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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is one of the most 

common type of primary liver cancers,  which accounts 

for roughly 70% of all liver cancers [1, 2].  In the United 

States for example, HCC ranks first among newly 

diagnosed cancers and is the fastest rising cause of cancer-

related deaths [2]. East Asia, Southeast Asia and Sub-

Saharan Africa have the highest liver cancer incidence, 

likely due to food contaminations from the fungi toxin 

aflatoxin [3, 4]. HepG2 is an immortalized liver 

carcinoma cell line derived from a Caucasian male patient 

with HCC [5, 6]. HepG2 cells have been widely used to 

investigate the biology and treatment of HCC, such as 

tumorigenesis signaling [7], drug resistance [8] and 

immunotherapy [9].  Like many other cancer cells, 

HepG2 often develops multiple drug resistance phenotype  

 

after chemotherapy. Continuous culturing of HepG2 cells 

In vitro in the presence of cisplatin results in cisplatin-

resistant cells (HepG2/DDP) [10]. Cisplatin-resistance 

could be due to genomic alternations in certain gene(s) 

or/and rewiring of cellular signaling pathway(s) [11]. The 

detailed mechanism, however, remains poorly understood. 

Cisplatin has been shown to cause many side effects 

including nephrotoxicity, especially in aged population 

[12], therefore, efforts looking into the drug resistance 

mechanism are urgently needed. 

 

The transcriptional factor nuclear factor erythroid-2 

related factor 2 (NRF2) is a cap 'n' collar basic leucine 

zipper transcription factor which binds specifically to 

the antioxidant response element (ARE) at the promoter 

of its target genes [4, 13]. Nrf2 regulates a broad 

spectrum of genes involved in redox homeostasis, for 
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ABSTRACT 
 

The diabetes drug metformin has recently been shown to possess anti-cancer properties when used with other 
chemotherapeutic drugs. However, detailed mechanisms by which metformin improves cancer treatment are 
poorly understood. Here we provide evidence in HepG2 hepatocellular carcinoma cells that metformin 
sensitizes cisplatin-resistant HepG2 cells (HepG2/DDP) through increasing cellular glycolysis and suppressing 
Nrf2-dependent transcription. We show that metformin increases glucose uptake and enhances glucose 
metabolism through glycolytic pathway, resulting in elevated concentrations of intracellular NADPH and 
lactate. Consistently, high glucose medium suppresses Nrf2-dependent transcription and sensitizes HepG2/DDP 
cells to cisplatin. Elevated glycolysis was required for metformin to regulate Nrf2-dependent transcription and 
cisplatin sensitivity, as inhibition of glycolysis with 2-Deoxy-D-glucose (2-DG) significantly mitigates the 
beneficial effect of metformin. Together, our study has revealed an important biological process and gene 
transcriptional program underlying the beneficial effect of metformin on reducing chemo-resistance in HepG2 
cells and provided new information on improving chemotherapy of liver cancers. 
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example, NADP/ NADPH quinone oxidoreductase 1 

(NQO1), heme oxygenase-1 (HO-1) and glutathione 

glutamate-cysteine ligases (GCLM and GCLC) [14, 15].  

Under normal growing conditions, Nrf2 interacts with 

KEAP1 protein in the cytoplasm, which ensures Nrf2 

posttranslational degradation through the ubiquitin-

proteasome system (UPS). With stress, including 

metabolic stress such as imbalance of redox 

homeostasis, Nrf2 dissociates from KEAP1, enters cell 

nucleus and drives gene transcription to restore the 

cellular redox homeostasis. 

 

Redox imbalance is a critical factor contributing to aging 

and age-relate disease, including liver cancer [16–18], 

Nrf2 has been shown to promote healthy aging in various 

model organisms [19, 20]. However, Nrf2 also promotes 

the survival of cancer cells treated with chemotherapeutic 

drugs [4, 15, 21–23]. Nrf2 is often hyperactive in cancers, 

especially liver cancers caused by environmental 

carcinogens [24]. Elevated expression of Nrf2 has been 

shown to correlate with differentiation, metastasis and 

growth of HCC [24] and serve as a negative prognosis 

factor for many cancers [24]. Cancer cells acquiring 

mutations on KEAP1 and Nrf2 genes are often drug 

resistance but the mechanisms remain poorly understood. 

There are studies showing that genes encoding the ATP-

dependent drug efflux pumps MRP1 and MRP2 are 

directly regulated by Nrf2 pathway [25, 26]. Other studies 

show that Nrf2 confers drug resistance through systemic 

and more complex manners [4, 22].  

 

Metformin is a well-known diabetes drug prescribed to 

type 2 diabetes (T2D) patients. Metformin has been 

shown to decrease hepatic glucose production, decrease 

intestinal absorption of glucose, and increase peripheral 

glucose uptake. However, the mechanisms at the 

molecular levels remain unclear [27]. Recently, several 

association studies reveal that metformin could have 

beneficial effects on preventing growth or relapse of 

cancers [28–32], including hepatocellular carcinoma 

[33].  Metformin has been shown to increase the 

sensitivity cancer cells to oxidative stress and 

therapeutic drugs [34–37], through AMP-activated 

protein kinase (AMPK) and the mechanistic target of 

rapamycin (mTOR) pathway [38, 39]. Recently, Nrf2 

pathway has also been implicated in the beneficial 

effect of metformin on preventing chemoresistance [40–

43]. However, the detailed mechanisms remain elusive. 

 

In this study, by using the human liver cancer cell line 

HepG2, we investigated into the effect of metformin on 

cellular metabolism and gene transcription contributing 

to cisplatin resistance. Cisplatin is widely used to treat 

hepatocellular carcinoma [44] and other solid cancers 

including breast, testicular, and ovarian cancers [45]. 

We found that Nrf2 hyperactivation contributed to 

cisplatin resistance. Importantly, we found that 

metformin suppressed Nrf2 and decreased cisplatin 

resistance through enhanced glucose metabolisms and 

activation of glycolysis. Inhibition of glycolysis with 2-

DG blocked metformin’s beneficial effect. To our 

knowledge, our study provides the first line of evidence 

demonstrating the importance of glycolysis in 

metformin regulation of chemosensitivity.  

