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INTRODUCTION 
 

Ovarian cancer (OC) accounts for 2.5% of all 

malignancies among females, but for 5% of all cancer 

deaths due to its relatively high fatality rate, as about 

80% of patients are diagnosed with the advanced disease 

[1]. At the time of diagnosis, most of the OC had 

metastasized to the uterus, bilateral appendage, omentum, 

and pelvic organs. With recent advances in surgery, 

chemotherapy, and novel immunotherapy, the overall 

survival of OC at every stage has been improved. 

However, there is still a lack of reliable prognostic 

indicators for OC. 

 

Although the multiple layers of epigenetic regulation, 

such as modification of DNA and proteins, have been 
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ABSTRACT 
 

N6-methyladenosine (m6A) RNA methylation, involved in cancer initiation and progression, is dynamically 
regulated by the m6A RNA methylation regulators. However, the expression of m6A RNA methylation regulators 
in ovarian cancer and their correlation with prognosis remain elusive. Here, we demonstrated that the 18 
central m6A RNA methylation regulators were expressed differently between ovarian cancer (OC) and normal 
tissues. By applying consensus clustering, all ovarian cancer patient cases can be divided into three subgroups 
(cluster1/2/3) based on overall expression levels of all 18 m6A RNA methylation regulators. We systematically 
analyzed the prognostic value of transcription levels of 18 m6A RNA methylation regulators in ovarian cancer 
and found that insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1), vir like m6A methyltransferase 
associated (VIRMA), and zinc finger CCCH-type containing 13 (ZC3H13) yield the highest scores for predicting 
the prognosis of ovarian cancer. Accordingly, we derived a risk signature consisting of transcription levels of 
these three selected m6A RNA methylation regulators as an independent prognostic marker for OC and 
validated our findings with data derived from a different ovarian cancer cohort. Moreover, by the Gene Set 
Enrichment Analysis (GSEA), we demonstrated that the three selected regulators were all correlated with 
pathways in cancer and WNT signaling pathways. In conclusion, m6A RNA methylation regulators are vital 
participants in ovarian cancer pathology; and IGF2BP1, VIRMA, and ZC3H13 mRNA levels are valuable factors 
for prognosis prediction and treatment strategy development. 
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identified, the mechanism of RNA modification and its 

role in OC pathology remains unclear. Several  

common RNA modification forms have been 

documented including N6-methyladenosine (m
6
A), N1-

methyladenosine (m
1
A) and 5-methylcytosine (m

5
C)  

[2, 3]. As the most bountiful internal modification on 

mRNA, m
6
A occurs on adenosine and is enriched near 

stop codon and 3’ untranslated terminal region [4, 

5]. Similar to DNA modification, the m
6
A RNA 

methylation is dynamically regulated by the m
6
A RNA 

methylation regulating elements, which are called 

“writers”, “erasers”, or “readers” depending on distinct 

functions. “Writers” introduce a methyl group on A of 

RRACH sequence (R = A or G, H = A, C or U) near the 

stop codon, 3’ untranslated region (UTR) and long 

internal exon through the methyltransferase complex 

(MTC) consisting of METTL3 as the core component 

and other related subunits including METTL14, WTAP, 

VIRMA, RBM15 and ZC3H13 [3, 6]. “Erasers” include 

FTO and ALKBH5, which mediate the demethylation 

reaction. These two layers of regulations make m
6
A a 

dynamic and reversible process. “Readers” are a group of 

RNA binding proteins that recognize the m
6
A 

methylation and perform corresponding functions. These 

proteins include YT521-B homology (YTH) domain-

containing proteins, eukaryotic initiation factor 3 (eIF3), 

insulin-like growth factor 2 mRNA-binding proteins 

(IGF2BPs) and heterogeneous nuclear ribonucleoprotein 

(HNRNP) protein family members. Interestingly, recent 

studies have shown that the “writers” can also participate 

in post-methylation-regulation on target RNA and 

thereby partially function as “readers” [7, 8]. The m
6
A 

modification regulates a variety of critical steps in the 

RNA life cycle starting from transcription to degradation 

(such as transcription, splicing, exportation, translation, 

and degradation) and can influence cell process (such as 

cell cycle progression, cell proliferation, cell apoptosis, 

cell migration and invasion and cell differentiation) and 

physiological function (such as neural development, 

embryonic development and adipogenesis, etc.) through 

modulating the life cycle of target RNA [9–14].  

 

Experimental evidence shows that m
6
A participates in 

cancer pathogenesis and development [15–17]. In OC, 

the expression of METTL3 is elevated and associated 

with poor patient survival. METTL3 enhances oncogene 

AXL expression, resulting in the promotion of epithelial 

to mesenchymal transition (EMT) [18, 19]. Moreover, 

IGF2BP1 stabilizes the mRNA of SRF to promote its 

expression, leading to enhanced expression of oncogene 

FOXK1 and PDLIM7 in tumor cells, and a more 

aggressive phenotype [20]. During the treatment of OC, 

elevated m
6
A level contributes to resistance to poly 

ADP-ribose polymerase inhibitors (PARPi) through 

upregulating the WNT signaling pathway via enhancing 

the stability of FZD10. Therefore, restraining the WNT 

signaling pathway in combination with PARPi 

represents a potential therapeutic strategy for OC [21]. 

