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INTRODUCTION 
 

Vascular development, including vasculogenesis and 

angiogenesis, has been proved to be involved in several 

human diseases, such as neurodegenerative conditions 

and cancers [1]. The targeting of vascular endothelial 

growth factor-A (VEGFA), a crucial regulator for the 

pathological angiogenesis, has revealed innovative 

therapeutic approaches in many vascular diseases [2, 3]. 

Treatment with nicotinamide mononucleotide could  

 

significantly rescue the VEGF-induced angiogenic 

capacity in aged cerebromicrovascular endothelial cells 

[4]. GDF11 treatment increased VEGFA expression and 

secretion, leading to enhanced angiogenesis and improved 

neuropathological outcomes in the aged brain [5]. 

Furthermore, inhibition of latent membrane protein 1 by 

DNAzyme could suppress the microtubule-forming 

ability of human umbilical vein endothelial cells 

(HUVECs) co-cultured with nasopharyngeal carcinoma 

cells by downregulating VEGFA signaling pathway [6]. 
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ABSTRACT 
 

Background: Studies have demonstrated that S-adenosylmethionine could effectively affect the clinical 
wearing-off phenomena of levodopa, an antiparkinsonian agent; however, the detailed mechanisms for this 
effect need to be further clarified.  
Results: S-adenosylmethionine and levodopa had opposite effects on the protein stability of vascular 
endothelial growth factor-A. The analysis of tube formation and cell viability also showed the nonconforming 
functions of S-adenosylmethionine and levodopa on cell angiogenesis and proliferation. Meanwhile, S-
adenosylmethionine could significantly abolish the increased angiogenesis and cell viability induced by 
levodopa. S-adenosylmethionine resulted in G1/S phase arrest, with decreased cyclin dependent kinase 4/6 
and increased p16, a specific cyclin dependent kinase inhibitor. Mechanically, the different effects of levodopa 
and S-adenosylmethionine were dependent on the phosphorylation and activation of extracellular signal-
regulated kinase. S-adenosylmethionine could be fitted into the predicted docking pocket in the crystal 
structure of vascular endothelial growth factor-A, enhancing its acetylation level and reducing half-life.  
Conclusions: These observations suggested that methyl donor S-adenosylmethionine could act as a potential 
agent against vascular endothelial growth factor-A-related diseases induced by levodopa treatment. 
Methods: We performed in vitro cytological analyses to assess whether S-adenosylmethionine intake could 
influence levodopa-induced vascular endothelial growth factor-A expression in human umbilical vein 
endothelial cells.  
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Thus, many studies have demonstrated the improved 

therapeutic effect for these diseases [7–9]; however, most 

of these findings are still in the pre-clinical phase. To 

facilitate transformation of all the therapeutic approaches 

for clinical application in patients, a deeper understanding 

of the precise modulation mechanisms of VEGFA is 

clearly needed in disease progression and treatment. 

 

To date, increasing studies have demonstrated that 

VEGFA-positive neurons and immature angiogenesis 

could be frequently found in the substantia nigra of 

individuals with neurodegenerative conditions, 

indicating that angiogenic changes might be a main 

clinical feature of neurodegenerative pathophysiology 

[10]. Levodopa (L-dopa), the dopamine precursor, 

serves as the most effective treatment for patients with 

neurological disorders. However, long-term treatment 

with L-dopa has resulted in many VEGFA 

upregulation-related side-effects, such as dyskinesias. 

Chronic L-dopa therapy induces the overexpression of 

VEGFA in the corpus striatum and basal ganglia nuclei, 

further promoting the development of dyskinesias [11]. 

When co-administered with L-dopa, the VEGFA 

inhibitor vandetanib significantly attenuated the 

development of L-dopa-induced dyskinesia [12]. 

Meanwhile, treatment with ibuprofen or piroxicam, two 

cyclooxygenase inhibitors, are both proved to preserve 

the therapeutic effects of L-dopa by decreasing the 

VEGFA level with no apparent clinical hazards [11].  