 

RESULTS 
 

Nrf2 conferred cisplatin resistance in HepG2 

hepatocellular carcinoma cells 
 

Hyperactivation of the Nrf2 pathway has been reported to 

contribute to multiple drug resistance in some cancers [22, 

23, 46, 47]. We tested if this was the case for 

hepatocellular carcinoma. To this end, we collected tissue 

samples from 16 patients (8 have undergone cisplatin 

treatment) with hepatocellular carcinoma and carried out 

immunohistochemistry (IHC) assay by using a specific 

Nrf2 antibody. The results showed that Nrf2 protein levels 

were increased in cisplatin-treated tumor tissues (Figure 

1A and 1B). Second, we asked if Nrf2 was activated in 

cisplatin-resistant HepG2 cells (HepG2/DDP) as 

compared to parental HepG2 cells. The cisplatin-resistant 

HepG2/DDP cells were obtained by continuously 

culturing HepG2 cells in the presence of cisplatin, a 

process mimicking the clinical development of cisplatin 

resistance. Consistently, Western blot showed that 

HepG2/DDP cells expressed much higher levels of Nrf2 

protein (Figure 1C). To further confirm the role of Nrf2, 

we carried out RT-qPCR experiment and found that 

HepG2/DDP cells had higher expression of Nrf2 target 

genes (NQO1, GCLC, GCLM and HO-1), compared with 

HepG2 (Figure 1D). Upon knocking down with Nrf2 

siRNA, the expression of Nrf2 target genes was 

significantly reduced in both HepG2 and HepG2/DDP 

cells (Figure 1E and 1F). Last, we examined the cell 

viability through CellTiter-Glo, which detected 

intracellular ATP concentration proportional to the 

number of live cells. We found that siRNA knockdown of 

Nrf2 preferentially sensitized the HepG2/DDP cells to 

chemotherapy drug cisplatin (Figure 1G and 1H) at 

multiple concentrations, confirming the role of Nrf2 in the 

drug resistance of HepG2/DDP liver cancer cells. 

Consistently, activation of Nrf2 through knocking down 

the negative regulator KEAP1, preferentially increased 

cisplatin resistance in HepG2 cells compared to 

HepG/DDP cells (Supplementary Figure 1). 

 

Metformin sensitized HepG2/DDP cells to cisplatin 

through inhibiting Nrf2-dependent transcription 

 

There are several studies and clinical trials showing the 

benefits of metformin on reducing cancer incidence 
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[28–32]. Some studies suggest that metformin could 

benefit patients through improving their response to 

chemotherapy. We aimed to study the mechanisms at 

the cellular and molecular levels. First, we tested if 

metformin would increase cisplatin toxicity on 

HepG2/DDP cells. After 48 hours of 10 ug/ml of 

cisplatin treatment, ~ 60% of HepG2/DDP cells 

remained alive. However, adding metformin from 0.5-4 

mM significantly enhanced the killing effect of cisplatin 

(Figure 2A). Although metformin also enhanced 

cisplatin toxicity in HepG2 cells, its effect on 

HepG2/DDP cells were much stronger (Figure 2B). 

 

 
 

Figure 1. Nrf2 activation contributes to cisplatin-resistance of HepG2/DDP cells. (A) Nrf2 protein levels were increased in 

hepatocellular carcinoma tissues from patients undergone cisplatin treatment. Sections of paraffin-embedded hepatocellular carcinoma 
tissues were stained with a Nrf2-specific antibody in immunochemistry (IHC) experiments. Representative images were shown. Scale bars are 
20 µm. (B) Quantifying Nrf2 expression in tumor tissues from 16 patients (8 undergone cisplatin treatment). Scores were obtained by 
pathologists according to hospital protocols. Statistical analysis by student’s t-test showed significant difference (*, P<0.05). (C) Nrf2 protein 
levels were elevated in cisplatin-resistant HepG2/DDP cells. Cell lysates of HepG2 and cisplatin-resistant HepG2/DDP from 2 different cultures 
were subjected to Western blot analysis with Nrf2 and Tubulin antibodies separately. Shown are samples from two different cultures. 
Representative images of were shown. Quantification of N= 2 biological repeats were shown in bar graph. (D) Nrf2 target gene expression 
was upregulated in HepG2/DDP cells. mRNA was isolated from HepG2 and HepG2/DDP and the relative mRNA levels of Nrf2 target genes 
(NQO1, GCLC, GCLM and HO-1) was compared by RT-qPCR. Relative expression of each gene as compared to that in HepG2 cells in fold 
change. Significance was tested by student’s t-test (** P<0.001, *** P<0.0001). (E, F) Nrf2 knockdown repressed target genes expression in 
HepG2 and HepG2/DDP cells. Nrf2 was knocked down by transfecting cells with siRNA pools specific to Nrf2 gene for 48 hours. mRNA was 
isolated and RT-qPCR was conducted with specific primers for both Nrf2 gene and its target genes (HO-1 and GCLM). For each gene, data 
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were normalized to non-transfected controls (Ctrl). Significance was tested by student’s t-test (* P<0.05, ** P<0.001). (G) Nrf2 knockdown 
sensitized HepG2/DDP cells to cisplatin. HepG2/DDP and HepG2 cells were transfected with siRNAs specific to Nrf2 gene for 48 hours and 
cells were treated with cisplatin at indicated concentrations for 24 hours. Cell survival was measured with Cell Titer-Glo reagent. Data from 3 
independent experiments was normalized to the average of non-treated controls. Significance was tested by student’s t-test (* P<0.05, ** 
P<0.001). (H) Survival fold change by Nrf2 knockdown. Data in (G) were used to calculate the fold change caused by Nrf2 siRNA knockdown at 
each cisplatin concentration. Significance was tested by student’s t-test (* P<0.05, ns, not significant). 

 

We then asked if metformin would sensitize the 

HepG2/DDP cells to cisplatin through down-

regulating Nrf2. To this end, we first tested if 

metformin would change Nrf2 protein levels. We 

treated HepG2/DDP cells with 1 mM metformin. 

