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INTRODUCTION 
 
The degree to which individuals respond to cancer 
therapy is highly varied among each cancer patient, 
reinforcing the belief that each case is heterogeneous 
and unique. Despite this, research aims to identify 
common themes and mechanisms of cancer 
development that could be widely adopted to predict, 
detect, and target the disease to improve patient 
outcomes. While an immense variety of cellular 
malfunctions exist that lead to cancer, there are key, 
widely accepted, commonalities that serve as hallmarks 
of cancer [1]. These hallmarks include selective growth 
and proliferative advantages, altered stress responses, 
metabolic rewiring, modified vascularization and the 
ability to invade and metastasize. Cancer cells can also 
exhibit enhanced genomic instability, a result of 
multiple mechanisms, including dysregulated DNA 

synthesis and ineffective mitotic checkpoints [2, 3]. 
Normally, cells with DNA double strand breaks above a 
given threshold, generally believed to be determined by 
p53 [4], would be diverted down the programmed cell 
death pathway and prevented from replicating [5, 6]. 
Cancer cells notoriously bypass the usual quality 
control checkpoints and continue to replicate despite 
multiple mutations. This persistent damage can then 
cause a positive feedback loop with promiscuous 
replication of DNA harbouring damage resulting in 
further dysregulation of protein function and 
expression, generating yet greater deregulated cell cycle 
progression. The ability to continually replicate 
regardless of excess damage also implies that there is a 
suppression of apoptotic pathways, which would 
normally terminate a normal cell undergoing this 
malignant transformation [7]. While the specific genes 
altered may differ between malignancies, the defects 
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ABSTRACT 
 
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, 
and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed 
overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 
(FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC 
coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them 
identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and 
their association with malignancies have been studied in isolation, the possibility exists that generalized APC 
dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor 
behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis 
through its regulation of mitotic progression. In this review the connections between APC activity and 
dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along 
with the individual roles that the accumulation of various APC substrates may play in cancer progression. 
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may produce similar effects, as multiple genes regulate 
similar pathways.  
 
The Anaphase Promoting Complex (APC) and 
cancer development and progression 
 
Oncogenic-like changes (deregulated apoptosis, 
inadequate quality control of the cell cycle, and 
accumulated DNA damage) can be influenced by 
competing stress responsive and nutrient sensing 
pathways. In the Saccharomyces cerevisiae and 
Schizosaccharomyces pombe yeast eukaryotic model 
systems, a wealth of literature links the antagonistic 
interactions between the stress and nutrient sensing 
pathways as critical for genome stability and longevity 
[8–14]. The Anaphase Promoting Complex (APC) 
appears to be at a critical nexus point that regulates the 
molecular equilibrium of these pathways [15–23]. The 
APC has been observed in yeast to interact with stress 
response pathways to mediate the response to multiple 
stresses, with mutations to the APC resulting in 
genomic instability leading to a variety of phenotypes 
[15, 16, 18–20, 23, 24]. Indeed, studies using human 
cell culture show that the APC, when bound by the 
CDH1 coactivator subunit (APCCDH1), controls cell 
cycle arrest in response to stress [25, 26]. It was 
observed that APCCDH1 inactivation represents the 
commitment towards cell cycle re-entry. Active 
APCCDH1 facilitates entrance into a quiescent state when 
stress is encountered, but not when APCCDH1 is 
inactivated. Thus, this provides an explanation for why 
impaired APCCDH1 activity is associated with enhanced 
genomic instability and cancer progression [27–31], as 
cell cycle arrest is blocked in the presence of DNA 
damage, allowing mutations to accumulate.  
 
The APC is a large, structurally and functionally 
conserved ubiquitin ligase that targets inhibitors of 
mitotic progression and interphase arrest for ubiquitin- 
and proteasome-dependent degradation. In humans, the 
APC is a 1.5 megadalton complex composed of 19 
subunits, 15 of which are unique [32]. The yeast 
complex is equally large with 13 unique subunits, 
lacking only the human APC7 and APC16. The 
conserved APC is composed of 3 structural motifs: the 
platform, the TPR lobe and the catalytic core. The TPR 
lobe contains many of the subunits targeted for post-
translational modifications, while the catalytic core 
contains APC11, APC2 and APC10 that transfer the 
ubiquitin molecule from the E2 to the substrate 
molecule. The platform (APC1, APC4 and APC5) 
connects the TPR lobe and the catalytic core. The APC, 
as discussed in this review, interacts with a great 
number of proteins for proper regulatory control and 
function. It is also targeted by a variety of signalling 
networks that phosphorylate, ubiquitinate and acetylate 

APC subunits, mostly within the TPR lobe, but also 
APC1. The large structure and intricate assembly is 
likely required to sort through the many unique, but 
intertwined signalling mechanisms that control APC 
activity. APC activity is primarily controlled through 
exclusive binding by one of 2 activator subunits, 
CDC20 or CDH1, to form the APCCD20 and APCCDH1 
complexes, respectively; CDC20 promotes anaphase 
and mitotic progression, while CDH1 regulates mitotic 
exit and G1 progression [33, 34]. It has been observed 
that the APC activator and eventual substrate, CDC20, 
accumulates in many types of cancer cells in vitro and 
in vivo [35–38]. This suggests that CDC20-dependent 
activation of the APC may be a critical component of 
cancer development and behavior. This is further 
supported by the observation that expression of both 
APC2 and APC7 are elevated in acute myeloid 
leukemia cell lines and patients [39], and that 
overexpression of APC11 mRNA and protein has been 
reported in lung cancer cells and patients [40]. Indeed, 
silencing of CDC20 using RNA interference in 
pancreatic cells lines augmented cytotoxicity when 
exposed to chemotherapies [41]. Furthermore, use of 
the pharmacological agents APCIN or pro-TAME, 
which inhibit the binding of CDC20 to the APC (and 
thus APCCDC20 formation) resulted in increased 
apoptosis and death in multiple cancer cell lines, 
indicating that inhibition of the APC may be a useful 
anticancer approach [42–44]. Moreover, an interesting 
recent study showed that cancer cells displaying 
chromosome cohesion defects were synthetically lethal 
with APC subunit depletion, providing further evidence 
that APC inhibition may be a powerful means to killing 
cancer cells [45]. As well, direct inhibition of the APC 
by peptides elevated sensitivity of cancer cells to 
microtubule poisons [46]. 
 
Opposing the idea that APC activity is an important 
driver of cancer development and that inhibiting its 
activity is a useful approach to treating cancer, are the 
multiple observations that many APC substrates are 
elevated in various unrelated cancers, both at their 
mRNA and protein levels. Many of these substrates are 
also notable for being markers for poor prognosis [23, 
47–51]. The accumulation of these substrates indicates 
two potential mechanisms; either the accumulation of 
these proteins leads to APC-independent cancer 
progression, or it is impaired APC function that leads to 
the accumulation of multiple substrates and cancer 
progression. The accumulation of APC targeted mitotic 
kinases like PLK1, MPS1, and Aurora A/B in cancer 
has led to efforts to target these molecules for 
anticancer therapy [52]. However, regardless of in vitro 
successes, lead molecules targeting APC substrates 
have had limited success in the clinic [53–55]. 
Nonetheless, while monotherapy may have limited 
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success, these studies reveal that combinatorial 
treatment with other anticancer drugs shows promise in 
clinical trials. Thus, the accumulation of multiple APC-
targeted proteins in a single cancer cell may be due to a 
failure of their regulated degradation, suggesting that 
generalized APC E3 activity may in fact be impaired in 
cancer cells. Observations that mutations to several 
APC subunits are associated with cancer progression 
[56, 57] supports the notion that APC activity may in 
some cases ward off cancer progression. In addition, the 
development of small molecule inhibitors of the Spindle 
Assembly Checkpoint (SAC; inhibits APC activity), 
TTK/MPS1 protein kinase inhibitor (TTKi) and Mad2 
Inhibitor 1 (M2I-1), are observed to be potent 
anticancer agents in vitro [31, 58–62]. In general, the 
SAC inhibits the APC by sequestering away CDC20 
until cells are ready to enter mitosis [63]. SAC 
inhibitors lead to enhanced APC activity and a 
shortened mitosis, suggesting that APC activity may be 
critical for TTKi and M2I-1 anti-cancer function. This 
was validated by a report showing that cells treated with 
siRNA against APC subunits APC4 or APC13/SWM1 
developed resistance to the SAC inhibitor [31]. This 
opens the possibility that activation of the APC may 
enhance cancer treatment by potentially bypassing the 
spindle assembly checkpoint, pushing highly damaged 
cells inappropriately into anaphase prior to sufficient 
DNA repair, causing mitotic catastrophe. 
 