 

Epigenetic alterations, particularly DNA methylation, 

may play key roles in the course of nervous system 

injury, and could provide promising strategies for 

targeted therapy [13, 14]. The methyl donor S-

adenosylmethionine (SAM) and DNA methyltransferase 

are both responsible for the maintenance of DNA 

methylation [15]. Under the action of catechol-O-

methyltransferase, the metabolism and degradation of 

L-dopa requires SAM as the methyl donor. In these 

reactions, the methyl group released from SAM is 

metabolized to S-adenosylhomocysteine (SAH), which 

is eventually converted to total homocysteine, a well-

known independent factor for increased risk of 

neurological disorders [16, 17]. This altered SAM/SAH 

ratio has been implicated to affect the clinical wearing-

off phenomena and other limitations in efficacy of L-

dopa during long-term treatment in patients [18]. A 

recent finding from Werner’s group has indicated that 

administration of SAM or SAM-precursors could 

protect the dopamine neurons against L-dopa toxicity in 

a catechol-O-methyltransferase-dependent manner [19].  

 

However, whether SAM intake blocks the pro-

angiogenic ability of L-dopa is still not yet interpreted 

clearly. To address this hypothesis, we mainly used the 

primary cultured and immortalized HUVECs to study 

the detailed roles of SAM on L-dopa-induced VEGFA 

expression and tube formation. 

 

RESULTS 
 

Differential effect of L-dopa and SAM on the 

VEGFA level in HUVECs 

 

To identify the effect of L-dopa and SAM on the VEGFA 

level, we examined the change in VEGFA expression in 

HUVECs using western blot and real-time PCR. The data 

showed that the protein levels of VEGFA are 

concentration-dependently downregulated in both primary 

cultured and immortalized HUVECs following SAM 

treatment, compared with the DMSO group (Figure 1A 

and Supplementary Figure 1A). Conversely, L-dopa 

treatment upregulated the VEGFA expression at the 

protein level (Figure 1B and Supplementary Figure 1B). 

Additionally, we used the non-toxic concentration of L-

DOPA (15 μM) and non-toxic concentration of SAM (0.08 

mM) lower than previous reported [20, 21]. Combinational 

treatment of L-dopa and SAM showed that SAM could 

weaken the L-dopa-induced VEGFA expression in 

primary cultured HUVECs (Figure 1C). However, neither 

SAM nor L-dopa could induce a significant change in 

VEGFA expression at the transcriptional level in HUVECs 

(Figure 1D, 1E and Supplementary Figure 1C, 1D). These 

results are different from the findings of Ohlin’s study, 

which demonstrated that VEGFA mRNA is upregulated 

following L-dopa stimulation in primary cerebral 

astrocytes [12]. The reason of this difference may occurred 

by the diversity of cell background and culture conditions. 

Given that posttranslational modifications (PTMs), such as 

acetylation [22], are important for modulating the VEGFA 

protein, we explored whether VEGFA is regulated in a 

similar manner by SAM treatment. As expected, four 

probable acetylation sites could be identified in full-length 

sequence of VEGFA protein by PhosphoSitePlus website 

(https://www.phosphosite.org/) (Figure 2A). Moreover, 

SAM significantly promoted the acetylation of VEGFA in 

both primary cultured and immortalized HUVECs cells 

(Figure 2B and Supplementary Figure 2). In addition, we 

performed CHX assays to further determine the protein 

stability of VEGFA. We found that SAM treatment could 

expectedly attenuate the half-life of the VEGFA protein in 

primary cultured HUVECs cells (Figure 2C, 2D). 

Collectively, these data suggest that SAM and L-dopa 

stimuli have opposing effects on the VEGFA protein 

stability in HUVECs. 

 

L-dopa and SAM treatment show opposing effects 

on the angiogenesis and proliferation of primary-

HUVECs 
 

As VEGFA is reported to play a crucial role in vascular 

development [23–25], we first examined whether the 

https://www.phosphosite.org/
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extent of endothelial microtubule formation is 

influenced by treatment with L-dopa and SAM. 

Compared with the DMSO group, an obvious increase 

of microtubule-forming ability was clearly detected in 

the presence of L-dopa (p<0.05) (Figure 3A). 

Meanwhile, SAM treatment resulted in the reduced 

formation of microtubules (p<0.05) (Figure 3B). Then, 

cell proliferation assays were performed to provide 

further evidence for the role of L-dopa and SAM in the 

regulation of cell growth. Primary HUVECs were 

treated with different concentrations of L-dopa and 

SAM for the indicated times. As shown in Figure 3C, 

3D, when HUVECs were exposed to L-dopa, a 

significant increase in cell clone formation and viability 

(48h: p<0.01; 72h: p<0.01) was observed compared to 

that observed for DMSO treated cells. However, a 

strong inhibition of growth occurred upon treatment 

with SAM (48h: p<0.01; 72h: p<0.01) (Figure 3E, 3F). 

