0.05). 
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Supplementary Figure 2. Localization and delivery efficiencies of steric-blocking oligonucleotides (SBOs) are shown. Pictures 
were collected by laser confocal microscopy. Green fluorescence signal represents the binding of the delivered SBOs to the target RNA, 
and it increased with the increase in the dose of Endo-Porter and SBOs. 
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Supplementary Figure 3. Dose-dependent increases in Bax, activated caspase 9, and caspase 3 in tumor tissues treated with 
steric-blocking oligonucleotides (SBOs) at the indicated dosages are observed. (A) Activated apoptin expression detected by 
western blotting is shown. (B) Statistical analysis of the integrated density value of activated apoptin expression is shown. 
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Supplementary Figure 4. Steric-blocking oligonucleotide (SBO) treatment promotes normal GES-1 cell apoptosis. (A) The 
myeloid cell leukemia (Mcl)-1L and Mcl-1S messenger RNA (mRNA) levels were measured by quantitative reverse transcription-polymerase 
chain reaction after SBO treatment. (B) Pair-wise comparison of the early and late apoptosis rates of the SBO-treated gastric cancer (GC) cell 
lines is shown. Data are shown as the means ± standard deviation. (C) Flow cytometry showing apoptosis rates of the GC cell lines treated 
with 5 and 10 μM SBOs is shown. Early and late apoptotic cells are shown in the right lower and upper quadrants, respectively. ***p <0.001. 
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Supplementary Figure 5. Gastric cancer xenograft mice show no obvious damage to organs, including the liver, kidneys, 
lungs, and pancreas, after steric-blocking oligonucleotide (SBO) treatment. The SBO-treated liver, kidney, lung, and pancreas 
tissues were analyzed by hematoxylin and eosin staining. 
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Supplementary Figure 6. No significant changes in the body weight of the gastric cancer xenograft mice after steric-blocking 
oligonucleotide treatment are observed. 
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Supplementary Table 
 

 

 

Supplementary Table 1. The clinical characteristics and the ratio of Mcl-1 isoform in enrolled patients with gastric 
adenocarcinoma. 

Variables n (%) Mcl-1S / Mcl-1L (mRNA) p value 
Age (years)    0.597 

<57 (Median)  26 (44.07%) 0.27±0.17  
≥57 33 (55.93%) 0.33±0.51  

Sex   0.927 
Male 38 (64.41%) 0.30±0.45  
Female 21 (35.59%) 0.31±0.28  

TNM stage (Clinical)   <0.001 
I 8 (13.56%) 0.59±0.23  
IIA 8 (13.56%) 0.20±0.03  
IIB 12 (20.34%) 0.18±0.10  
IIIA 8 (13.56%) 0.79±0.82  
IIIB 4 (6.78%) 0.06±0.02  
IIIC 18 (30.51%) 0.16±0.15  
IV 1 (1.69%) 0.21  

Pathologic grades   0.334 
G1 16 (27.12%) 0.30±0.21  
G2 20 (33.90%) 0.21±0.22  
G3 23 (38.98%) 0.39±0.57  

Age group was distinguished based on the median age. All data meet normal distribution and independent-sample t test was 
used for comparisons between two groups. One-way ANOVA was performed for intergroup difference. Data are presented as 
the mean±SD. P<0.05 indicated statistical significance. 