However, no change was observed by Western 

blotting Nrf2 in the cell lysates (Figure 2C). Second, 

we examined the change of Nrf2 target gene 

expression by RT-qPCR. Interestingly, although the 

protein levels of Nrf2 were not affected, the 

expression of Nrf2 target genes HO-1 and GCLM 

were robustly reduced (Figure 2D). Third, we asked if 

metformin’s effect on cisplatin toxicity was additive 

to Nrf2 knockdown. If metformin improves the killing 

of cisplatin through Nrf2 pathway, Nrf2 knockdown 

and metformin should not be additive. By knocking 

 

 
 

Figure 2. Metformin increased cisplatin sensitivity of HepG2/DDP through down-regulation of Nrf2-dependent transcription. 
(A) Metformin sensitized HepG2/DDP cells to cisplatin. HepG2/DDP and HepG2 cells were treated with metformin at various concentrations 
and cell survival was measured by Cell Titer-Glo. Relative percentage of survival after 10 ug/mL cisplatin treatment for 24 hours was plotted. 
Difference between cisplatin-treated HepG2/DDP and HepG2 was tested by student’s t-test (** P<0.001). (B) Data from (A) were normalized 
to cisplatin non-treated controls and shown in bar plot.  Metformin’s effect on HepG2/DDP and HepG2 was tested by student’s t-test (** 
P<0.001). (C) Metformin treatment did not affect Nrf2 protein levels. HepG2/DDP cells were treated with or without 1mM metformin for 24 
hours and total cell lysates were subjected to Western blotting. Culture #1 and #2 were different cell clones.  Representative images of were 
shown. Quantification of N= 4 biological repeats were shown in bar graph. (D) Metformin repressed Nrf2 target genes expression. 
HepG2/DDP cells were treated with or without 1mM metformin for 24 hours and mRNA was isolated and reversed transcribed. RT-qPCR 
were carried out with HO-1 and GCLM specific primers. For each gene, data of cisplatin-treated samples were normalized to that of non-
treated controls. Significance was tested by student’s t-test (* P<0.05, ** P<0.001). (E) Metformin and Nrf2(siRNA) had no additive effect on 
increasing cisplatin toxicity. HepG2/DDP and HepG2 cells were transfected with Nrf2-specific siRNAs for 24 hours then treated metformin for 
24 hours. 10ug/ml cisplatin were added for another 24 hours and relative cell viability was measured with Cell Titer-Glo. Data from 2 
independent experiments were normalized to the average of non-treated controls. Significance was tested by student’s t-test (ns, not 
significant, * P<0.01, ** P<0.001). (F) Nrf2 activation prevented metformin from increasing cisplatin toxicity. HepG2/DDP cells were treated 
as in (E) except KEAP1-specific siRNA was transfected. Data from 4 independent experiments were normalized to the average of metformin 
non-treated control. Significance was tested by student’s t-test (ns, not significant, ** P<0.001). 
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down Nrf2 and treat cancer cells with 1mM 

metformin, we showed that there was no additive 

effect on cisplatin killing of HepG2/DDP cells (Figure 

2E). Last, we tested if constitutively activating Nrf2 

would block metformin’s effect on enhancing 

cisplatin toxicity. Interestingly, KEAP1 knockdown 

promoted the survival of HepG2/DDP cells and 

prevented the beneficial effect of metformin (Figure 

2F). Consistently, KEAP1 knockdown also blocked 

the effect of metformin on reducing Nrf2 target gene 

expression induced by cisplatin (Supplementary 

Figure 2). Together, our data suggest that metformin 

sensitizes HepG2/DDP cells to cisplatin through 

inhibiting Nrf2-dependent transcription. 

 

Metformin increased glucose uptake and glycolysis 

in HepG2/DDP cells 

 

Metformin is a diabetes drug functioning to decrease 

plasma glucose levels. One of the possible mechanisms 

of such effect is through increasing glucose uptake in 

peripheral tissues such as fat tissues and muscles [27]. 

Also, several recent reports suggest that enhanced 

glucose metabolisms could down-regulate Nrf2 target 

genes expression [17, 19, 48]. We wondered if 

metformin would regulate Nrf2 transcriptional activity 

through modulating intracellular glucose metabolism.  

To this end, we first examined glucose absorption in 

HepG2/DDP cells after metformin treatment. Consistent 

with previous reports in muscle and fat cells [49–51], 

metformin increased glucose uptake in HepG2 cells, as 

determined by Glucose Uptake-Glo assay (Figure 3A). 

This was further confirmed by the upregulation of 

glucose transporter Glut1 and Glut4 as demonstrated by 

western blotting (Figure 3B). Knocking down GLUT1 

gene preferentially reduced glucose uptake in 

HepG2/DDP cells compared to HepG2 (Supplementary 

Figure 3). Next, we asked if metformin could increase 

intracellular glucose levels in HepG2/DDP and HepG2 

cells by using the Glucose-Glo Assay. Consistently, 

enhanced glucose uptake by metformin resulted in 

elevated intracellular glucose levels (Figure 3C). Third, 

we examined the protein levels of key enzymes in the 

glycolysis pathway, including the Hexokinase 2 (HK2) 

and Lactate dehydrogenase A (LDHA). Our results 

showed that these enzymes were elevated ~3 to 4 folds 

upon 1mM metformin treatment (Figure 3D). Last, we 

examined if increased glucose levels and glycolysis 

enzymes could result in elevated production of 

glycolytic metabolites such as lactate, NAD/NADH and 

NADP/NADPH. HepG2/DDP and HepG2 cells treated 

with and without metformin for 24 hours were 

trypsinized from plate and equal number of cells were 

used in the assay. As shown in Figure 3E–3G, lactate 

concentration was increased in metformin-treated cells, 

so were NAD/NADH and NADP/ NADPH levels. 

Metformin also increased the metabolite concentrations 

in a similar manner in HepG2 cells. Our results suggest 

that metformin increased glucose concentration and 

enhanced glycolytic activity in HepG2/DDP cells.  