Despite the accumulating data indicating vital roles of 

m
6
A in controlling physiological and pathological 

processes, our knowledge about the role of m
6
A in OC 

oncogenesis and prognosis is far from complete. 

 

The multiomics-based comprehensive analysis provides 

much more informative results in evaluating the 

expression and function of genes. In this study, we 

systematically analyzed the expression of 18 central 

m
6
A RNA methylation regulators in 379 OC with RNA 

sequencing data from The Cancer Genome Atlas 

(TCGA) datasets and in 88 normal samples with RNA 

sequencing data from the Genotype-Tissue Expression 

(GTEx) datasets. We aimed to evaluate the power of 

m
6
A RNA methylation regulators in predicting the 

prognosis of OC patients, and explore possible signaling 

pathways regulated by m
6
A RNA regulators in OC 

through comprehensive bioinformatical analysis (Figure 

1). Our results indicated that the expressions of three 

m
6
A RNA methylation regulators, IGF2BP1, VIRMA, 

and ZC3H13, have strong power in predicting the 

prognosis of OC. We also built a risk signature gene set 

including these three selected m
6
A RNA methylation 

regulators and validated that the expression of this 

signature is highly correlated with the bad prognosis of 

OC patients using data derived from a different cohort. 

 

RESULTS 

 

The different expression of 18 m
6
A RNA 

methylation regulators in normal ovarian and OC 

tissues  
 

Given the critical functions of m
6
A RNA methylation 

regulators in tumorigenesis and development, we 

comprehensively explored the transcription of the 18 

m
6
A RNA methylation regulators using the TCGA 

dataset. The RNA levels of m
6
A RNA methylation 

regulators were presented as heatmaps and box line 

diagrams (Figure 2A and 2B), which showed that the 

expression levels of m
6
A RNA methylation regulators 

in OC patients were significantly different from those of 

the normal controls. Based on the expression pattern, 

m
6
A RNA methylation regulators can be divided into 

two groups. One group (including IGF2BP2, IGF2BP1, 

IGF2BP3, ZC3H13, ALKBH5, RBM15, YTHDF3, 

YTHDF2, ELF3, and YTHDF1) is highly expressed in 

tumors, while the other (including WTAP, HNRNPC, 

METTL3, YTHDC3, YTHDC2, YTHDC1, VIRMA, 

METTL14, and FTO) is enriched in normal tissues. 
 

To better understand the interactions among the 18 m
6
A 

RNA methylation regulators, we also inspected the 

correlation (Figure 2C) and interaction (Figure 2D and 
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2E) among these regulators. The protein-protein 

interaction network analysis indicated that WTAP, 

RBM15, METTL3, METTL14, and VIRMA have more 

connections with other regulators, while IGF2BP2, 

IGF2BP1, IGF2BP3 and ELF3 have less interaction with 

others (Figure 2D and 2E). Among all the “writer” genes, 

each gene, except for ZC3H13, has the same number of 

related nodes of m
6
A RNA methylation regulators (Figure 

2D and 2E). The expression of ZC3H13 was also 

positively correlated with the “writer” gene RBM15 in 

OC, and negatively correlated with WTAP and METTL3, 

but no correlation with METTL14 and VIRMA (Figure 

2C). Interestingly, the least interacting m
6
A RNA 

methylation regulators (ELF3, IGF2BP2, IGF2BP1, and 

IGF2BP3) are all “readers” (Figure 2C). We also noticed 

that FTO was predicted to interact with ALKBH5 (Figure 

2D), and their expression levels were negatively 

correlated with each other in OC (Figure 2C). In addition, 

we further analyzed the experimentally determined 

interactions between these 18 m
6
A RNA methylation 

regulators and other proteins (Supplementary Figure 1A). 

It was clear that among the 18 m
6
A RNA methylation 

regulators, ZC3H13 had the most interactions with other 

proteins, mainly interacted with the cyclin-dependent 

kinases (CDKs) family, RNA polymerase II (POLR2) 

family and mediator (MED) complex family. Altogether, 

we concluded that most, but not all, of the 18 m
6
A RNA 

methylation regulators are closely associated with each 

other. Among them, ZC3H13 interacted mostly with 

CDKs, POLR2 and MED. Moreover, we also found that 

the frequencies of genetic changes (mutation or copy 

number change) of these 18 m
6
A RNA methylation 

regulators were relatively high (the maximum was 27%) 

in OC tissue compared with normal (Supplementary 

Figure 2), which might explain the altered expression of 

these genes in OC. 