Recent work demonstrates that the aberrant 
accumulation of many mRNAs involved in the 
regulation of APC function and mitotic progression in 
cancer cells are tightly linked, suggesting that the APC 
plays a general role in protecting against cancer 
development and/or progression. It was observed that 
the accumulation of CDC20 in tissues from a variety of 
unrelated malignancies was associated with a cluster of 
139 genes that were likewise also markedly 
overexpressed. Many of the genes in the CDC20-
associated gene signature defined genes involved in cell 
proliferation, DNA damage response, and chromosome 
segregation [37]. This CDC20-associated gene set was 
originally found overexpressed in glioma 
transcriptomes, and was found to be a robust predictor 
of poor clinical prognosis in over 1,000 patient datasets 
investigated. This adds further support for the notion 
that APC function may be a critical trigger for the 
development and progression of multiple cancers.  
 
APC function 
 
The APC is most often considered in terms of its 
mitotic functions. However, there are many ancillary 
functions that are performed by the APC including: 
maintaining genomic stability [19, 64–66], regulating 
interphase progression [67–69] and apoptosis [70, 71]. 

Dysregulation of these additional functions can be 
found in cancer. Both of the APC coactivators have 
tumor related functions; CDC20 is a well-known 
oncogene which drives improper cell proliferation 
[36, 49, 72–74], while CDH1 is considered a tumor 
suppressor that regulates mitotic exit, entrance to S 
phase, induces quiescence under stress conditions and 
maintains genomic stability [16, 66, 75, 76]. We 
performed a BioGRID analysis of CDC27 to begin to 
understand the network differences between CDC20 
and CDH1, as CDC27 is the key entry point for the 
coactivators; CDC27 recruits both CDC20 and CDH1 
into the APC [77, 78] (Figure 1). BioGRID is a 
biological database detailing protein-protein, genetic 
and chemical interactions, as well as post-translational 
modifications (https://thebiogrid.org). This analysis 
revealed 144 unique nodes for CDC27, with 602 
physical edges, 16 genetic edges and 18 combined 
physical/genetic edges. Each node, which defines a 
different gene, was searched on PubMed for 
interactions with the APC, with APC substrates 
identified that were uniquely targeted for degradation 
by CDC20 and/or CDH1. CDC27 was also found to 
interact with clusters of signalling and trafficking 
molecules, stress response and DNA repair proteins, 
CDH1/CDC20 regulators, SAC components, and 
proteins involved in DNA and RNA processes. This 
variety of interactors validates the many roles the 
APC has been described to fulfill. 
 
Subsequent BioGRID searches were performed for 
CDC20 and CDH1 separately to specifically identify 
common and unique interactors for the 2 coactivators. 
One hundred and eighty one and 175 interaction nodes 
were identified for CDH1 and CDC20, respectively, 
resulting in 819 edges for CDH1, and 919 edges for 
CDC20. Nodes define proteins interacting with CDC20 
or CDH1, while an edge is a line that connects any 2 
proteins. A protein node may have more that 1 edge, 
resulting in more edges than nodes. Thirteen APC 
subunits were identified by both the CDC20 and the 
CDH1 searches. Each protein node was searched on 
PubMed to identify overlaps with APC function. Any 
protein that did not overlap with the APC on PubMed 
was not followed further. Physical interactions 
identified by BioGRID can be part of global screens 
where individual hits are not discussed in manuscripts, 
so are not picked up in PubMed searches. So, while 
these proteins likely physically associate with CDC20 
and/or CDH1, not enough information is available to 
discern the mechanism of association. Further, many 
proteins may not be direct interactors, but interact 
through intermediaries defined by complexes. For this 
analysis we focused on proteins involved in APC 
inhibition (Figure 2), APC activation (Figure 3) or are 
potential APC substrates (Figure 4).  

https://thebiogrid.org/
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APC inhibition 
 
A number of proteins were identified that interacted 
with either or both CDC20 and CDH1 that were not 
observed as substrates, but were involved in APC 
inhibition. The SAC components MAD1, MAD2, 
MAD2BP, BUB1, BUBR1 and BUB3 were all 
identified only in the CDC20 search, while MAD2B 
was identified in both searches. As discussed above, the 
SAC blocks CDC20 from interacting with and 
activating the APC [63]. Three different proteins were 
specifically identified in the CDC20 search that work 
with the SAC to suppress APC activity, c-MYC, 
CASC5/KNL1 and CHFR (Figure 2). c-MYC was 

shown to drive the expression of MAD2 and BUBR1, 
which corresponded to chromosome instability and 
DNA strand breaks as a result of impaired repair of 
replication-stress induced DNA lesions in G2 [79]. In 
addition, the protein CDR1, an APCCDH1 substrate, 
binds c-MYC to activate its transactivation; elevated 
accumulation of CDR1 in cancer cells as a result of 
APC inhibition or defect promotes c-MYC oncogenic 
function [80]. The protein encoded by CASC5/KLN 
associates with the SAC to provide a scaffold for 
protein complex assembly. KNL is phosphorylated by 
MPS1, a SAC checkpoint kinase that is also an APC 
substrate, which enables KNL to recruit BUB1-BUB3-
BUBR1 to unattached kinetochores and inhibit APC  

 

 
 

Figure 1. CDC27 network interactors. The BioGRID database was searched for CDC27 interactors. The search resulted in 144 protein 
nodes (blue circles) that interact with CDC27, producing 602 physical edges (yellow lines), 16 genetic edges (green lines) and 18 
physical/genetic edges (purple lines). An edge is the line connecting 2 proteins. Many proteins have multiple interactors, generating multiple 
edges for a single protein. The search was done with the minimum evidence filter set at 1 (see Supplementary Figure 1 for raw data). Proteins 
that only interacted with CDC27 (1 edge) were lost when the filter was set at 2 and were not included in this analysis. Each node was 
manually manipulated for this clustering exercise.  
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activity [81]. The CHFR protein, described as a tumor 
suppressor, also promotes the SAC and APC inhibition 
by facilitating the MAD2-CDC20 interaction [82]. 
 
Several other proteins were identified in the CDC20 and 
CDH1 searches that function as APC inhibitors 
(CHEK1, CUEDC2, HSF1, DAXX, EMI1/FBXO5 and 
EMI2/FBXO43). CHEK1 depletion results in disruption 
of CDC20 and MAD2 localization to kinetochores and 
decreased CDC20 and MAD2 protein levels [83]. This 
suggests that CHEK1 is required for APC inhibition. A 

second study describes this further as it shows that 
CHEK1 inactivates APCCDH1 in the presence of 
replication stress by targeting CDH1 for degradation, 
thereby inhibiting APC activity [84]. CUEDC2 is an 
interesting protein that functions to inhibit APCCDH1, yet 
activate APCCDC20. In G1, CUEDC2 binds to and 
inhibits APCCDH1, thereby stabilizing Cyclin A and 
promoting G1-S transition [85]. This is blocked by UV 
irradiation. In the presence of UV, ERK1/2 
phosphorylates CUEDC2, leading to ubiquitin and 
proteasome dependent degradation. The E3 responsible 

 

 
 

Figure 2. Protein inhibitors of the APC that function through CDC20 and/or CDH1. The BioGRID database was separately searched 
for CDC20 and CDH1 interactors. To avoid confusion with the cadherin 1 gene (also called CDH1), the alias FZR1 was used to search for the 
CDH1 coactivator. 181 nodes were identified for FZR1, identifying 801 physical, and 18 genetic edges (see Supplementary Figure 2). For 
CDC20, 175 nodes were identified, with 911 physical edges and 8 genetic edges (see Supplementary Figure 3). All protein nodes identified 
were searched using PubMed. Proteins found to inhibit the APC, but not serve as substrates, are shown here. Proteins unique to CDC20 are 
shown in red, those unique to CDH1 are shown in blue, and those identified in both searches are shown in green. All APC subunits were 
identified in both searches. Ph, phosphorylation; Ub, ubiquitination. 
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for CUEDC2 degradation has not yet been identified. 
Activation of APCCDC20 by CUEDC2 is discussed 
below. HSF1 functions in cancer by inhibiting the 
interaction of CDC20 with CDC27 and blocking APC 
activation [86]. The overproduction of HSF1 resulted in 
the accumulation of APC substrates, inhibited mitotic 
exit and generated aneuploidy. It was also found that 
HSF1 phosphorylation by PLK1 was required to bind 
CDC20 and inhibit APC activity [86]. There are 2 
additional APC inhibitors called Early Mitotic 
Inhibitors (EMI) 1 and 2. EMI1 acts as both an inhibitor 
and an APCCDH1substrate [25, 26]. EMI1 levels are kept 
low during G1 by APCCDH1, and then high during S and 
G2 when APC activity is low. APC inactivation is 
triggered by CDK2/Cyclin E activity during G1, which 
coincides with increased EMI1 mRNA expression, 
which serves to maintain APC inhibition. EMI2, on the 
other hand, works by inhibiting the interaction of the 

APC with its E2 component UBE2S in unfertilized 
Xenopus eggs, thereby blocking unfertilized eggs in 
metaphase of meiosis II [87]. Upon fertilization, EMI2 
is targeted for degradation by the SCFβ-TrCP complex. 
EMI2 also blocks APC activity by blocking the 
association of CDC20 with the APC [88]. Lastly, the 
DAXX protein is often observed to be overexpressed in 
prostate cancer cells. DAXX encodes APC recognition 
motifs called destruction boxes. DAXX interacts with 
both CDC20 and CDH1 via these motifs but does not 
appear to be a substrate [89]. This interaction is 
sufficient to disrupt APC function.  
 