 

High glucose suppressed Nrf2-mediated 

transcription and sensitized HepG2/DDP cells to 

cisplatin 

 

If increased glycolysis by metformin suppresses Nrf2-

dependent transcription and improves cisplatin killing 

of HepG2/DDP cells, adding extra glucose in the 

medium might also show the same benefits. To test this 

possibility, HepG2/DDP cultured overnight in standard 

RPMI medium (containing 2g/L glucose) were shifted 

to RPMI medium with 2g/L, 4g/L, 8g/L or 12g/L 

glucose overnight. We first examined if Nrf2-dependent 

transcription of HO-1 gene would be suppressed using 

RT-qPCR. As shown in Figure 4A, glucose 

significantly suppressed HO-1 gene expression in a 

dose-dependent manner. Similarly, at the concentration 

of 8g/L glucose, expression of other Nrf2 target genes 

NQO1, GCLC and GCLM were also significantly 

reduced (Figure 4B). Next, we tested if high glucose 

medium could sensitize HepG2/DDP cells to cisplatin 

as did the metformin. Indeed, cells cultured in high 

glucose medium (8g/L) became more vulnerable to 

killing by cisplatin (Figure 4C).  

 

To ask if glucose regulation of cisplatin sensitivity in 

HepG2/DDP cells was dependent on Nrf2 function, we 

siRNA knocked down the expression of the Nrf2 

inhibitor KEAP1. KEAP1 was successfully inhibited as 

Nrf2 proteins were elevated in Western blot assay 

(Figure 4D). Interestingly, although high glucose 

medium suppressed the Nrf2 target genes (Figure 4A 

and 4B), Nrf2 was not affected at the protein levels 

(Figure 4D), similar to the results in metformin 

treatment (Figure 2C). Upon KEAP1 knockdown, 

glucose was no longer able to suppress Nrf2 target 

genes (Figure 4E-H). Consistently, upon KEAP1 

knockdown, glucose was no longer able to increase 

cisplatin toxicity to HepG2/DDP cells (Figure 4I). Our 

data suggest that high glucose, similar to metformin, 

sensitizes HepG2/DDP cells to cisplatin through 

KEAP1-Nrf2 pathway.  

 

Metformin decreased Nrf2-dependent transcription 

and increased cisplatin sensitivity through glycolysis 

 

Metformin and high glucose both sensitize HepG2/DDP 

liver cancer cells to cisplatin (Figure 2A and Figure 

4C). Whether they act through the same pathway in the 

upstream of Nrf2 remained unknown. To test this, we 

first asked if metformin and high glucose would act 

additively in suppressing Nrf2 target gene expression 
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and cisplatin resistance of HepG2/DDP cells. Cell were 

cultured under normal and high glucose conditions and 

then treated with and without 1mM metformin. RT-

qPCR showed that the target genes expression of NQO1 

and GCLC were reduced by glucose or metformin 

treatment alone, but not further reduced by combining 

glucose and metformin, suggesting a non-additive effect 

(Figure 5A and 5B). Second, we treated HepG2/DDP 

cells cultured under above conditions with 10 ug/ml 

cisplatin and examined the viability. As shown in 

Figure 5C, glucose or metformin alone sensitized the 

HepG2/DDP cells to cisplatin toxicity, however, 

combination of metformin and glucose did not further 

increase cisplatin toxicity. These results suggest that 

high glucose and metformin target the same metabolic 

process (glycolysis) and pathway (Nrf2-dependent 

oxidative stress response pathway) to regulate drug 

response of HepG2/DDP cells.  

 

Next, we chemically inhibited the cellular glycolysis by 

using 2-Deoxy-d-glucose (2-DG), a non-non-

metabolizable glucose analog. 2-DG is a potent inhibitor 

of glycolysis via its action on hexokinase, the rate limiting 

step of glycolysis [52]. As shown in Figure 5D and 5E, 

metformin repressed Nrf2 target gene (NQO1 and GCLC) 

expression in both 2-DG treated and non-treated 

conditions. However, such repression was blunted by 2-

DG (Figure 5D and 5E, right panels). Interestingly, 2-DG 

alone increased the expression of NQO1 and GCLC, 

consistent with a negative role of glycolysis in Nrf2 

regulation. In addition, we tested the effect of 2-DG and 

metformin on cisplatin toxicity in HepG2/DDP cells. We 

found that the beneficial effect of metformin on enhancing 

cisplatin killing of HepG2/DDP cells was also 

significantly blunted by 2-DG (Figure 5F). Together, 

these data suggest that glycolysis is an important 

biological process mediating the effect of metformin and 

 

 
 

Figure 3. Metformin increased glucose uptake and glycolysis in HepG2/DDP cells. (A) Metformin increased glucose uptake. 

Indicated cells were treated with or without metformin (1mM) for 24 hours and glucose uptake assay were conducted with Glucose Uptake-
Glo. Cell Titer-Glo was also carried out to measure the relative viability, which was used to normalize the data in glucose uptake assay. Data 
from 3 independent biological samples of 3 replicates were statistically analyzed by student’s t-test (*** P<0.0001). (B) Metformin increased 
the expression of glucose transporter Glut1 and Glut4. HepG2/DDP cells were treated with or without metformin (1mM) for 24 hours and 
total cell lysates were separated by SDS-PAGE. Glut1 and Glut4 protein levels were detected by Western blot using specific antibodies to 
Glut1 and Glut4. Tubulin was used as internal control. Representative images of were shown. Quantification of N= 2 biological repeats were 
shown in bar graph. (C) Metformin increased intracellular glucose concentration in HepG2/DDP cells. HepG2/DDP cells were treated with or 
without metformin (1mM) for 24 hours, washed extensively and intracellular glucose concentration was measured by using Glucose-Glo kit. 
Data from 2 independent biological samples of 3 replicates were plotted and statistically analyzed by student’s t-test (** P<0.001). (D) 
Metformin increased the protein levels of glycolytic enzymes HK2 and LDHA. Experiment was conducted as in (B) except HK2 and LDHA 
antibodies were used. Representative images of were shown. Quantification of N= 3 biological repeats were shown in bar graph. (E) 
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Metformin increased intracellular lactate production. Indicated cells were treated with or without metformin (1mM) for 24 hours, washed 
extensively then intracellular lactate concentration was measured by using lactate-Glo kit. Data from 2 independent biological samples of 3 
replicates were plotted and statistically analyzed by student’s t-test (** P<0.001, *** P<0.0001). (F) Metformin increased intracellular 
NAD/NADH production. HepG2/DDP cells were treated with or without metformin (1mM) for 24 hours and lactate concentration was 
measured by using NAD/NADH -Glo kit. Data from 2 independent biological samples of 3 replicates plotted and statistically analyzed by 
student’s t-test (* P<0.05, **P<0.001). (G) Metformin increased intracellular NADP/NADPH production. HepG2/DDP cells were treated with 
or without metformin (1mM) for 24 hours and lactate concentration was measured by using NADP/NADPH -Glo kit. Data from 2 independent 
biological samples of 3 replicates were plotted and statistically analyzed by student’s t-test (*** P<0.0001). 