 

 
 

Figure 1. Workflow chart of data generation and analysis. The study mainly incorporated two sections: comprehensive bioinformatics 

analysis in 18 m6A RNA methylation regulators (including Spearman correlation analysis, protein-protein interaction analysis, consensus 
cluster analysis, cluster survival analysis and so on) and in the three selected m6A RNA methylation regulators (including CCLE database 
methylation analysis, protein-protein interaction network analysis, univariate Cox, multivariate Cox and so on). 
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Consensus clustering of m
6
A RNA methylation 

regulators identified three clusters of OC 

 

To further investigate the association between the 

expression profile of m
6
A RNA methylation regulators and 

the prognosis of these OC cases, we then focused on 

grouping all 379 OC cases according to the expression of 

all the 18 m
6
A RNA methylation regulators in an unbiased 

way through consensus clustering. With clustering stability 

increasing from k = 2 to 10 in the TCGA datasets, k = 3 

seemed to be an acceptable selection based on the 

expression similarity of m
6
A RNA methylation regulators 

(Supplementary Figure 3A, 3B and Figure 3A). We then 

applied principal component analysis (PCA) to compare 

the transcriptional profile among cluster1, 2 and 3 groups. 

However, the results didn’t show a clear separation among 

them (Supplementary Figure 3C). Moreover, we observed 

that there was little difference in the overall survival (OS) 

rate among cluster1, 2 and 3 (Figure 3B). We further 

compared the clinicopathological characters of these  

three subgroups and found little difference among them 

(Figure 3C).  

 

 
 

Figure 2. Expression of m6A RNA methylation regulators and interaction among them. (A) The expression levels of 18 m6A RNA 

methylation regulators in normal controls (n = 88) and OC (n = 379) with agglomerative hierarchical clustering. (B) Box line diagram of 18 m6A 
RNA methylation regulators. (C) Spearman correlation analysis of the 18 m6A modification regulators. (D) The m6A modification-related 
interactions among the 18 m6A RNA methylation regulators. (E) Number of related nodes of m6A RNA methylation regulators (only show the 
number > 5).  
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Development of a risk signature consisting of three 

m
6
A RNA methylation regulators 

 

To better predict the clinical outcomes of OC with 

abnormal expression of m
6
A RNA methylation 

regulators, we engaged the least absolute shrinkage and 

selection operator (LASSO) Cox regression algorithm 

to the 18 regulators in the TCGA dataset, and obtained 

risk score through R packages LASSO regression 

analysis (Figure 4A, 4B). With the median risk score 

(median risk score = 5) as the cut-off point, we divided 

all patients into two groups and scrutinized notable 

differences in OS between the two groups (P < 0.05; 

Figure 4C). At the same time, we also examined the 

effect of different grades of OC patients on the 

prognosis. However, no statistical significance was 

found (Supplementary Figure 4). The receiver operating 

characteristic (ROC) analysis was used for testing if the 

survival prediction is sensitive and specific based on the 

risk score. The calculation of the area under the curve 

(AUC) values was carried out according to ROC curves 

(Figure 4D). And the ROC curve shows that our risk 

model yields supporting results as the AUC = 0.58. 

Hence, we compared the clinicopathological characters 

(including tumor pathological grade and age) of these 

two categories clustered by risk score (Supplementary 

Figure 5). We found that patients in the high-risk cluster 

and the low-risk cluster did not differ significantly in 

tumor pathological grades and age. Then, the 

distribution of risk score and survival status were also 

analyzed (Figure 4E, 4F). In Figure 4E, the risk score of 

each patient was arranged from low to high. Patients 

were divided into the low risk-group (blue dot) and the 

high-risk group (red dot) with the median risk score. 

From Figure 4F, we can see that the number of deaths 

of patients with high-risk scores is slightly larger than 

that of patients with low-risk scores. 

 

We further explored the prognostic effect of individual 

m
6
A RNA methylation regulator in OC. We executed a 

univariate Cox regression analysis on the expression 

level of each m
6
A RNA methylation regulator in the 

TCGA dataset (Figure 5A). The results demonstrated 

that three out of 18 tested regulators were significantly

 

 

 

Figure 3. Divergent clinicopathological features and OS of OC in the cluster1/2/3 subgroups. (A) Consensus clustering matrix for k 

= 3. (B) Kaplan-Meier OS curves for 379 OC patients. (C) Heatmap and clinicopathologic characters of the three clusters (cluster1/2/3) defined 
by the m6A RNA methylation regulators’ consensus expression. 
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correlated with OS (P < 0.1; Figure 5A–5C). These 

three genes (IGF2BP1, VIRMA, and ZC3H13) were all 

risky genes with HR > 1. Hence, we compared the 

clinicopathological characters (including tumor 

pathological grade and age) of the three regulators. It 

was clear that the expressions of the three selected 

regulators were all high in most high-risk patients 

(Figure 5D). To implement a quantitative method for 

superior outcome prediction, we established a 

nomogram that assimilated the three selected regulators 

associated with OC prognosis (Figure 5E). In this 

nomogram, a higher total point indicates a worse 

survival. Moreover, univariate and multivariate analyses 

for OS were executed to appraise whether 

clinicopathological characters (including age, stage and 

risk score) were independent prognostic factors of 

patient outcomes. Univariate analysis applying the Cox 

proportional hazards model for all variables 

demonstrated that risk score (P < 0.001, 95%CI HR 

1.10-1.43) and age (P = 0.005, 95%CI HR 1.01-1.03) 

were all independent poor prognostic factors for OC 

patients (Figure 5F). Multivariate analysis applying the 

same variables as in the univariate analysis in the cohort 

supported that risk score (P = 0.002, 95%CI HR 1.08- 

 