APC activation 
 
The CDC20 and CDH1 BioGRID searches also 
revealed proteins that have not yet been identified as 
substrates, but have APC activation potential. When 

 

 
 

Figure 3. Protein activators of the APC that function through CDC20 and/or CDH1. The BioGRID database was searched for CDC20 
and CDH1 interactors. All protein nodes identified were searched using PubMed. Proteins found to activate the APC, but not serve as 
substrates, are shown here. Proteins unique to CDC20 are shown in red, those unique to CDH1 are shown in blue, and those identified in 
both searches are shown in green. PARKIN, when phosphorylated by PLK1, is believed to recruit CDC20 and CDH1 to ubiquitinate APC 
substrates. Ph, phosphorylation; Ac, acetylation; Ub, ubiquitination. 
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SAC activity is no longer required, the complex of 
MAD2, BUBR1 and BUB3 bound to CDC20 must be 
disassembled. This process requires ATP, and a number 
of ATP-dependent activities have been described to 
assist in the dissolution of the SAC, such as TRIP13, 
p31comet and the CCT chaperonin [90]. p31comet was not 
identified in the BioGRID searches, but peptides 
derived from p31comet have been developed in yeast that 
bind to the APC and disrupt interaction of CDC20 and 
CDH1 with the APC [46]. Both TRIP13, and 8 
components of the CCT chaperonin (CCT2, CCT3, 
CCT4, CCT5, CCT6A, CCT7, CCT8 and TCP1) were 
specifically identified only in the CDC20 search (Figure 
3). The CCT chaperonin binds CDC20 and is a 
necessary factor promoting CDC20 binding to the APC 
[91]. It was observed that the combined action of the 
CCT chaperonin with TRIP13 is sufficient to 
completely disassemble the SAC [90]. TRIP13 has been 
found to interact with p31comet to induce checkpoint 
silencing and localizes to kinetochores [92]. 
Overexpression of TRIP13 is observed in cancers with 
poor prognosis and is associated with chromosome 
instability believed to be due to premature checkpoint 
silencing.  
 
A number of additional APC activators were 
specifically identified in the CDC20 search: CKS2, 
CUEDC2, HDAC6, MDC1 and TRIM33 (Figure 3). 
CKS2 is a Cell division cycle Kinase Subunit that binds 
to the CDK1/Cyclin A/B complexes to promote their 
cell cycle driving function. CKS2 is required for 
meiosis in mammalian cells and mice lacking CKS2 
show reduced meiotic development and defective 
APCCDC20 function [93]. As written above, CUEDC2 
inhibits APCCDH1, but can also activate APCCDC20. 
During mitosis CUEDC2 is phosphorylated by CDK1 
[94]. This allowed phosphorylated CUEDC2 to bind to 
CDC20, and facilitate its release from the SAC 
component MAD2, thus activating APCCDC20. In 
another study, APCCDC20 was found to be important for 
neural development by playing a role in post-mitotic 
dendrite morphogenesis [95]. This unique APCCDC20 
activity was facilitated by HDAC6, a histone 
deacetylase that is localized to centrosomes, along with 
CDC20 in neurons. HDAC6 was required for the 
polyubiquitination of CDC20, and the activation of 
APCCDC20, driving the differentiation of dendrites. 
MDC1 is a mediator of a DNA damage checkpoint, and 
was shown to interact specifically with CDC27 [96]. 
This interaction required phosphorylated CDC27 and 
was driven by DNA damage. A subsequent study 
showed that loss of MDC1 resulted in a mitotic arrest 
that was BUBR1 and ATM signalling independent [97]. 
Cells lacking MDC1 had impaired APC activity, 
reduced CDC20 levels, and failure of remnant CDC20 
to bind the APC. TRIM33 is a member of the RING 

(really interesting new gene) domain E3 ligases, and has 
been described as a transcriptional corepressor involved 
in SMAD4 signaling [98, 99]. TRIM33 has also been 
shown to interact specifically with APCCDC20 and is a 
component of the mitotic checkpoint complex (MCC), a 
complex of MAD1, MAD2, BUBR1, BUB3 and 
CDC20 [100]. The interaction of TRIM33 is complex, 
as it was shown that TRIM33 will still bind APC in the 
absence of CDC20, but will not bind APCCDH1. Further, 
binding assays revealed that TRIM33 only associated 
with MCC-APC when the SAC was active, not once it 
was satisfied. This was interpreted to suggest that 
TRIM33 is required to promote APCCDC20 function once 
the SAC is inactive.  
 
The phosphatase CDC14A and the receptor tyrosine 
kinase superfamily member EPHA4 both activate the 
APC through interactions with CDH1. CDH1 is 
phosphorylated by CDK/Cyclin B complexes, which 
blocks interaction of CDH1 with the APC. 
Dephosphorylation of CDH1 by Cdc14 in yeast and 
CDC14A in mammalian cells relieves the inhibitory 
pressure and enables APCCDH1 activation [101]. 
However, CDC14A does not influence APCCDC20 
function. The EPHA4 receptor is involved in neural 
homeostatic plasticity through interactions with 
APCCDH1 [102]. Elevated synaptic activity triggers the 
tyrosine phosphorylation of EPHA4, which then 
interacts with APCCDH1 to target GLUR1 for 
degradation to reduce synaptic signalling. 
 
Two additional proteins promote mitotic progression by 
interacting with both CDC20 and CDH1, but in 
different ways, SIRT2 and PARKIN. SIRT2 is a protein 
deacetylase and is a member of the Sir2 family of 
deacetylases. Sir2 was first studied in yeast as a histone 
deacetylase, and was shown to have a conserved role in 
promoting longevity in model systems [103, 104]. 
SIRT2 has been shown to provide anti-tumor potential 
by deacetylating both CDC20 and CDH1 to promote 
their recruitment to the APC and cell cycle progression 
[65]. Loss of SIRT2 in mouse embryonic fibroblasts 
(MEFs) resulted in stabilized APC substrates, 
centrosome amplification, and aneuploidy, with mice 
lacking SIRT2 experiencing increased tumor 
development. PARKIN, on the other hand, is a RING 
domain E3 family member that is capable of mono- and 
polyubiquitinating substrates, with neuroprotective and 
tumor suppressor potential [105]. Interactions with the 
APC coactivators were revealed in a study where MEFs 
lacking PARKIN were shown to have mitotic defects 
and high levels of multiple APC substrates, such as 
PLK1, Aurora A, Aurora B and Cyclin B1, for example 
[106]. This work also revealed that PARKIN forms 
complexes with either CDC20 or CDH1 that were 
independent of the APC. Interestingly, depletion of both 
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PARKIN and APC11 recapitulated CDC20 depletion, 
whereas depletion of PARKIN or APC11 only partially 
impaired Cyclin B1 degradation. Taken together, it is 
apparent that there are multiple complex mechanisms in 
play to regulate APC function. Shifts in the equilibrium 
of this balancing act could have significant impacts on 
cell health and viability. 
 