The typical images of cell colony formation from 

different treatments are shown in Figure 3C and 3E. In 

addition, we examined the combination effect of L-dopa 

and SAM on cell angiogenesis and proliferation in the 

primary-HUVECs. As expected, compared with the 

DMSO group, SAM could significantly abolish the L-

dopa-induced promotion of tube formation ability and 

cell viability (0.04 mM: p<0.01; 0.08 mM: p<0.01) in a 

concentration-dependent manner (Figure 4A, 4B), 

indicating that SAM administration could block the L-

dopa-mediated pro-angiogenic ability. These data all 

together show that treatment with L-dopa and SAM 

could result in opposing actions on cell angiogenesis 

and proliferation.  

 

ERK activation is involved in the effects of L-dopa 

and SAM 
 

Recent studies have revealed that the VEGFA-PKC-

ERK signaling axis plays a pivotal role in angiogenesis 

and cell growth, providing a potential therapeutic 

strategy for various angiogenesis-dependent diseases 

[26]. Moreover, VEGFA-induced ERK phosphorylation 

at residues Thr202/Tyr204 has been shown to be 

strongly dependent on protein kinase C (PKC) [27, 28]. 

Thus, we next examined the effects of L-dopa and SAM 

on ERK activation. The results show that in primary 

cultured HUVECs, compared with the DMSO treated

 

 
 

Figure 1. The effects of SAM and L-dopa on the VEGFA expression in primary-HUVECs. (A and B) Western blot analysis of VEGFA 

protein level in primary-HUVECs treated with indicated concentrations of SAM or L-dopa for 24 h. (C) Western blot analysis of VEGFA protein 
level in primary-HUVECs treated with combined SAM and L-dopa for 24 h. (D and E) Real-time PCR analysis of VEGFA mRNA level after 
different concentrations of SAM or L-dopa treatment for 24 h. α-Tubulin was used as an internal normalization control. The quantitative 
results shown of three independent experiments are means ± SD. The asterisk (* or **) indicates a significant (p < 0.05 or p < 0.01, 
respectively) compared with control groups. NS indicated no significant difference. 
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group, elevated levels of Thr202/Tyr204 

phosphorylated ERK could be seen upon concentration-

dependent L-dopa treatment, whereas the inverse 

change was seen after SAM intake (Figure 5A, 5B). 

Similar trend changes of PKC level could also be 

clearly noticed upon L-dopa and SAM treatment 

(Figure 5C). Furthermore, SAM abrogated the 

upregulation of VEGFA-PKC-ERK signaling induced 

by L-dopa in a concentration-dependent manner (Figure 

5D). To further investigate the role of ERK signaling in 

the L-dopa response, we inhibited ERK activity with 

adenosine triphosphate-competitive ERK1/2 inhibitor 

FR180204 [29]. As expected, ERK inhibitor FR180204 

yielded similar results to SAM on the L-dopa response. 

Pharmacologic inhibition of ERK activation by 

FR180204 abolished the L-dopa-induced upregulation 

of the VEGFA protein level. In addition, no significant 

change was seen in the expression of PKC after ERK 

inhibition by FR180204 (Figure 5E), supporting that 

PKC is an upstream regulator for ERK activation [30]. 

These results collectively indicated that the L-dopa-

mediated VEGFA upregulation is dependent of ERK 

phosphorylation and activation. 

SAM intake leads to the cell-cycle arrest at the G1/S 

phase 
 

Since cell proliferation could be effectively regulated by 

cell cycle progression [31], we next examined the effect 

of L-dopa and SAM on cell cycle distribution. Different 

concentrations of L-dopa and SAM were administered 

to primary HUVECs after overnight serum starvation, 

and cell cycle distribution was assessed using the flow 

cytometry method. Compared with the DMSO treated 

group, L-dopa treatment could lead to an increase in the 

number of proliferative cells (Figure 3C, 3D), but no 

obvious changes in cell cycle exists (Figure 6A). The 

reasons for the pro-proliferation effect of L-dopa might 

be due to other factors, such as the prolonged mitosis 

[32], and not the cell cycle arrest. However, SAM 

significantly increased the percentage of cells in the 

G0/G1 phase (57.69 ± 0.30 for 0.04 mM SAM, 70.11 ± 

1.40 for 0.08 mM SAM) compared to DMSO-treated 

cells (36.25 ± 1.90). This increase was coupled with a 

significant decrease in the percentage of cells in the 

G2/M phase (26.93 ± 1.30 for 0.04 mM SAM, 19.54 ± 

1.22 for 0.08 mM SAM) (Figure 6B). It is well known

 