 
 

Figure 4. Risk signature with 18 m6A RNA methylation regulators. (A) LASSO regression analysis of the 18 m6A RNA methylation 

regulators. (B) Tenfold cross-validation for tuning the parameter selection in the LASSO regression. The solid vertical lines indicate the partial 
likelihood deviance with standard error. The dotted vertical lines represent the optimal values of the tuning parameter (λ) by minimum 
criteria. (C) Kaplan-Meier OS curves for patients in the TCGA datasets designated to high- and low-risk groups depended on the risk score. (D) 
ROC curves demonstrated the predictive efficiency of the risk signature in OC of TCGA datasets. (E–F) Risk score and survival status for each 
patient.  
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1.41) and age (P = 0.014, 95%CI HR 1.00-1.03) were 

independent poor prognostic factors for OC patients 

(Figure 5G), but little meaningful association of OS was 

discovered with grade. Because different types of OC 

have different characteristics, and the OC samples  

in the TCGA database are all ovarian serous 

cystadenocarcinoma (OV), so we analyzed the expression 

of IGF2BP1, VIRMA and ZC3H13 in different types  

of OC in the Oncomine database (https://www. 

oncomine.org) (Supplementary Figure 6A–6C). The 

expression of IGF2BP1 in ovarian serous adenocarcinoma 

was higher than that in normal tissues; among ovarian 

clear cell adenocarcinoma, ovarian endometrioid 

adenocarcinoma, ovarian mucinous adenocarcinoma and 

ovarian serous adenocarcinoma, the expression of 

VIRMA was the highest in ovarian serous adeno-

carcinoma, and ZC3H13 was the highest in ovarian 

mucinous adenocarcinoma. In addition, we analyzed the 

expression profile of IGF2BP1, VIRMA and ZC3H13 in 

OC patients with different ages and tumor grades in the 

TCGA database on the UALCAN website (http://ualcan. 

path.uab.edu) [22] (Supplementary Figure 6D–6I). The 

expression of IGF2BP1 and ZC3H13 increased with the 

age of patients, while the expression of VIRMA in 

different age groups had no similar rule. Since there is 

only one sample in grade 1 and grade 4, we pay attention 

to the difference between grade 2 and grade 3. The 

expression of VIRMA in grade 3 is higher than that in 

grade 2, and there is statistical significance, while there is 

no significant difference in the expression of IGF2BP1 

and ZC3H13 between grade 2 and grade 3. Moreover, the 

three selected m
6
A RNA methylation regulators also exist 

in other tumors, at least in many cell lines (Supplementary 

Figure 7). The mutation sites of the three selected m
6
A 

RNA methylation regulators in different cell lines have 

been shown in Supplementary Figure 7. This indicates 

that the m
6
A RNA methylation regulators may also play a 

role in other tumors too and have a certain correlation 

with prognosis, which needs further analysis. In 

particular, we also further explored the experimentally 

determined interactions between these three selected 

m
6
A RNA methylation regulators and the other proteins 

(Supplementary Figure 1B). Of interest, it shows that 

ZC3H13 interacts with the CDKs family, POLR2 family 

and MED complex family closely, which is consistent 

with the result in Supplementary Figure 1A, but IGF2BP1 

had no interaction with any other proteins. 

 

To further understand the biology of the three genes, we 

analyzed the protein expression of IGF2BP1, VIRMA 

and ZC3H13 in OC in the Clinical Proteomic Tumor 

Analysis Consortium (CPTAC) samples [18] 

(Supplementary Figure 8). The results suggest that the 

mRNA and protein levels of ZC3H13 are both high in 

cancer tissues compared with the normal control (Figure 

2A and Supplementary Figure 8C). However, the 

protein expression of IGF2BP1 and VIRMA in the 

normal control group and tumor group was not 

consistent with the mRNA expression levels (Figure 2A 

and Supplementary Figure 8A–8B). This suggests that 

the mRNA may serve as a reservation. Only under 

certain circumstances, such as hypoxia or immune 

stimulation, can the protein be translated. A similar 

mode of action could be observed in the production of 

some cytokines. Besides, the mRNA may play a role in 

regulating the expression of other proteins by 

generating microRNAs. The specific details need 

further experiments and analysis. 