 

 
 

Figure 4. High glucose medium suppressed Nrf2-mediated transcription in HepG2/DDP cells. (A) High glucose decreased Nrf2 target 

gene HO-1 expression in a dose-dependent manner. HepG2/DDP cells were cultured RPMI-1640 with indicated concentrations of glucose 
medium for 24 hours and total mRNA was extracted and reverse transcribed. RT-qPCR was carried out to compare the relative expression of HO-
1. Significance was tested by student’s t-test (*P<0.05, **P<0.001). (B) Glucose at 8g/L suppressed other Nrf2 target genes. Experiments were 
conducted as in (A) by using qPCR primers specific to NQO1, GCLC and GCLM. Data were normalized to 2g/L glucose (normal RPMI glucose 
concentration) for each individual gene. Significance was tested by student’s t-test (*P<0.05, ***P<0.0001). (C) Glucose at 8g/L increased 
cisplatin killing of HepG2/DDP cells. HepG2/DDP and HepG2 cells cultured in normal RPMI-1640) were shifted to normal (2g/L) or high glucose 
(8g/L) RPMI-1640 for 24 hours then cisplatin at indicated concentrations was added. After 24 hours, cell viability was measured with Cell Titer-
Glo. Data from 2 independent experiments were normalized to the average of non-treated controls. Significance was tested by student’s t-test 
(** P<0.001, *** P<0.0001). (D) KEAP1 knockdown increased Nrf2 protein levels in a glucose-independent manner. HepG2/DDP cells were 
transfected with KEAP1-specific siRNAs for 24 hours and shifted to normal or high glucose medium for 24 hours. Total cell lysates were analyzed 
by SDS-PAGE and Western blotting. Representative images were shown. Quantification of N= 2 biological repeats were shown in bar graph. (E–H) 
KEAP1 knockdown prevented glucose from suppressing Nrf2 target genes. siRNA knockdown and glucose conditioning conducted as in (D). 
Relative expression of indicated genes was quantified by RT-qPCR. Comparison of fold change was shown in (G) and (H). Significance was tested 
by student’s t-test ((* P<0.05, ** P<0.001, ns, not significant). (I) KEAP1 knockdown preventing glucose from enhancing cisplatin toxicity. siRNA 
knockdown and glucose conditioning conducted as in (D). HepG2/DDP cells then treated with cisplatin (10ug/ml) for 24 hours. Relative cell 
viability was measured by Cell Titer-Glo. Data from 2 independent of 3 replicates were normalized to the control and analyzed with student’s t-
test (** P<0.001, ns, not significant). 
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glucose on repressing Nrf2-dependent transcription and 

sensitizing HepG2/DDP cells to cisplatin. 

 

DISCUSSION 
 

In recent years, there are great interests in repurposing 

the diabetes drug metformin for cancer treatment [28]. 

The idea is initially based on the observations that 

diabetes patients with cancer undergone metformin 

treatment show better prognosis, which was later 

confirmed by in vitro and in vivo studies in both 

animal models and clinical trials [28–33, 53]. The 

underlying mechanisms could involve increased drug 

sensitivity [34–37]. However, more studies are needed 

to understand the detailed mechanisms in order to 

accelerate the process of repurposing metformin for 

cancer treatment. The novel findings in the current 

study have given some insights into the mechanisms 

by which metformin repressed cisplatin resistance in 

hepatocellular carcinoma cells (HepG2/DDP). We found 

that metformin enhanced glucose metabolisms and 

glycolysis in HepG2/DDP cells, which in turn repressed 

Nrf2-dependent transcription, therefore contributing to 

cisplatin toxicity. Nrf2 is well known to cause drug 

resistance of many cancer cells [4, 15, 21–23]. 

Consistently, we showed that cisplatin-treated hepato-

cellular carcinomas expressed more Nrf2 proteins (Figure 

1A and 1B), suggesting that Nrf2 activation is a pro-

survival mechanism in response to chemotherapy. This is 

consistent with Nrf2’s role in extending lifespan and 

increasing pathogen resistance in simple model organisms 

[17, 19, 54]. Interestingly, although Nrf2-dependent 

transcriptions were down-regulated by metformin and 

high glucose, Nrf2 protein levels were not changed. This 

contrasts with widely reported mechanism, whereby Nrf2 

was activated by escaping KEAP1-mediated post-

translational degradation through ubiquitin-proteasome 

system (UPS). Nrf2 isoforms have been reported in 

several types of cancer cells [55]. It is possible that the 

antibody did not detected the Nrf2 isoform 

 

 
 

Figure 5. Metformin regulated Nrf2-dependent transcription and cisplatin sensitivity through glucose metabolism and glycolysis 
in HepG2/DDP cells. (A, B) Metformin and glucose had no additive effect on Nrf2-dependent transcription. HepG2/DDP cells in normal RPMI 