 
 

Figure 2. SAM administration enhances the acetylation level of VEGFA in primary-HUVECs. (A) Prediction of acetylation sites in 

VEGFA protein sequence by PhosphoSitePlus website. (B) The primary cultured HUVECs cells were treated with 0.08 mM SAM for the 24 h, 
followed by Co-IP with antibody against VEGFA. Immunoprecipitates were immunoblotted with the indicated antibodies. (C) After treated 
with CHX (20 μg/ml) for the indicated times, protein levels of VEGFA were determined by western blot analyses of lysates from primary-
HUVECs treated with indicated concentrations of SAM. (D) Quantification of VEGFA protein levels relative to α-Tubulin. 
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that cyclin-dependent kinases (CDKs) function as the 

key factor that drives cell cycle progression [33]. To 

further confirm the G1/S phase arrest phenotype due to 

SAM intake, we investigated the cell cycle-associated 

checkpoint CDK4/6, the regulators required for G1/S 

transition [34]. As shown in Figure 6C, it was found 

that SAM markedly decreased the CDK4/6 expression 

level while increasing the level of p16, a specific CDK 

inhibitor [35]. Moreover, the combination of SAM and 

FR180204 could further suppress the G1 phase 

regulators CDK4/6, which further indicates the 

important roles of ERK signaling in the effect of SAM 

in HUVECs. Taken together, these findings demonstrate 

that SAM has a preferential pro-cell cycle arrest effect 

on the primary HUVECs. 

Molecular docking analysis 

 

The MOE software was used to analyze the docking 

poses and binding energies between SAM and VEGFA 

to evaluate the possible activity pocket for SAM in the 

VEGFA protein. A recent study clarified that VEGFA is 

a cystine knot growth factor, which consists of three 

highly intertwined disulfide bridges. The cystine knot 

motif is a major determinant for the thermodynamic 

stability of VEGFA because it interlocks four separate 

chain segments (Figure 7A) [36]. In addition, treatment 

with PFA oxidation could remove the intermolecular 

disulfide bridge, leading to an unstable structure of the 

protein [37]. By studying the crystal structural 

properties of the mutant Cys61Ala-Cys104Ala, Muller

 

 
 

Figure 3. L-dopa and SAM treatment shows opposing effects on the angiogenesis and cell proliferation. (A and B) After 
treatment with the indicated concentrations of L-dopa or SAM for 24 h, endothelial tube formation was assessed using light microscopy. The 
average number of microtubules in 3 random horizons was analyzed using ImageJ software. (C) Cells were treated with L-dopa for 24 h and 
were incubated for another 2 weeks before fixation, staining and colony quantification. Clonogenic assays were performed in triplicate. (D) 
CCK-8 assay was using to evaluate the effect of L-dopa on the cell viability. (E) Colony formation assays show the effect of SAM on primary 
HUVECs. The quantitative results shown of three independent experiments are the mean ± SD. (F) CCK-8 assay was used to evaluate the 
effect of SAM on the cell viability. The asterisk (* or **) indicates a significant (p < 0.05 or p < 0.01, respectively) compared with control 
groups. 
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et al. found that the disulfide bridges in Cys61Ala-

Cys104Ala are crucial for the thermal stability and 

structural function of VEGFA [38]. Therefore, we mainly 

focused on whether SAM could interact with the 

Cys61Ala-Cys104Ala domain of VEGFA. After the 

substrate pocket was predicted in the Cys61Ala-

Cys104Ala domain of VEGFA (Figure 7B), we found 

PFA oxidation was docked into the pocket as expected, 

with an E-score
2
 of -2.967 to -3.112 (Figure 7C, 

Supplementary Figure 3A), indicating that the oxidation 

of PFA could attenuate the stability of VEGFA directly. 

As illustrated in Figure 7D and Supplementary Figure 3B, 

SAM fit the same active pocket in VEGFA as PFA, 

including amino acids Cys61, Lys107 and Asp34. In 

addition, the E-score
2
 values of the docking parameter for 

SAM (-4.834~ -5.517) are lower than those of PFA. 