 

Validation of the risk signature using data collected 

from a different OC cohort, and the exploration of 

signaling pathways that they involve  

 

To figure out the prognostic importance of each gene of 

the signature composed of IGF2BP1, VIRMA, and 

ZC3H13, the OS of patients with a high expression 

level of any gene of the signature was compared to that 

of patients with low expression. We noticed that OC 

patients with high VIRMA expression had a shorter 

median OS than those with low expression (P < 0.05, 

Figure 6B). Unexpectedly, for IGF2BP1 and ZC3H13, 

the OS rate of patients didn’t associate with their 

expression levels (Figure 6A and 6C). However, 

through univariate analysis, the association between the 

risk signature genes developed in this study can be 

validated using data derived from a different cohort 

downloaded from the Gene Expression Omnibus (GEO) 

database (Figure 6D–6F). This result further confirmed 

the efficiency of the risk signature to predict prognosis 

developed in this study. Using the Gene Set Enrichment 

Analysis (GSEA), we found that IGF2BP1, VIRMA, 

and ZC3H13 are all associated with pathways in cancer 

and WNT signaling pathway (Figure 6G–6I, 

Supplementary Table 1).  

 

DISCUSSION 
 

Previous studies have pointed out that up- or down-

regulation of specific RNA m
6
A methylation regulators 

are associated with the oncogenesis of many different 

tumors. Additionally, the same m
6
A methylation 

regulators might have different functions in different 

tumors. At present, the main work has been devoted to 

the study of the mechanism of m
6
A in promoting 

tumorigenesis [23–28]. 

 

OC is one of the deadliest gynecological malignancies. 

Most patients have stage III~IV at the moment of 

diagnosis, and the prognosis is poor [29, 30]. Classical 

epigenetics, restricted to DNA or protein modification, 

plays critical roles in OC initiation, malignant prog-

ression, and prognosis [31–33]. In our study, we

https://www.oncomine.org/
https://www.oncomine.org/
http://ualcan.path.uab.edu/
http://ualcan.path.uab.edu/


 

www.aging-us.com 18460 AGING 

 
 

Figure 5. The selection of three m6A RNA methylation regulators, and their effect on OC prognosis and clinicopathological 
characteristics. (A) Cox univariate regression analyses were used to examine the associations between expression of 18 m6A RNA 

methylation regulators and prognosis. (B, C) The P-value of IGF2BP1, VIRMA and ZC3H13 < 0.1. (D) Heatmap and clinicopathologic features of 
the three selected m6A RNA methylation regulators. (E) Nomogram for forecasting 1-year, 2-year and 3-year survival of clinically OC patients. 
The nomogram is used by adding up the points identified on the points scale for each variable. Based on the sum of these points projected on 
the bottom scales, it is used to predict the likelihood of individual patients surviving for 1-year, 2-year and 3-year. (F) Univariate analysis of 
the hazard ratios for risk score as independent prognostic elements to anticipate the OS. (G) Multivariate analysis of the hazard ratios for risk 
score as independent prognostic elements to predict the OS.  
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found that the expression of another layer of epigenetic 

regulators, namely m
6
A RNA methylation, is also 

firmly associated with the malignancy and prognosis of 

OC.   

 

Here, we firstly analyzed the expression of m
6
A RNA 

methylation regulators in OC and normal tissues and the 

relationship between their expression. Then we applied 

the consensus clustering to divide all OC samples into 

three clusters and analyzed the expression of m
6
A RNA 

methylation regulators and different clinicopathological 

variables according to the clustering. However, the 

results of PCA did not show a clear distinction among 

cluster1, 2 and 3, and there was almost no significant 

difference in terms of prognosis and clinical case 

characteristics among the three groups. The possible 

reasons could be that the sample size is not big enough 

to reflect the difference, or the clustering algorithm is 

not sensitive enough for these data. 

 

Next, we explored the prognostic value of each m
6
A 

RNA methylation regulators and developed a risk 

signature applying three chose m
6
A RNA methylation 

regulators, IGF2BP1, VIRMA and ZC3H13, which are 

selected by the Cox univariate analysis and LASSO Cox 

regression analysis. Based on this signature, we 

 

 
 

Figure 6. The OS analysis, GSEA analysis, and validation in the GEO database of the three selected m6A RNA methylation 
regulators. (A–C) OS survival curve of OC patients based on the three selected m6A RNA methylation regulators levels. (D–F) The validation 

of the three selected m6A RNA methylation regulators using the GEO database through univariate analysis. (G–I) Enrichment of genes in the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) different pathways by GSEA.  
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established a nomogram that assimilated the three 

selected regulators associated with OC prognosis and 

used univariate analysis and multivariate analysis to 

assess the prognostic value of the three m
6
A RNA 

methylation regulators. At last, the OS analysis, GSEA 

analysis were applied to data collected from a different 

OC cohort to validate the prognostic value of the three 

selected m
6
A RNA methylation regulators. This work 

provided a different biomarker other than the tumor 

stage for predicting the prognosis of OC. 