(2g/L) were shifted to normal or high glucose (8g/L) medium supplemented with or without 1mM metformin for 24 hours. Total mRNA was 
extracted and relative expression of indicated gene was quantified by RT-qPCR. Data from 2 independent experiments (3 replicates) were 
normalized to non-treated controls and statistically analyzed by student’s t-test (ns, not significant, *P<0.05, **P<0.001). (C) Metformin and 
glucose had no additive effect on cisplatin toxicity. HepG2/DDP cells cultured and treated with glucose and metformin as in (B). After cisplatin 
(10ug/ml) treatment for another 24 hours, relative cell viability was measured by Cell Titer-Glo. Data from 2 experiments with 3 replicates were 
plotted and analyzed by student’s t-test (** P<0.001, ns, not significant). (D–E) Inhibition of glycolysis with 2-DG (20mM) attenuated Metformin’s 
effect on repressing Nrf2-dependent target gene expression.  HepG2/DDP cells under normal glucose condition were treated with or without 
1mM metformin and 20mM 2-DG for 24 hours. Relative expression of indicated genes was quantified by RT-qPCR for 2 independent times (3 
replicates each time). Right panels are normalized data to compare the effect of 2-DG. Student’s t-test was used to test statistical significance 
(*P<0.05, **P<0.001, ***P<0.0001). (F) Glycolysis inhibition by 2-DG attenuated metformin’s effect on increasing cisplatin toxicity. HepG2/DDP 
cells were cultured and treated with metformin as in (E) then cisplatin (10ug/ml) was added for 24 hours. Relative cell viability was measured by 
Cell Titer-Glo. Data from 2 experiments of 3 replicates were plotted and analyzed  by student’s t-test (*P<0.05, ***P<0.0001, ns, not significant).  
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regulated by glucose or metformin. Alternatively, Nrf2 

could be regulated through different mechanisms. For 

example, there could be co-regulators of Nrf2 that 

transduce metformin and glucose signal to regulate Nrf2-

dependent transcription through inhibiting/excluding Nrf2 

interaction with transcription machinery. Interestingly, a 

recent study showed that Nrf2 homolog in C. elegans was 

regulated similarly as in our study [17], which could 

suggest a conserved and novel regulatory mechanism. 

 

How does glycolysis regulate Nrf2 and cisplatin 

resistance? Although we found a robust effect of Nrf2 

on promoting cisplatin resistance, the possibility cannot 

be ruled out that metformin, through glycolysis, 

modulates Nrf2-indpendent mechanisms to repress 

cisplatin-resistance of HepG2/DDP cells. However, our 

data at least demonstrate that Nrf2 is one of the 

contributors. The molecular connections between 

glycolysis and Nrf2 in term of cisplatin resistance 

awaits further investigations. Cancer cells generally 

prefer glycolysis for generating ATP [56], which in turn 

might slow down mitochondrial respiration, therefore 

reducing ROS production. As Nrf2 is responsive to 

ROS, it is possible that elevated glycolysis represses 

Nrf2 through lowering intracellular ROS levels. The 

pentose phosphate pathway (PPP) is a metabolic 

pathway parallel to glycolysis. Elevated glycolysis 

might also activate PPP to generate more NADPH, 

which in turn serve to reduce intracellular free radicals 

[57]. Less radicals could inactivate Nrf2 and contribute 

to cisplatin sensitivity. This is consistent with our 

observation that metformin increased NADPH and 

NADH production and repressed Nrf2-dependen 

transcription. In addition, emerging evidence show that 

glycolytic enzymes could function as signaling 

modulators in addition to their traditional roles [58]. 

These molecules could wire the signaling from 

glycolysis to Nrf2, contributing to cisplatin toxicity to 

HepG2 cells. However, further studies will be needed to 

either confirm or rule out these possible mechanisms. 

 

The effect of hyperglycemia on chemo-resistance 

remains inconclusive [59]. There are quite a few studies 

showing a positive correlation of hyperglycemia with 

chemo-resistance in cancer patients. But in vitro, both 

positive and negative correlations have been reported 

and at least 5 cancer cell lines have been shown to be 

benefited from hyperglycemia [59]. For example, 

increased drug resistance is associated with reduced 

glucose levels [60]. Hyperglycemia increases toxicity of 

carboplatin and 5-fluorouracil in MCF-7 cells [61]. The 

positive correlation of blood glucose levels with chemo-

resistance does not mean that intracellular glucose 

levels of cancer cells are increased. On the opposite, 

since a major reason causing hyperglycemia is impaired 

glucose uptake by peripheral tissues such as muscle, 

cancer cells in hyperglycemic patients could still have 

lower intracellular glucose, which could result in 

activation of Nrf2 and chemo-resistance. Alternatively, 

the opposing role of hyperglycemia on chemotherapy 

could be due to different mechanisms of drug 

resistance. For example, it is possible that only cancer 

cells having Nrf2 induction as a major drug resistance 

mechanism will be sensitive to high glucose; when 

other pathways dominate, glucose would exert a 

negative role on chemotherapy. These reasons could 

also explain the distinct observations in our current 

study as compared to some previous reports showing 

that metformin decreases glycolysis in many cancer 

cells. 
 

Our results should not be extrapolated to animal or 

human studies without careful considerations, as genetic 

alterations and metabolic rewiring are inherent 

characteristics of cancer cells. For example, Nrf2 is well 

known to have dual roles in cancer progression, being 

able to promote cancer development and drug resistance 

on one hand but benefit chemotherapy on the other hand 

[62, 63].  Indeed, although Nrf2 was inhibited in some 

cancer cells in our study and other studies [37, 43, 64], 

there are several reports showing the opposite in other 

cells [65, 66]. Therefore, whether the role of metformin 

in glycolysis and chemoresistance function similarly in 

vivo awaits further investigation.  

 

MATERIALS AND METHODS 
 

Cell culture and drug treatment 
 

RPMI-1640 medium containing 2g/L glucose was 

purchased from Sigma. HepG2 cells and HepG2/DDP 

cells were obtained from the Cell Bank, Chinese 

Academy of Sciences. HepG2 were maintained in 

RPMI-1640 supplemented with 5% fetal bovine serum.  