APC substrates 
 
The nodes identified in the BioGRID analyses of 
CDC20 and CDH1 were all searched by PubMed for 
any relationship to “anaphase promoting complex”. The 
resulting literature was assessed for any signs that the 
particular protein was unstable and targeted for 
degradation by either APCCDC20 or APCCDH1 or both. 
This search revealed that 69 of the identified proteins 
were associated with literature related to degradation by 
the APC (Figure 4; Table 1). Reviews have been written 
recently that list APC substrates (25 [107], 46 [32], 16 
[108], 13 [38]), but the 69 potential substrates identified 
here, to the best of our knowledge, is the largest cohort 
of APC substrates assembled. Literature for the proteins 
identified here as substrates that were not in previous 
lists are cited in Table 1 [32, 38, 67, 80, 85, 107–142]. 
Eight proteins were identified only in the CDC20 
BioGRID search, 37 identified only in the CDH1 
search, and 24 as targeted by both. OTUD7B was 
identified in both searches and acts as a cell-cycle 
regulated deubiquitinase that counters APC function 
[143]. Confirmation for 5 of the proteins, CCND2, 
CDK1, CDK2, CDK6 and CDKN2B could not be 
obtained in the literature. The APC targets CCND1, 
CDK4, CDK5 and CDKN1A/p21 for degradation, 
CDK1/2/6 all associate with cyclins that are targeted by 
the APC, and CKDN2B is a CDK4/6 inhibitor that 
physically interacts with CDK4/6 [38, 118, 120–122, 
134–136]. These proteins are likely substrates, but 
confirmation requires further analyses. As discussed 
above, APCCDC20 and APCCDH1 are believed to play 
opposed roles in cancer development, with APCCDC20 
thought to play an oncogenic role [35–38], and 
APCCDH1 playing a tumor suppressive role [47–51, 56–
62]. To gain further insight into these observations we 
searched each protein in the APC substrate list for a role 
in cancer using PubMed. All 69 of the putative 
substrates have been described as being involved in 
cancer progression. Of the 69 proteins identified in 
cancer searches, 9 were described as tumor suppressors 
(orange lettering in Figure 4) and 60 as possible tumor 
promoters (white lettering in Figure 4). This suggests 
that proper APC activity is responsible for the targeted 
degradation of 60 proteins found elevated in tumors and 
9 found reduced in tumors. If CDC20 is involved in 
tumor formation, then we expected that the bulk of the 
tumor suppressors targeted by the APC would rely on 

CDC20 activity, whereas the tumor promoters should be 
specifically targeted by CDH1. As shown in Figure 4, 4 
of the 8 proteins potentially targeted by only APCCDC20 
are described as tumor suppressors in the literature, 
while 33 of the 37 proteins potentially targeted only by 
APCCDH1 are described as oncogenes. Of the 24 proteins 
potentially targeted by both, all but one has been 
described as elevated in tumor cells. These observations 
add significant weight to the idea that the APC plays a 
critical role in cancer development. It is also clear that 
the APC could potentially be involved in both tumor 
promotion and tumor suppression, depending on the 
activity equilibrium between APCCDC20 and APCCDH1. 
 
Normal activation and activity of the APC E3 
Ligase during mitosis 
 
The APC targets specific proteins for ubiquitin- and 
proteasome-dependent degradation, with as many 69 
different proteins serving as targets (see Figure 4). 
These proteins are found in different tissues at different 
times, involved in a variety of mechanisms required for 
mitotic progression and overall cell health, and are 
defined by specific encoded motifs. The primary motif 
of proteins targeted by the APC is the destruction box 
(D-box, RxxLxxI/VxN), which exists on a multitude of 
APC substrates and is targeted by both APCCDC20 and 
APCCDH1 [144–146]. Both coactivators contain a WD40 
domain that binds APC substrates [146], and assists 
with APC and E2-ubiquitin interactions to promote 
APC E3 activity [147–149]. A variety of secondary 
motifs are recognized by either APCCDH1 or APCCDC20 
including the KEN box (KENxxD) [145] and L box 
(LXEXXXN) [19], which are targeted by APCCDH1, and 
an LR motif which is targeted by APCCDC20 [109]. 
These secondary motifs act to target specific proteins 
[42]. Subunits critical for APC E3 ubiquitin ligase 
function include APC2 and APC11 which perform the 
catalytic activity (APC11 encodes the RING domain 
subunit containing the catalytic cysteine for 
ubiquitination) [140]. The APC3/CDC27 and 
APC8/CDC23 subunits bind to the CDC20 and CDH1 
coactivator proteins [150, 151], while the APC10 
subunit is involved in substrate recruitment within the 
inner cavity of the APC structure in collaboration with 
the coactivator subunits [152].  
 
During metaphase, the spindle assembly checkpoint 
(SAC, composed of MAD1, MAD2, BUBR1, and 
BUB3) is active, delaying mitotic progression until all 
sister chromatids are securely attached to the mitotic 
spindle [153]. The SAC is maintained by the MCC, a 
multi-subunit complex that inhibits APC activity until 
all kinetochores are properly secured to a microtubule 
[109]. The MCC component MAD2, when associated 
with the kinetochore via MAD1, binds to the N-
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terminus of CDC20, which then associates with BUBR1 
and BUB3 to form the tetrameric MCC. The MAD2-
inhibitor, M2I-1, functionally disrupts the MAD2-
CDC20 interaction, freeing CDC20 for subsequent APC 
activation [58]. Recent cryo-EM studies revealed that 
the MCC complex binds two CDC20 molecules, 
suggesting that MCC also interacts with CDC20 bound 
to APC. In the cryo-EM structure, MCC-CDC20 binds 
to APCCdc20, where MCC-CDC20 occupies the large 
APCCdc20 central cavity [154–156]. BUBR1 interacts 
with both CDC20 molecules, thereby disrupting the 
ability of both CDC20 molecules to bind substrate. This 
occurs because BUBR1 encodes D-box and KEN-box 
APC recognition motifs, through which CDC20 binds 
[157]. Once microtubules are properly attached to the 
kinetochores associated with chromosomes, the SAC 
becomes inactivated and CDC20 is released from the 
SAC so it can in turn activate the APC [158]. There are 
multiple molecular networks that work together to 
ensure that the SAC is properly regulated in both 
positive and negative manners (see Figures 2, 3).  
 
Once the SAC is inactivated, the first of two phases of 
APC activity relevant to mitosis begins, where the APC 
promotes anaphase by the ubiquitination (and 
subsequent proteasomal degradation) of multiple 
protein targets. Two prominent proteins involved in 
chromosomal segregation are Securin (encoded by 
PTTG1, which is targeted by the APC for degradation) 
and Separase (which is not directly targeted by the 
APC). Securin is an inhibitory chaperone of Separase, 
which acts by allosterically altering the conformation of 
bound Separase to prevent binding to target proteins 
[159]. Separase is a cysteine protease that cleaves the 
kleisin subunit of cohesin. Cohesin acts to bind sister 
chromatids together and cleavage of the kleisin subunit 
results in dissolution of the cohesin ring binding sister 
chromosomes together, inducing chromosomal 
segregation [160, 161]. The APC acts by 
polyubiquitinating Securin, targeting it for degradation, 
and enabling Separase activity. The newly activated 
Separase then triggers chromosomal segregation by 
cleaving the cohesion kleisin subunit.  
 
While bound to CDC20 the APC will also self-regulate 
in a negative feedback loop where it targets Cyclin B1 
for degradation. At the G2/M transition Cyclin B1 is 
synthesized to initiate anaphase. Cyclin B1 functions by 
binding and activating cyclin dependent kinase 1 
(CDK1), which phosphorylates multiple targets to drive 
anaphase, including APC subunits and CDH1 [162, 
163]. The Cyclin B1/CDK1 complex is crucial for 
phosphorylating APC subunits in a manner that 
promotes APCCDC20 activity while inhibiting interaction 
of CDH1 with the APC. Thus, the degradation of Cyclin 
B1 results in the loss of phosphorylation of many 

targets, including APC subunits, allowing for the 
replacement of CDC20 by CDH1 [162, 163]. The 
incorporation of CDH1 into the APC initiates the 
targeting of a new suite of protein degradation targets 
and the second phase of APC activity that permits a 
regulated mitotic exit and maintenance of G1 
progression. These targets include, amongst others, 
CDC20 and FOXM1, and residual Cyclin B1 (Figure 4; 
Table 1), which a great deal has already been written 
(for example, see [16, 107, 164]). The role of the APC 
in regulated mitotic progression and G1 maintenance is 
essential for the maintenance of chromosomal integrity 
and genomic stability [76, 165]. Loss of chromosomal 
integrity drives the heterogeneity of malignant cells and 
may help promote changes in cancer biology resulting 
in the acquisition of multiple-drug resistance, 
metastatic, or other characteristics [166–170]. 
 