 

For the three selected regulators, IGF2BP1, VIRMA, 

and ZC3H13, the GSEA study result indicated that they 

were also all correlated with pathways in cancer and 

WNT signaling pathways. Corresponding to the results 

in the GSEA, Felicite K. Noubissi et al. [34] indicated 

that IGF2BP1 plays a central role in carcinoma 

development. They also mentioned that IGF2BP1 was a 

direct target of the WNT/β-catenin signaling. 

Consistently, another analysis using TCGA data 

indicated that the expression of IGF2BP1 was 

negatively associated with survival in prostate cancer 

[35]. Compared with these regulators, there are 

relatively few studies on the signal pathway mediated 

by VIRMA and ZC3H13. More relevant studies are 

needed in the future to reveal the signaling pathways 

that these genes are involved in and their physiological 

and pathological mechanisms both in vitro and in vivo.   

 

Another interesting finding is, when we analyzed the 

experimentally determined protein-protein interactions 

between these three selected m
6
A RNA methylation 

regulators and the other proteins (Supplementary Figure 

1B), we found ZC3H13 interacted with CDKs family, 

POLR2 family and MED complex family closely, 

which is consistent with the result in Supplementary 

Figure 1A. In mammalian cells, cyclin-dependent 

kinases (CDKs) control critical cell cycle checkpoints 

and RNA polymerase II-dependent transcriptional 

events in response to extracellular and intracellular 

signals leading to proliferation [36, 37]. Mediator 

(MED) is a large multiprotein complex conserved in all 

eukaryotes that plays an essential role in transcriptional 

regulation. The mediator comprises 30 subunits in 

humans that form three main modules and a separable 

four-subunit kinase module [38]. The mediator complex 

interacts with DNA-binding gene-specific transcription 

factors to modulate transcription by RNA polymerase II 

[39]. This suggested that ZC3H13 was closely involved 

in the transcription process, which was consistent with 

 

 
 

Figure 7. Outline for the expression changes, mechanism, and potential functions of m6A RNA methylation regulators in OC. 
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the known function of the m
6
A RNA methylation 

regulators. 

 

As for the inconsistency between IGF2BP1 and 

VIRMA protein levels and mRNA levels (Figure 2A 

and Supplementary Figure 8A, 8B), this is a 

phenomenon that has been observed before in studying 

the expression of other genes. Yanqing Liu et al. used 

Pearson’s correlation analysis of scatter plots to reveal 

an inconsistent relationship between HuR protein levels 

and mRNA levels in colorectal cancer tissues, and 

pointed out that the inconsistency between HuR protein 

and mRNA levels indicated that some post-

transcriptional gene regulation mechanisms were 

involved in the control of HuR expression [40]. Pernilla 

Israelsson et al. evaluated the relative mRNA 

expression and the corresponding protein expression of 

the cytokines IL-6, IL-8, TNF-α and TNF-β/LTA at 

seven consecutive time points in the kinetic experiments 

with ovarian cancer cell lines OVCAR-3 and SKOV-3 

and compared with T cell line Jurkat, which served as a 

control [41]. They also observed inconsistency between 

protein and mRNA expression. In addition, Xinyu Ren 

et al. found that PD1/PDL1 mRNA and protein 

expressions were inconsistent too in triple-negative 

breast cancer [42]. In short, the inconsistency of protein 

and mRNA expression levels observed in this study is 

not a rare phenomenon, the specific details of which 

require more experiments and analysis. 
 

In conclusion, our studies comprehensively manifested 

the expression and prognostic value of m
6
A RNA 

methylation regulators in OC (Figure 7). The three 

selected m
6
A RNA methylation regulators, which were 

OC prognosis-associated factors, were also enriched in 

the biological processes and signaling pathways that 

drive the malignant progression of OC. In brief, our 

study provides novel markers for evaluating OC 

prognosis and furnishes significant proof for future 

research on the role of RNA m
6
A methylation in OC.  

 

MATERIALS AND METHODS 
 

Datasets 

 

In March 2019, we obtained the RNA-seq transcriptome 

data of 379 OC patients and the corresponding 

clinicopathological information of 587 OC patients 

from the TCGA database (http://cancergenome.nih. 

gov/) and obtained the RNA-seq transcriptome data of 

88 normal human ovarian tissues from GTEx database 

(https://www.gtexportal.org/home/datasets). For the 

RNA-seq data, TCGA samples (n = 379) were 

normalized by fragment per kilobase of exon model per 

Million (FPKM, namely Fragment Per Kilobase 

Million, which is defined in this way [43]). 

Selection and differential expression analysis of m
6
A 

RNA methylation regulators 

 

We collected a list of 18 m
6
A RNA methylation 

regulators from published literature [44, 45]. Next, we 

systematically contrasted the expression of these m
6
A 

RNA methylation regulators in ovarian with different 

clinicopathological characters. All data were processed 

using the R software (version 3.4.0). The “limma” 

package was used for identifying DEGs between the OC 

samples and matched non-cancerous samples. The 

screening conditions for the differential genes were: P < 

0.05(“*”), P < 0.01(“**”), P < 0.001(“***”). Heat maps 

of differential genes were drawn using the R-package, 

“pheatmap”.  