HepG2/DDP cells were maintained in the same medium 

with 0.1 ug/ml cisplatin. Metformin, Cisplatin, D-(+)-

Glucose, 2-Deoxy-d-glucose (2-DG) were purchased 

from Sigma. Glucose were filter sterilized and add to 

RPMI-1640 (originally 2g/L glucose) to obtained high 

glucose medium (8g/L glucose). Other chemicals were 

added as indicated in the experimental results or figure 

legends.  
 

siRNA knockdown and RT-qPCR 

 
NRF2 and KEAP1 knockdown was conducted as before 

[67].  Briefly, siRNAs (Supplementary Table 1) were 

mixed and added to basal media without FBS (Lonza, # 

CC-3131) with Hiperfect reagent (Qiagen) for 10 min at 

room temperature. The complex was then added to the 

cells cultured on 96-well plate (final siRNA pool 

concentration of 10 nM, 1 nM of each siRNA). Cells 
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were then incubated for 48 hours in a humidified 

incubator.  For RT-qPCR, cells were harvested and total 

RNA was isolated with trizol reagent and reverse 

transcribed with HiScript II Q RT SuperMix (Vazyme). 

qPCR was performed using AceQ Universal SYBR 

qPCR Master Mix (Vazyme) according to 

manufacturer’s protocol using primers shown in 

Supplemental Information, Supplementary Table 2. 

Actin gene was used as internal control.  

 

Cytotoxicity assay 

 

Cytotoxicity of cisplatin was measured by using 

Celltiter-Glo from Promega according to 

manufacturer’s manual. Briefly, cells were cultured on 

96-well plate and treated with cisplatin as indicated in 

each experiment. Medium were removed and 50 ul of 

PBS was added to the cells. 50 ul of Celltiter-glo 

reagent was added to the cells then cells were shaken at 

room temperature for 5 min on an orbital shaker. 50 ul 

of sample were transferred to opaque 384-well plate and 

the luminescent intensity were measured.  

 

Metabolites measurement 

 

Glucose uptake was conducted by using Glucose 

Uptake-Glo from Promega. Briefly, Cells were cultured 

in 96-well plate, treated with 1mM metformin for 24 

hours and washed 2 times with PBS. Samples were used 

for Glucose Uptake-Glo according to manufacturer’s 

protocol. Samples were prepared in triplicates and 

another setup was for cell viability assay to normalize 

the cell number. Relative intracellular glucose levels 

and lactate levels were measured with Glucose-Glo and 

lactate-Glo, respectively, from Promega according to 

manufacturer’s manual. Intracellular NAD/NADH and 

NADP/NADPH were measured by using NAD/NADH-

Glo and NADP/NADPH-Glo from Promega. ATP assay 

was conducted by using Cell Titer-Glo from Promega, 

which is also used to normalized other metabolite 

concentrations.  

 

Immunohistochemistry (IHC) 

 

Paraffin-embedded human hepatocellular carcinoma 

tissue slides were obtained from Shanghai Ninth 

People’s Hospital. More clinic information was 

provided in Supplementary Table 3. Slides were 

dewaxed by baking at 60 °C for 60 min then 

incubating for 10 min in xylene for 2 times under 

chemical hood. Xylene were removed by incubating 

slides in gradient ethanol (100%, 95%,70%) for 3 min 

each then rinsed with plenty of waters. Slides were 

then immersed in Antigen retrieval buffer (pH8.0) 

from Abcam and cooked in pressure rice cooker  (tem- 

perature 105~110 °C) for 10 min to retrieve antigen. 

IHC was carried out by blocking with 5% goat serum 

for 15 min, incubated with anti-Nrf2 (Abcam, 

ab137550) at 400X for 60 min, washed extensively 

with PBS then incubated with secondary antibody 

(GeneTex One Step polymer-HRP) for 30 min. After 

rising with PBS, tissue samples were stained with 

Scytek DAB chromogen for 5 min, counterstained 

with hematoxylin for 1 min, clarified with 0.3% acid 

alcohol for 2~3 seconds, immediately rinsed in tap 

water. Slides were dehydrated by baking at 60 °C for 

about 5 min, immersed in xylene and covered with 

mounting medium and cover slide.  

 

Western blot 

 

RPMI medium were removed from cells and cells 

attached to the 96-well plate were washed with PBS 1 

time.  1X SDS-PAGE loading buffer (62.5 mM Tris-

HCl pH 6.8; 2.5 % SDS; 0.002 % Bromophenol Blue; 

0.7135 M (5%) β-mercaptoethanol; 10 % glycerol) were 

added directly to the cells. Cells were collected by 

pipetting and whole cell lysates were heated at 95 °C for 

5 min.  Whole lysates were subjected to SDS-PAGE 

and transferred to PVDF membrane. Membranes were 

blocked in 5% non-fat milk and probed with primary 

antibodies in 5% non-fat milk at the following 

concentration: Nrf2 (Promab Biotechnologies, #30597) 

at 2000X, Tubulin (Promab Biotechnologies, #20374) 

0.2 ug/ml, Glut1 (R&D Systems, MAB14181) 2 ug/ml, 

Glut4 (Abcam, ab654) at 2500X dilution, HK2 (R&D 

Systems, MAB8179) at 0.2 ug/ml, LDHA (R&D 

Systems, AF7304). Membrane were washed with PBS 

extensively and probed with secondary antibodies 

(HRP-conjugated) at 10000X at 5% non-fat milk for 30 

mins. Membrane was detected by enhanced 

chemiluminescence (ECL).  

 

Statistically analysis data quantification 

 

Data shown in the bar graph were collected from at least 

3 biological replicates if not otherwise indicated. Each 

biological replicate consists of at least 3 technical 

replicates. Data were pooled and analyzed by two tailed, 

paired student’s t-test in the GraphPad Prism software. 

Error bars stand for standard deviation of the mean 

(SD). Western blot signals were quantified through 

ImageJ.  
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SUPPLEMENTARY MATERIALS 
 

 

Supplementary Figures 

 

 

 

 

 

 

 
 

Supplementary Figure 1. Knockdown of KEAP-1 increases the resistance to cisplatin in HepG2 cells. HepG2 and HepG2/DDP cells 

were transfected with siRNAs specific to KEAP1 gene for 48 hours and cells were treated with cisplatin at indicated concentrations for 24 
hours. Cell survival were measured with Cell Titer-Glo. Data were from at least 2 independent experiments and normalized to the average of 
non-treated controls. Significance were tested by student’s t-test (* P<0.05, ** P<0.001). 