Dysregulation of CDC20 or CDH1 impacts APC 
activity and cancer biology  
 
Kaplan-Meier survival plots (https://kmplot.com/ 
analysis/) of patient survival rates when either CDC20 
or CDH1 are over- or underexpressed is shown in 
Figure 5. High level CDC20 expression is associated 
with poor patient survival rates, whereas high level 
CDH1 expression is associated with a slightly better 
survival rate. This is consistent with the literature 
suggesting that CDC20 and CDH1 interact with a 
distinct cohort of proteins and pathways (Figures 1–4) 
and have distinct roles in cell homeostasis when 
associated with the APC. 
 
CDC20 
 
CDC20 has been identified as being an oncogene [38]. 
Both overexpression and augmented protein abundance 
have been correlated with poor prognosis for several 
unrelated cancer types including brain astrocytoma [72], 
gastric [171], breast [49], colorectal [172], prostate [36], 
and pancreatic cancers [74]. A recent study found that 
patients with overexpression of BUB1B, CDC20, 
CCNA2 and CDK1 were more likely to exhibit the 
worst cancers [173]. Increases of CDC20 drive a 
dysregulated mitotic cycle in part by overwhelming the 
inhibitory capacity of the SAC; while the SAC is 
capable of blocking CDC20 function while bound to the 
APC, it can only simultaneously sequester 2 molecules 
of CDC20 at a time [154, 158]. Overaccumulation of 
CDC20 could forcibly activate the APC, despite an 
active SAC, to drive the cell through an unregulated 
mitotic cycle (referred to as mitotic slippage) and result 
in dysregulated proliferation [174, 175]. One obvious 
mechanism leading to CDC20 accumulation would be 
the dysfunction of the APC itself, resulting in inefficient 
CDC20 degradation. However, inhibitory mutations 

https://kmplot.com/analysis/
https://kmplot.com/analysis/
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within Speckly-type POZ Protein (SPOP) may also 
result in CDC20 accumulation, as SPOP promotes the 
E3 ligase activity of Cullin proteins that contribute to 
CDC20 polyubiquitination and subsequent degradation 
[73]. It is thought that by driving improper APC activity 
(and therefore mitosis) that CDC20 primarily 
contributes to tumorigenesis. However, the observation 
that overexpression of CDC20 is accompanied by the 
overexpression of a host of other genes associated with 
APC impairment in other cancers [37], including 
overexpression of other APC substrates (Figure 4), 
indicates that it may be APC impairment, not 
specifically CDC20 overexpression, that is important 
for cancer development and/or progression, in at least 
some cases.  
 
CDH1 
 
The potential role that CDH1 plays in cell biology and 
tumor development is different from CDC20, as it 
appears to act as a tumor suppressor [42]. Loss of 

CDH1 activity is a common occurrence in cancer 
development, and the generation of heterozygous 
CDH1+/- mice that are haploinsufficient incur greater 
rates of cancer formation [176–178]. This indicates an 
overall tumor suppressive function. Loss of CDH1 
activity generates chromosomal abnormalities [75, 76, 
176, 179], elevated sensitivity to DNA damage [180, 
181], insufficient loading of Mini-Chromosome 
Maintenance proteins (MCMs) [75], and premature S 
phase entry [67, 75, 182, 183]. These abnormalities are 
a result of loss of key CDH1 functions when 
underexpressed, which include cell cycle arrest upon 
nutrient and genotoxic stress [16, 177, 184–186], 
regulation of S phase entrance [67, 164, 183], and 
promoting mitotic exit [187, 188]. CDH1 delays S 
phase progression until the cell is prepared for DNA 
replication by targeting proteins involved in DNA 
replication and S phase progression for degradation, 
such as Cyclin F, SKP2 (subunit of the SCF ubiquitin 
ligase), ORC1, CDC6 and RRM2 [32, 67]. Three 
activities have been reported to decrease CDH1 protein 

 

 
 

Figure 4. APC substrates that are unique to CDC20 or CDH1, and those that are acted on by both. The BioGRID database was 
searched for CDC20 and CDH1 interactors. All protein nodes identified were searched using PubMed. Proteins found to serve as APC 
substrates are shown here. Proteins unique to CDC20 are shown in red, those unique to CDH1 are shown in blue, and those identified in both 
searches are shown in green. Subgroups within the clusters are highlighted for those involved in the ubiquitin pathway, and those composing 
CDK-cyclin complexes. Proteins highlighted in white are proteins overexpressed in cancers with oncogenic potential, while those highlighted 
in orange are mostly downregulated in cancers showing potential tumor suppressing activity. 8 proteins are uniquely targeted for 
degradation by CDC20 and 37 by CDH1, while 24 protein substrates are shared by both, for a total of 69 potential substrates. The 
deubiquitinase OTUD7B that deubiquitinates APC substrates was identified in both searches. 



www.aging-us.com 15828 AGING 

Table 1. Human APC substrates identified from BioGRID CDC20/CDH1 queries and PubMed searches of resultant 
hits. 

CDC20 specific CDH1 specific  shared by CDC20 and CDH1 
AXIN2 [38] BRSK2 [117] AURKA [32, 107] 
CDKN1A/p21 [38] CCND1 [120] AURKB [32, 108] 
KIF18A [109] CCND2 (?) CCNA1 [32, 107] 
NUP98 [110] CCNE1 [119] CCNA2 [32] 
RASSF1 [107, 113] CDC20 [32, 107] CCNB1 [32, 107] 
SMAR1 [114] CDC25A[32, 107] CCNF1 [67] 
TP63 [115] CDCA3 [32] CDC6 [32, 107] 
USP22 [116] CDH1/FZR1 [32] CDK1 (?) - interacts with Cyclin B1 [134] 
 CDK4 [118] CDK2 (?) - interacts with Cyclin E1 [135] 
 CDK5 [121] CLSPN [136] 
 CDK6 (?) - interacts with Cyclin D1 [32] EMI1/FBXO5 [25] 
 CDKN2B (?) - interacts with CDK4/6 [122] FBXW5 [137] 
 CDR2 [80] GMNN {32, 107] 
 CKAP2 [107] MPS1/TTK [138] 
 CKS1B [32] NEK2 [107] 
 CUEDC2 (?) [85] PAF15 [111] 
 DRP1 [123] PHF8 [139] 
 E2F1 [107] PLK1 [32, 107] 
 EYA1 [32] PTTG [32, 107] 
 FMRP [108] SKP2 [32] 
 FOXM1 [32,107] SPRTN/DVC1 [140] 
 ID1 [32, 108] STAU1 [141] 
 MOAP1 [124] TRRAP [142] 
 NEDD9 [125]  
 NEDL2 [126]  
 NIPA [127]  
 PAX3 [128]  
 PTEN [129]  
 RNF157 [130]  
 RRM2 [32]  
 SMURF1 [131]  
 SNON [132]  
 TACC3 [133]  
 TK1 [32, 107]  
 TPX2 [32]  
 USP1 [107, 112]  
 USP37 [32]  

 

levels as cells approach S phase: APCCdh1 

autoubiquitination [189, 190], SCFCycF [67] 
and SCFβTRCP [191]. The complicated relationship 
between CDH1 and cancer progression was described 
when suppression of CDH1 in B cell acute leukemia 
initially resulted in mitotic catastrophe and apoptosis, 
but long-term CDH1 loss contributed to development of 
treatment resistance [192]. It was also reported that 
CDH1 was found overexpressed in many malignant 
tumor samples, along with other APC substrates [47]. 

CDH1 accretion may also promote cancer development 
and progression. CDH1 works antagonistically with the 
SAC and can act to induce mitotic slippage. [193, 194]. 
APCCDH1 overactivity from either CDH1 
overexpression, or loss of the APCCDH1 inhibitor, early 
mitotic inhibitor 1 (EMI1), may also result in DNA re-
replication through the over-degradation of Geminin 
[195, 196]. In G2 and S phase, Geminin acts to inhibit 
CDT1, which is responsible for initiating DNA 
replication. Therefore, inappropriate loss of CDT1 
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inhibition may result in DNA replication occurring 
multiple times, triggering aneuploidy [195–197]. The 
wide variety of CDH1-associated activities 
demonstrates its complicated role in cancer progression, 
and warrants further investigation.  
 
Impact of the overabundance of specific APC 
substrates on cancer behavior  
 
All APC substrates identified in Figure 4 are 
individually implicated in tumor development, and 
many are frequently found to be overexpressed in a 
variety of cancers (60 of 69 proteins in Figure 4) [47, 
49, 198, 199]. These discrete substrates have typically 
been considered in isolation, rather than as a population 
of APC substrates as a whole. As detailed below, the 
combined effect on cell biology with the accumulated 
overabundances of multiple APC targets includes loss 
of cell cycle regulation, introduction of promiscuous 
cycle progression, impaired apoptosis and increased 
genomic instability. These are classic features of cancer.  
 