 

Bioinformatic analysis  
 

To evaluate the prognostic value of m
6
A RNA 

methylation regulators, we executed univariate Cox 

regression analyses of their expression in the TCGA 

dataset, from which we selected three regulators 

virtually associated with survival (P < 0.1), which we 

chose for further functional research and development 

of a potential risk signature with the LASSO Cox 

regression algorithm [46, 47]. Finally, three regulators 

and their coefficients were decided by the minimum 

criteria, choosing the best penalty parameter λ 

associated with the TGGA datasets. The risk score for 

the signature was counted applying the formula: 

 
n [48]

i1
Riskscore = Codfi*x ,

i  

 

where Coefi is the coefficient, and xi is the z-score 

transformed relative expression value of each selected 

regulator. This formula was applied to count a risk score 

for each patient in TGGA datasets. The high-

risk subtype (samples with the risk score higher than 5) 

and the low-risk subtype (samples with risk score lower 

than 5) were defined in OC cases based on the risk 

score of its tumor samples. The ROC analysis was used 

for testing if the survival prediction is sensitive and 

specific based on the risk score. 

 

PPI network construction of m
6
A RNA methylation 

regulators 

 

Protein-protein interactions (PPI) analysis was 

conducted to reveal the molecular mechanisms of a list 

of 18 m
6
A RNA methylation regulators in ovarian 

cancer. We utilized the Search Tool for the Retrieval of 

Interacting Genes (STRING) protein database 11.0 

(http://string-db.org/) to construct the PPI networks. An 

interaction score > 0.4 was regarded as the cut-off 

criterion. 

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
https://www.gtexportal.org/home/datasets
http://string-db.org/
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Gene set enrichment analysis (GSEA) of the three 

selected m
6
A RNA methylation regulators 

 

Gene Set Enrichment Analysis (GSEA) of prognosis-

related MeDEGs was performed using GSEA 3.0 

software with gene set c2 (cp.kegg.v.6.2.symbols.gmt). 

High throughput RNA expression of 379 ovarian cancer 

genes from TCGA was utilized as the dataset. Each 

sample was defined as either “H” or “L”, depending on 

whether it was greater than the median mRNA 

expression value of prognosis-related DEGs or not. The 

number and type of permutations were set at “1000” 

and “phenotype,” respectively. An enrichment score 

>0.4 and P < 0.05 were regarded as statistically 

significant. 

 

Tumor subgroup gene expression and survival analyses 

 

UALCAN (http://ualcan.path.uab.edu/index.html) is a 

portal for facilitating tumor subgroup gene expression 

and survival analyses for analyzing cancer OMICS data. 

Using TCGA transcriptome and clinical patient data, 

compare across different tumor subgroups as defined by 

the patient’s age and tumor grade through the 

expression level of the gene. Finally, the primary tumor 

samples were categorized using OC patient clinical 

data, and boxplots were generated of the expression 

level of each gene across various subgroups. 

 

Survival Analysis of IGF2BP1, VIRMA and ZC3H13 

 

Download the datum matrix containing all ovarian 

patients’ prognosis information from the GEO database. 

The overall survival analysis was conducted using the 

only patient with survival data and gene expression data 

from RNA-seq. For each gene, a tab-separated input file 

was created with columns for TCGA sample id, Time 

(days_to_death), Status (Alive or Dead), and Expression 

level. Samples were categorized into two groups 

according to the level of gene expression: (1) High 

expression (with values above the average) and (2) Low 

expression (with values below the average). The data 

was processed by R packages “survival”. Kaplan-Meier 

curves were drawn to demonstrate the relationship 

between the patient’s overall survival and gene 

expression levels of m
6
A RNA methylation regulators. 

The relationship was tested by the log-rank test. 

 

Validation of the IGF2BP1, VIRMA and ZC3H13 

 

To determine the robustness of this model, we used the 

same coefficients from the training set to validate in the 

validation sets including GSE30161 (n = 58), GSE9891 

(n = 285), GSE63885 (n = 101), GSE19829 (n = 70), 

GSE18520 (n = 63), GSE26193 (n = 107), GSE27651 

(n = 49), GSE14764 (n = 80), GSE3149 (n = 153), 

GSE23554 (n = 28), and TCGA (n = 427) dataset. We 

used multivariate Cox proportional analysis to 

determine a panel of prognostic genes. The calculation 

of the patient’s risk score in the training set was 

performed according to the formulate obtained from the 

multivariate Cox proportional model. The forest plots 

were used to display the multivariable Cox results, 

including all the above variables. The “forestplot” R 

packages were used to draw forest plots. 

 

Independent prognostic analysis  

 

The univariate and multivariable Cox regression 

analyses were utilized to access the prognostic value of 

the risk score generated from the multivariate model. 