 

 

 
 

Supplementary Figure 2. KEAP1 knockdown prevents metformin from reducing Nrf1 target gene expression. RT-qPCR were 

used to compare the relative mRNA levels of the well-known Nrf2 target genes be: (NQO1 (A), GCLC (B) and GCLM (C)). Samples from 3 
preparations were quantified by qPCR and normalized to the average of cisplatin-treated controls. Error bars stand for standard deviation. 
Groups were compared by two-tailed, paired student t-test (ns, not significant, ** P<0.001, ***P<0.0001). 
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Supplementary Figure 3. GLUT1 knockdown blunts the effect of metformin on increasing glucose uptake. (A) GLUT1 

knockdown effect on 2DG6P uptake. HepG2 and HepG2/DDP cells were first transfected with siRNA pools to knockdown GLUT1 glucose 
transporter for 48 hours, then treated with or without metformin (1mM) for 24 hours. Glucose uptake assay were conducted with Glucose 
Uptake-Glo by following manufacture (Promega) protocol. Glucose Uptake-Glo was also carried out to measure the relative glucose 
transport, which was used to normalize the data in glucose uptake assay. Data were from 3 independent biological samples of 3 replicates. 
Significance were tested by student’s t-test (ns, not significant, ** P<0.001, *** P<0.0001). (B) Calculated fold changes were blunted by 
metformin treatment. Data of metformin treated groups for each sample were normalized to that of non-treated controls. Significance were 
tested by student’s t-test (ns, not significant, * P<0.01, ** P<0.001). 
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Supplementary Tables 
 

Supplementary Table 1. siRNA pools used in this study. 

NRF2 siRNA pool [1]: 

NFE2L2-1 mGmAUUCUGACUCCGGCAUUUTT AmAAUGCCGGAGUCAGAAUCTT 

NFE2L2-2 mCmACUACUUGGCCUCAGUGATT UmCACUGAGGCCAAGUAGUGTT 

NFE2L2-3 mCmUCACAAGAGAUGAACUUATT UmAAGUUCAUCUCUUGUGAGTT 

NFE2L2-4 mGmAGAUGAACUUAGGGCAAATT UmUUGCCCUAAGUUCAUCUCTT 

NFE2L2-5 mGmCUCAUACUUUAUAAGUAATT UmUACUUAUAAAGUAUGAGCTT 

NFE2L2-6 mGmAGACUACCAUGGUUCCAATT UmUGGAACCAUGGUAGUCUCTT 

NFE2L2-7 mCmUGUUGAUUUAGACGGUAUTT AmUACCGUCUAAAUCAACAGTT 

NFE2L2-8 mGmCCCUCACCUGCUACUUUATT UmAAAGUAGCAGGUGAGGGCTT 

NFE2L2-9 mCmCAUUCACUCUCUGAACUUTT AmAGUUCAGAGAGUGAAUGGTT 

NFE2L2-10 mGmUCACUUGUUCCUGAUAUUTT AmAUAUCAGGAACAAGUGACTT 

KEAP1 siRNA pool: 

KEAP1-1 mCmGAAUGACAUCGGGCCGGATT UmCCGGCCCGAUGUCAUUCGTT 

KEAP1-2 mGmUGUUACGACCCAGAUACATT UmGUAUCUGGGUCGUAACACTT 

KEAP1-3 mCmCUUAAUUCAGCUGAGUGUTT AmCACUCAGCUGAAUUAAGGTT 

KEAP1-4 mCmAGAUUGGCUGUGUGGAGUTT AmCUCCACACAGCCAAUCUGTT 

KEAP1-5 mGmCUAUGAUGGUCACACGUUTT AmACGUGUGACCAUCAUAGCTT 

KEAP1-6 mGmGUUCUACGUCCAGGCGCUTT AmGCGCCUGGACGUAGAACCTT 

KEAP1-7 mGmCAUCAACUGGGUCAAGUATT UmACUUGACCCAGUUGAUGCTT 

KEAP1-8 mGmGGACAAACCGCCUUAAUUTT AmAUUAAGGCGGUUUGUCCCTT 

KEAP1-9 mCmGCCUUAAUUCAGCUGAGUTT AmCUCAGCUGAAUUAAGGCGTT 

KEAP1-10 mCmGAAUGAUCACAGCAAUGATT UmCAUUGCUGUGAUCAUUCGTT 

GLUT1 siRNAs [2] 

Sense 5'- CCUCUUUGUUAAUCGCUUU -3', Antisense: 5'- AAAGCGAUUAACAAAGAGG -3' 

 

Supplementary Table 2. RT-qPCR primers for Nrf2 target genes. 

NRF2  5′-CAGCGACGGAAAGAGTATGA-3′ 5′-TGGGCAACCTGGGAGTAG-3′ 

Actin  5′-CTGGAACGGTGAAGGTGACA-3′ 5′-AAGGGACTTCCTGTAACAATGCA-3′ 

GCLC  5′-CCCTCGCTTCAGTACCTTAAC-3′ 5′-GACAGCAATTGCCCATTCCA-3′ 

GCLM  5′-AGTGGGCACAGGTAAAACCA-3′ 5′-CTCGTGCGCTTGAATGTCAG-3′ 

HO-1  5′-CTGCTCAACATCCAGCTCTTTG-3′ 5′-AGTGTAAGGACCCATCGGAGA-3′ 

NQO1  5′-CAAAGGACCCTTCCGGAGTAA-3′ 5′-ACTTGGAAGCCACAGAAATGC-3′ 
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Supplementary Table 3. Clinical information of patients in immunohistochemistry experiment in Figure 1A–1B. 

Patent number  Age  Gender  Cancer stage  Surgery  Cisplatin treatment  

1  78  M  IIIA  N  Y  

2  62  M  IIIB  Y  Y  

3  83  M  IIIB  N  Y  

4  74  M  II  N  Y  

5  66  F  IIIA  N  Y  

6  80  F  IIIA  N  Y  

7  76  F  IIIB  Y  Y  

8  47  F  IIIA  Y  Y  

9  69  M  IVA  N  N  

10  77  M  IVA  N  N  

11  65  M  IIIB  Y  N  

12  74  M  IVA  N  N  

13  83  F  IIIB  N  N  

14  73  F  IVA  M  N  

15  56  F  IVA  N  N  

16  75  F  IIIB  N  N  
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