Securin 
 
Degradation of Securin is necessary for mitotic 
progression, and overexpression is a prognostic marker 
for worsened patient outcomes [49,198]. Accumulation 
of Securin can arise from multiple mechanisms. The 
hPTTG1 gene, encoding Securin, is a downstream target 
of estrogen receptor (ER) activation, and estrogen 
receptor positive (ER+) breast related cancers 

experience elevated Securin synthesis [198]. Securin 
accumulation may also occur as a result of selected 
mutations preventing Securin degradation. A specific 
mutation which results in this phenomenon is a T60A 
mutation, where threonine 60 (T60) is a crucial 
phosphorylation site. Substitution of the T60 amino acid 
prevents a destabilizing phosphorylation event, resulting 
in delayed, but eventual degradation of Securin [200]. 
Elevated Securin levels in general, but also resulting 
from the T60A mutation, result in increased  
instances of aneuploidy and chromosomal instability, 
identifying Securin as an important protein requiring 
tight regulation. Chromosomal defects are achieved by 
the accumulated Securin protein inhibiting proper 
chromosomal segregation through Separase inhibition, 
despite mitotic progression. Securin accumulation also 
results in elevated instances of cancer metastasis [49, 
198]. 
 
PLK1 
 
Polo-like kinase 1 (PLK1) is a serine/threonine kinase 
that is implicated in tumorigenesis and serves as a 
prognostic marker for worsened patient outcomes in 
multiple cancers, including non-small cell lung cancer 
(NSCLC) [201], head and neck squamous cell 
carcinomas [202], and breast cancer [48, 203, 204]. 
Evolutionarily conserved PLK1 function is important 
for mitotic progression and exit; PLK1 (Cdc5 in yeast) 
phosphorylation targets include the APC subunits 
APC1, APC6, and APC3, and this is important for APC 

 

 
 

Figure 5. Kaplan-Meier survival plots comparing high vs low expression of the APC coactivators CDC20 and CDH1 mRNAs in 
breast cancer patients.  
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activation [205, 206]. PLK1 also phosphorylates the 
APC inhibitor EMI1 and inhibits the SAC [reviewed in 
207]. Phosphorylation of EMI1 generates a phospho-
degron motif that targets EMI1 for SCFβ-TRCP-mediated 
degradation, thereby alleviating APC inhibition. It was 
also observed that expression of hyperactive PLK1 
bypassed the mitotic block induced by nocodazole, 
which could be restored if a non-degradable Cyclin B1 
was expressed. This suggested that hyperactive PLK1 
induces a spindle checkpoint failure and prematurely 
activates the APC. On the other hand, normal PLK1 
activity functions to promote numerous processes 
including chromosomal segregation, cytokinesis, 
mitotic entry and centrosome maturation [208–211]. A 
prevalent phosphorylation event performed by PLK1 is 
on the Cohesin protein to assist Separase in cleaving the 
cohesion chromatin complex [160]. Errant PLK1 
activity in cancer also results in impaired apoptotic 
pathways [212] and PLK1 overexpression actively 
promotes tumor formation after induction of DNA 
damage [213].  
 
Aurora A and B kinases 
 
The Aurora A and B kinases have different targets, yet 
both phosphorylate proteins that promote chromatid 
segregation during cell division [214]. In multiple 
malignancies including colorectal [199], breast [215], 
pancreatic [216], and laryngeal [217] gene 
amplification and subsequent overexpression of 
Aurora A and B have been detected. Overexpression of 
either kinase induces chromosomal instability and 
tumorigenesis [215, 217], while Aurora A specifically 
has been found capable of overriding the mitotic arrest 
induced by SAC through its inhibitory phosphorylation 
of the BUB1 subunit, and causing mitotic slippage 
[218, 219]. Cancer cells are often observed to undergo 
mitotic slippage to avoid cell death when treated with 
mitotic blockers [221]. Furthermore, overexpression of 
Aurora A results in the aberrant phosphorylation of 
p73, a tumor suppressor with similarities to p53 [222, 
223]. Phosphorylation of p73 by Aurora A inhibits p73 
by triggering its nuclear exclusion, thereby preventing 
p73 from activating normal apoptotic pathways in 
response to DNA damage. Phosphorylation of p73 also 
results in further reduction of SAC activity, promoting 
mitotic slippage. This arises from p73-phospho-
dependent dissociation of the MCC-CDC20 complex 
while cells are undergoing mitosis [224]. Aurora B has 
the opposing effect with regards to mitotic slippage, 
where it inhibits mitotic slippage by destabilizing 
kinetochores of improperly aligned chromosomes 
[225, 226]. The cumulative effects of the overactivity 
of Aurora kinases results in resistance to multiple 
chemotherapeutics including cisplatin and paclitaxel 
[218, 219, 224].  

NEK2A 
 
NIMA related kinase 2A (NEK2A) is a splice family-
member of serine/threonine kinases whose normal 
function is to promote the separation of centrosomes 
[84]. NEK2A accumulation serves as a prognostic 
marker for poor patient outcomes, promotes cancer cell 
proliferation, and is found to be upregulated across a 
multitude of cancers including prostate, breast, 
colorectal, cervical, hepatocellular carcinoma, and lung 
cancer [227]. NEK2A-dependent phosphorylation 
during mitosis serves to destabilize its targeted proteins, 
including centrosome linker proteins and microtubule 
stabilizing proteins [228, 229]. Upregulated NEK2A 
activity results in centrosomal defects and chromosomal 
instability, a hallmark molecular marker of cancer 
development [230, 231]. Increased NEK2A activity can 
also contribute to chemotherapy resistance, as NEK2A 
accumulation promotes ABC transporter activity 
through phosphorylation, as well as correlates with 
elevated expression of ABC transporters, themselves 
associated with multiple drug resistance [227].  
 
SNON 
 
SNON (SKI Novel, SKIL) is targeted for degradation 
by the APCCDH1 during interphase and its 
overabundance contributes to tumorigenesis, owing to 
its ability to inhibit transforming growth factor β 
(TGFβ) pathways [232, 233]. TGFβ signaling 
pathways impact a wide variety of processes in healthy 
cells to prevent cell division, induce apoptosis, 
promote cellular differentiation, and homeostasis. 
However, errant TGFβ signaling, including both over 
and under activity, results in cancer development and 
progression. Overactivity of TGFβ pathways promotes 
the epithelial-mesenchymal transition, a key 
mechanism in the development of cancer [234–236]. 
Meanwhile, underactivity permits cancer progression 
[236]. Normal SNON activity acts to block TGFβ 
pathways prior to TGFβ activity via inhibition of 
SMAD2 and SMAD4, which are activated by TGFβ. 
After the binding of TGFβ to its targeted receptors and 
initiating its signaling pathways, SNON is targeted for 
degradation in a negative feedback loop by newly 
activated SMAD3 [232, 233]. During tumor 
progression, the overaccumulation of SNON prevents 
this negative-feedback from TGFβ, as SMAD3 is 
unable to sufficiently suppress SNON activity. The net 
result is that TGFβ signaling pathways remain 
impaired, permitting cancer progression [232–233]. 
SNON overexpression also specifically contributes to 
ER+ breast cancer development as SNON acts to 
enhance ER signaling pathways. To act in this manner 
SNON binds ERα-subunits that have translocated to the 
nucleus and enhances ERα transcriptional activity [237].  
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FOXM1 
 