The demographics and clinical information, including 

age and grade, were used for model correction.  

 

Statistical analysis 

 

One-way ANOVA was applied to contrast the 

expression levels of m
6
A RNA methylation regulators 

in ovaries with normal patients group (GTEx datasets) 

and tumor patients group (TCGA datasets), and t-tests 

were applied to contrast the expression levels in OC 

patients for grade, age and survival status. 

 

Patients were grouped into three clusters by consensus 

expression of m
6
A RNA methylation regulators or were 

separated into low-risk and high-risk groups applying 

the median risk score (came from the risk signature) as 

the cut-off value. Chi-square tests were applied to 

contrast the distribution of patients’ age, survival status 

and the grade between the two risk groups.  

 

To contrast the risk scores of the signature for ovaries 

with different clinicopathologic, a one-way ANOVA or t-

test was conducted to contrast the risk scores in patients 

divided by clinical or molecular-pathological features. 

Univariate and multivariate Cox regression analyses were 

conducted to evaluate the prognostic value of the risk 

score and various clinical and molecular-pathological 

features. The prediction efficiency of the risk signature 

was tested with the ROC curve.  
 

The Kaplan-Meier method with a two-sided log-rank 

test was applied to contrast the OS of the patients in the 

cluster 1/2/3 groups or in the low- and high-risk groups. 

All statistical analyses were executed utilizing R v3.4.1 

(https://www.r-project.org/) and Prism 8 (GraphPad 

Software Inc., La Jolla, CA).  
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6
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures  

 

 

 

 

 

 
 

Supplementary Figure 1. The protein-protein interaction network analysis. (A) The protein-protein interaction network analysis 

between the 18 m6A regulators and the other proteins. (B) The protein-protein interaction network analysis between these three selected 
m6A RNA methylation regulators and the other proteins. 

 

 
 

Supplementary Figure 2. Genetic changes of RNA m6A regulators in the TCGA dataset. Genetic changes of the 18 m6A RNA 

methylation regulators in the 379 OC from the TCGA dataset. 
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Supplementary Figure 3. Identification of consensus clusters by m6A RNA methylation regulators and PCA. (A) Comparative 

change in area under cumulative distribution function (CDF) curve for k = 2 to 10. (B) Consensus clustering CDF for k = 2 to 10. (C) PCA of the 
total RNA expression profile.  

 

 

 
 

Supplementary Figure 4. OS of OC patients with different tumor grades. Kaplan-Meier OS curves for patients in the TCGA datasets 

depended on grade. 
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Supplementary Figure 5. Heatmap of the 18 m6A RNA methylation regulators. Heatmap and clinicopathologic features of the two 

clusters (high risk and low risk) defined by the 18 m6A RNA methylation regulators’ risk score. 
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Supplementary Figure 6. Expression of IGF2BP1, VIRMA and ZC3H13 in OC patients with different types, ages and grades. (A) 

Expression of IGF2BP1 in different ovarian cancer in the Oncomine database. (B) Expression of VIRMA in different ovarian cancer in the 
Oncomine database. (C) Expression of ZC3H13 in different ovarian cancer in the Oncomine database. (D) Expression of IGF2BP1 in OV based 
on the patient’s age. (E) Expression of VIRMA in OV based on patient’s age. (F) Expression of ZC3H13 in OV based on the patient’s age. (G) 
Expression of IGF2BP1 in OV based on tumor grade. (H) Expression of VIRMA in OV based on tumor grade. (I) Expression of ZC3H13 in OV 
based on tumor grade. OV: Ovarian serous cystadenocarcinoma 
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Supplementary Figure 7. Mutation data of three selected m6A RNA methylation regulators in different OC cell lines based on 
the Cancer Cell Line Encyclopedia (CCLE) database. (A) Mutation sites of VIRMA in different OC cell lines. (B) Mutation sites of ZC3H13 

in different OC cell lines. (C) Mutation sites of IGF2BP1 in different OC cell lines.  
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Supplementary Figure 8. Protein expression of IGF2BP1, VIRMA and ZC3H13 in OC patients in the CPTAC samples. (A) Protein 

expression of IGF2BP1in OC patients. (B) Protein expression of VIRMA in OC patients. (C) Protein expression of ZC3H13 in OC patients.  
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Supplementary Table 
 

 

Supplementary Table 1. Specific Information on the GSEA analysis of the three selected m6A RNA methylation 
regulators. 

m
6
A methylation regulators Pathways NES normalized P 

IGF2BP1 
Pathways in cancer 1.83 0.006 

WNT signaling pathway 1.91 0.004 

VIRMA 
Pathways in cancer 1.88 0.002 

WNT signaling pathway 1.86 0.004 

ZC3H13  
Pathways in cancer 1.59 0.037 

WNT signaling pathway 1.91 0.004 

Pathways associated with IGF2BP1, VIRMA and ZC3H13. 

 
 