The protein Forkhead Box M1 (FOXM1) is a member 
of the Forkhead Box (FOX) transcription factor family 
and primarily serves to promote the cell cycle and 
proliferation [238, 239]. Normal FOXM1 activity 
advances the cell cycle at the G1/S and G2/M 
transitions by transcribing genes that encode proteins 
that inhibit cell cycle blockers. One prominent 
example of this mechanism is the promotion of 
transcription of genes encoding the SKP2 and CKS1 
proteins, subunits of the SCF E3 ubiquitin ligase 
[240]. Targets of the SCF include prominent tumor 
suppressors such as p21Cip and p27Kip that act to inhibit 
a variety of CDK proteins to prevent cell cycle 
progression through the G1/S transition [240, 241]. By 
driving the synthesis of SCF components (SKP2 and 
CKS1), FOXM1 initiates its own destruction, as 2 
different SCF complexes, SCFFBXL2 and SCFFBXO31, 
target FOXM1 for degradation, with SCFFBXO31 
specifically targeting FOXM1 at the G2/M boundary 
and SCFFBXL2 targeting FOXM1 in gastric cancer cells 
[242, 243]. Interestingly, FOXM1 also transcribes a 
number of APC substrates and activators to enter 
mitosis (such as CDC20, Cyclin B1, Cyclin B2, and 
CDC25B) [24, 244–248]. Like the SCF, activation of 
the APC also initiates FOXM1 destruction, as 
APCCDH1 targets FOXM1 for degradation at mitotic 
exit [164, 249]. FOXM1 levels are therefore heavily 
monitored and regulated. Elevated levels of FOXM1 
are generally found in normal rapidly dividing cells 
[239, 240] and because of this, FOXM1 has received 
significant attention for its role in tumorigenesis; 
notably, its overexpression serves as an important 
prognostic marker for poor patient outcomes [250–
253]. Errantly elevated FOXM1 activity has been 
linked to cancer metastasis [254], inhibition of 
apoptotic pathways [255, 256], and improper cell 
proliferation [257, 258]. On the hand, loss of FOXM1 
resulted in prolonged G2 and delayed entry into 
mitosis, with an accompanying increase in aneuploid 
cells composed of chromosomes numbers ranging 
from 20-160 [246]. 
 
CDC6 
 
CDC6 contributes to the regulation of DNA replication 
as part of the DNA origin recognition complex (ORC) 
along with CDT1 [184, 259]. CDC6 assists in the 
loading of MiniChromosome Maintenance proteins 2-7 
(MCMs) onto the ORC [260, 261], and is required for 
DNA replication [262]. CDC6 in human cells is 
targeted for degradation by the ACPCDH1 complex [263–
265], whereas in yeast it appears that Cdc6 degradation 
requires the SCFCdc4 complex [266, 267]. Even though 
Cdc6 degradation appears distinct between humans and 

yeast, its importance in DNA replication remains a 
commonality. MCM complexes serve as origins of 
replication for DNA [268], recruiting DNA stability 
proteins [269], and interact with the DNA repair 
proteins ATM and ATR to facilitate repair [270]. 
Impaired MCM activity results in genomic instability 
and an exacerbated S phase [271]. Aberrant MCM 
activity also results in inappropriate DNA synthesis and 
cellular replication [272]. Overexpression of CDC6 is 
often detected simultaneously with elevated CDT1 and 
MCM expression in a variety of cancers [273–277]. It 
has been established that the combined overexpression 
of CDC6 (both independent of, and in conjunction with, 
CDT1) and MCM2-7 levels correlate with poor patient 
prognosis in breast cancer [275]. Opposed to 
observations made when CDC6 is overexpressed, 
inappropriate CDC6 depletion subsequently results in 
centrosome over-duplication and premature 
chromosomal segregation [278].  
 
Geminin 
 
Geminin plays a multifaceted role in impacting cancer 
development when overexpressed or overabundant. Its 
normal functions include binding, stabilization and 
inhibition of CDT1 to prevent improperly timed DNA 
synthesis [197, 279, 280]. Proper quantities of Geminin 
are necessary to protect the genome from re-replication 
by CDT1 [280]. Geminin is degraded by APCCDH1 
during mitosis and G1, but during S and G2 when the 
APC is inactive, Geminin can begin to accumulate [281, 
282]. Upon accumulation, Geminin will bind and inhibit 
CDT1 [279]. Due to this function, Geminin interacts 
with and downregulates the CDT1/CDC6 MCM 
pathways mentioned above. When overexpressed in 
cancer, Geminin promotes metastasis [274, 283], and 
results in poorer patient outcomes [284, 285]. It should 
be noted that while over-abundance of any one of these 
APC substrate proteins is associated with cancer 
development/progression, defects to APC function may 
lead to the over-abundance of the majority of them. This 
holds the potential for the development of devastating 
disease states. 
 
Contribution of APC defects to a dysregulated 
cell cycle  
 
Studies supporting the necessity for the precisely timed 
cell cycle stages through target degradation by the APC 
have been carried out, indicating how APC disruptions 
may lead to cancer [26–32]. The three principle roles of 
the APC regarding control of the cell cycle include 
promoting mitotic progression (or inducing mitotic 
slippage), regulating the entrance to S phase, and 
inducing cell cycle arrest [16, 67, 183, 185, 193, 286, 
287].  
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Mitotic slippage 
 
Incongruous and/or sustained SAC activation causes 
mitotic arrest [63, 214]. However, after prolonged arrest 
some cells can undergo an uncontrolled mitotic 
progression referred to as mitotic slippage, generating a 
potential chemotherapy-resistant state in those cells able 
to pass through this checkpoint inappropriately [220, 
221, 288, 289]. There are multiple common 
consequences to mitotic slippage. First, the cell is likely 
to proliferate in an unregulated manner [290]. Mitotic 
slippage can also result in increased chromosomal 
damage and mis-segregation [291, 292]. Lastly, mitotic 
slippage induces resistance to chemotherapies 
disrupting microtubule formation (chemotherapeutics 
such as Paclitaxel falls under this category). This is due 
to microtubule poisons relying on prolonging SAC 
activity in cells that do not carry a heavy load of 
chromosome instability, but to the point of triggering 
mitotic slippage, a mechanism dependent on APC 
driving mitosis despite SAC activity [219, 291, 293]. 
On the other hand, in cells harboring high loads of 
chromosomal instability due to excess DNA mutations, 
induction of mitotic slippage has been proposed as a 
mechanism to kill these cells. Chemicals that inhibit the 
SAC, such as TTKi’s [294–296] and M2I-1 [58, 62], 
have been shown to block CDC20 sequestration by the 
MCC, leading to activation of the APC and effective 
cancer cell death. It is proposed that premature 
activation of the APC pushes cells with high loads of 
chromosome instability into mitotic division before 
there is time to repair the damage, causing mitotic 
catastrophe [31].  
 
Improper regulation of the APC can induce mitotic 
slippage through multiple mechanisms. First, the 
overexpression of CDC20, as described above, prevents 
the SAC from inhibiting APC activity due to an 
inability to sufficiently sequester the excess CDC20 
protein. This allows the unsequestered APCCdc20 to 
promote anaphase, with mitotic slippage occurring as a 
result [174, 175]. However, it should be noted that 
while this is a possibility, enhanced APC activity and 
anaphase progression should, in the end, result in 
elevated targeting of CDC20 for degradation. A second 
mechanism of the APC overcoming SAC inhibition is 
through CDH1 activity. As the SAC cannot directly 
inhibit CDH1 activity, failure of the regulatory 
mechanisms that inhibit APC activation via CDH1 
results in mitotic slippage, as APCCDH1 can prematurely 
target Securin for degradation [193, 194]. This occurs 
principally if Cyclin B1 activity is impeded, as 
CDK1Cyclin B1 phosphorylation of CDH1 prohibits 
binding to the APC. This dysfunction may occur if there 
is insufficient Cyclin B1 expressed during mitosis, or if 
there is a deficiency of ATP which is necessary for 

CDK1 to perform its phosphorylation events [286]. 
Aurora A, when in abundance, is also capable of 
inducing mitotic slippage through inhibition of SAC 
[218, 219].  
 
Regulating S phase entrance 
 
APCCDH1 plays a crucial role in regulating the entrance 
to S phase. During mitosis a failure to degrade the 
mitotic Cyclins A and B results in the proteins 
improperly accumulating in G1 and results in a 
premature promotion of S phase [75, 186]. APCCDH1 
also directly regulates entry to S phase, in conjunction 
with the SCF. Depletion of CDH1 results in premature 
entry to S phase, as well as a prolonged S phase [66, 75, 
182]. APCCDH1 and SCFCyclin F form a double negative 
feedback loop, where APCCDH1 targets Cyclin F for 
degradation, and SCFCyclin F targets CDH1 for 
degradation [67]. Coupled with the negative feedback 
loop of APCCDH1 autoubiquitination of CDH1 [189], 
expression of Cyclin F and formation of SCFCyclin F 
during G1 reaches a critical point of CDH1 depletion 
where APCCDH1 activity is unable to prevent full 
SCFCyclin F activity and the subsequent transition to S 
phase. Knockout of Cyclin F using siRNA resulted in a 
prolonged G1, however simultaneous siRNA knockout 
of CDH1 reversed this phenotype [67]. The timed 
degradation of CDH1 created by this mechanism 
permits a regulated entry to S phase, as loss of APCCDH1 
activity results in the accumulation of Cyclin A [67]. 
APCCDH1 also polyubiquitinates the SCF subunit SKP2 
for degradation to prevent cell cycle progression [32, 
183]. APCCDH1 can also delay entry to S phase via 
polyubiquitination and subsequent degradation of the 
proliferating cell nuclear antigen (PCNA) associated 
PAF15 [111].  
 
Inducing cell cycle arrest 
 
The APCCDH1 complex can initiate cell cycle arrest at 
multiple stages of the cell cycle [186]. At the G2/M 
transition, APCCDH1 acts in conjunction with CDC14B 
and PLK1 to prevent progression into mitosis in the event 
of DNA damage [177]. In response to DNA damage that 
occurs during the G2/M transition, the phosphatase 
CDC14B translocates to the nucleoplasm from the 
nucleolus and activates APCCDH1 via removal of 
inhibitory phosphorylation events blocking recruitment 
of CDH1 to the APC. APCCDH1 will then target PLK1 for 
degradation, resulting in transient stabilization of 
Claspin, a protein required for the initiation of DNA 
repair pathways [177]. Once the checkpoint is satisfied, 
phosphorylation of Claspin by residual PLK targets it for 
SCFβ-TrCP-mediated degradation [297–299]. Under 
normal conditions, it has been shown that Claspin is 
targeted by ACPCDH1 during G1 [177].  
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Genotoxic stress is not the only stressor that activates 
cell cycle arrest through the APC. Nutrient stresses 
also activate cell cycle arrest through the APC [16, 
186, 260]. In CDH1-/- chicken cells (DT40) rapamycin 
is unable to induce G1 cell cycle arrest [186]. This is a 
result of altered CDK2 and retinoblastoma (Rb) 
pathways. Upon rapamycin treatment, wild type cells 
lose Rb phosphorylation, allowing the induction of G1 
arrest, but in CDH1-/- cells, Rb phosphorylation is 
maintained with continued cell cycle progression 
[186]. In S. cerevisiae, Cdh1 acts to protect the cell 
from ethanol, caffeine, and hyperosmotic stress, as 
yeast cells lacking CDH1 still progress through the 
cell cycle, but are sensitive to multiple stresses [16]. 
The stress sensitivity appears to be due to elevated 
stability of Clb2 (orthologous to human Cyclin B2) 
and Hsl1 (ortholog of human NIM1-related Kinase) 
from a partially impaired APC that continues to drive 
cells through the G2/M transition despite the incurred 
cellular damage. Meanwhile, inhibition of the  
APC in quiescent cells drives their return to the cell 
cycle [26, 260]. This indicates that APC activity is 
required both for entrance to, and maintenance of, cell 
cycle arrest.  
 
Acetylation of both CDC20 and CDH1 are key 
regulatory events impacting APC activity, as it 
prevents their respective bindings to the APC [65]. A 
lack of deacetylation of these APC coactivators, due to 
loss of the SIRT2 deacetylase, leads to elevated APC 
inhibition and lack of target degradation. This 
ultimately results in enhanced abundance of APC 
substrates, abnormal amplification of centrosomes, 
increased aneuploidy events and eventually mitotic 
catastrophe [65]. Studies in S. cerevisiae have revealed 
the complicated networks that the deacetylation 
enzyme Sir2, the yeast orthologue of SIRT2, impacts. 
Sir2 is an important stress response and longevity 
protein in S. cerevisiae, and it is tightly connected with 
a stress response network that interacts with the APC, 
namely the Fkh1 and Fkh2 Fox transcription factors 
[103, 104, 300]. In S. cerevisiae, under stress 
conditions, the APC and Fkhs work together to induce 
a response to stress [18, 20, 24]. Furthermore, when 
stress is encountered, Sir2 is recruited to Clb2 
promoters in a Fkh1-dependent manner to repress 
CLB2 expression and stall the cell cycle [300]. 
Therefore, SIRT2 may be part of the mammalian APC 
stress response network, and thus a key regulator of 
the cell cycle.  
 
APC subunit mutation 
 
The notion that the APC is primarily important for cell 
health and avoidance of cancer progression suggests 
that loss of APC subunits may be linked to cancer 

development or progression. However, complete loss of 
APC function in animals is lethal [287, 301]. With this 
in mind it is not surprising that APC subunit mutations 
are rarely reported in animal and cell systems [302]. 
Nonetheless, APC subunit mutations have been 
reported, as briefly discussed above. For example, 
APC5 and APC7 were shown to interact with the 
CBP/p300 transcriptional activator, a histone 
acetyltransferase, and to play a direct role in 
transcriptional activation [303]. CBP/p300 is targeted 
by E1A to induce tumorigenic transformation. Further 
analysis showed that overexpression of APC5 or APC7 
suppressed the transformative ability of E1A, while 
knockdown of APC5 or APC7 in vitro resulted in 
enhanced transformation, highlighting the role of the 
APC in stalling tumor transformation. Other studies 
have shown that APC7, and APC16 (subunits not 
observed in yeast) form a complex with APC3 [304]. 
Deletion of APC7 or APC16 in HCT116 colon cancer 
cells, however, revealed no overt phenotypes other than 
reduced in vitro ubiquitination activity [57]. These 
studies showed, nonetheless, that in APC7 or APC16 
deletion cells, ablation of the essential MAD2 was 
tolerated. These cells had accelerated mitosis, no longer 
responded to SAC activity, and sustained increased 
genomic instability. The importance of APC7 was 
further suggested when 108 invasive ductal breast 
carcinomas were stained for APC7 expression [305]. It 
was reported that loss of APC7 was predominantly 
found in cases with poor prognosis or signs of 
malignancy. In other studies, it was found that 
Rothman-Thomson Syndrome Type 1, which causes 
juvenile cataracts, is due to a premature stop codon in 
APC1, resulting in reduced, but not complete loss of 
APC1 protein [306]. Additional studies revealed 
mutations in CDC16 and CDC23 in human colon cancer 
cells [56]. Interestingly, opposed to studies showing 
loss of APC subunit functions in many cancers, 
increased APC11 mRNA was observed in colorectal 
cancer samples, and correlated with worse overall 
survival [307]. APC11 is the APC catalytic subunit, so 
it remains a question as to why this subunit would 
behave differently than the other subunits studied in 
regards to cancer. Taken together, the bulk of the 
evidence indicates that mutations to variety of APC 
subunits confers a risk for disease onset. 
 
CONCLUSIONS 
 
Through its interactions with numerous cellular 
pathways, the APC maintains a complicated position 
in cancer development. While bound to CDC20, it acts 
in an oncogenic fashion and promotes tumor 
development; however, when bound to CDH1, the 
APC displays many tumor suppressive effects  
(Figure 4). Many genes encoding protein substrates 
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normally degraded by APC E3 activity are found to be 
overabundant in a wide variety of cancers. Furthermore, 
many of the phenotypes associated with defective APC 
activity, such as elevated genomic instability, 
improperly regulated cell cycle, and aneuploidy, 
contribute to tumor progression and drug resistance. 
This suggests that activation of the APC, as previously 
suggested for prolonging lifespan [23], may also be 
relevant for treating cancer. Targeting APC activity 
has shown promise in an anti-tumor capacity, as the 
SAC inhibitors M2I-1 and TTKi, which both disrupt 
CDC20-SAC interactions, increase APCCDC20 activity 
and provide increased killing of cancer cells [31, 58–
62]. In our current work we have observed loss of 
APC activity in canines with drug resistant lymphoma, 
and that increased APC activity was associated with 
remission, and APC activity loss again occurred when 
the animal relapsed (Arnason et al. under review). 
Furthermore, loss of SIRT2 and the resulting impaired 
activity in both APCCDH1 and APCCDC20 complexes, or 
the loss of CDH1 itself, promotes genomic instability 
and tumor progression [65], indicating that generalized 
APC dysfunction is tumorigenic [26–31]. Moreover, 
numerous reports have now identified a signature of 
overexpressed genes that encode APC substrates and 
inhibitors in a variety of aggressive tumors [37, 47]. 
Taken together, this provides a compelling rationale to 
further research directed at the role the APC plays in 
tumoral development. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 

Supplementary Figure 1. Raw data from a BioGRID search using the search word CDC27. Minimal evidence was set to 1 for all 
searches. Nonhuman interactors and homologous were removed from the results. The same criteria was used for all searches. 
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Supplementary Figure 2. Raw data from a BioGRID search using the search word FZR1. 
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Supplementary Figure 3. Raw data from a BioGRID search using the search word CDC20. 