Taken together, these results show good affinity of SAM 

with VEGFA by forming several potent hydrogen bonds 

between their polar moieties and the amino acid residues. 

DISCUSSION 
 

The purpose of this investigation was to identify the 

modulation mechanism of SAM on L-dopa-induced 

VEGF expression. In the current study, using the 

cultured HUVEC model and cell biology techniques, we 

present potential insight into the functions of SAM on 

L-dopa-induced VEGFA expression and tube formation. 

In the first step, we discovered the opposite effects of L-

dopa and SAM on the VEGFA protein level and cell 

proliferation rate. Then, molecular mechanism studies 

revealed that SAM administration, blocking the pro-

angiogenic ability of L-dopa, is dependent on the ERK 

activation to some extent (Figure 8).  

 

Recently, SAM has been used for the treatment of 

several human diseases, especially neurodegenerative 

conditions. Preliminary evidence suggests that SAM 

treatment ameliorated symptoms in certain 

 

 
 

Figure 4. SAM suppresses the proliferation and angiogenesis effect of L-dopa in primary-HUVECs. (A) Primary HUVECs were 
treated with a single or combination agent for 24 h and then analyzed with tube-formation assay. The average number of microtubules from 
three experiments was analyzed using ImageJ software. (B) After treatment with the indicated conditions, cell viability was evaluated using 
the CCK-8 assay. The experiments were repeated for three independent times. And the quantitative results shown are means ± SD. The 
asterisk (* or **) indicates a significant (p < 0.05 or p < 0.01, respectively) compared with control groups. 
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neurocognitive and psychotic disorders, indicating that 

SAM holds promise as an alternative strategy for 

multiple neuropsychiatric conditions [39, 40]. Acting as 

an antioxidant, SAM could effectively protect nerve 

cells against amyloid-β-induced cellular injury by 

inhibiting oxidative stress and neuroinflammation in 

Alzheimer's disease [41]. However, intracerebro-

ventricular injection of SAM induced the symptoms of 

Parkinson's disease by destroying the methylation/ 

demethylation homeostasis of prenylated proteins [42].

 

 
 

 

Figure 5. The functions of L-dopa and SAM are dependent on the ERK activation. (A–E) Primary HUVECs were treated by different 

concentrations of L-dopa and SAM and 10 μM FR180204 for 24 h. Then, the protein expression levels were analyzed by western blot with the 
indicated antibodies. α-Tubulin used as an internal normalization control. 
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Due to the limited evidence, these unexpected and 

confused findings about SAM for the treatment of 

neurological disorders should be evaluated in the future. 

In addition, long-term administration of SAM also 

showed potential antitumor effects in human cancer [21, 

43]. SAM administration promoted VEGFC promoter 

methylation and downregulated its expression in gastric 

cancer cells [44].  

 

It is known that VEGFA is upregulated in patients with 

neurodegenerative disorders after chronic L-dopa 

therapy, leading to some pathological angiogenesis 

associated diseases such as symptoms of motor 

dysfunction. That is because high concentrations of 

VEGFA result in the formation of abnormal blood 

vessels and disruption of the blood brain barrier, which 

are proved to be causative factors for the degeneration 

of dopaminergic neurons [45]. Treatment with VEGFA-

targeted drugs could effectively preserve the curative 

effect of L-dopa while delaying the development of 

dyskinesia [11]. Additionally, L-dopa therapy in 

patients depletes the cellular concentrations of the 

methyl donor, SAM, and thus results in a reduced 

SAM/SAH ratio [46]. SAM administration has been 

proved to influence the wearing-off phenomena and 

other clinical problems of L-dopa during long-term 

treatment [18]. Accordingly, we found that L-dopa can 

significantly promote the VEGFA expression at the 

protein level and accelerate angiogenesis in HUVECs. 

However, the upregulated VEGFA level and tube-

forming ability are both impaired by SAM in a 

concentration-dependent manner. Moreover, we 

clarified that SAM could be docked into the predicted 

pocket of VEGFA, further promoting the VEGFA 

acetylation and attenuating its half-life, indicating that 

SAM could effectively reduce L-dopa-induced VEGFA 

protein stability through direct molecule binding.  

 

Nowadays, increasing reports have demonstrated that 

the expression and activity of VEGFA could be 

regulated at the post-translational level. The polyADP 

ribosylation and glycosylation are the two major post-

translational modifications of VEGFA, which influence 

its secretion and biological function [47]. In addition, 

histone H3 mediated VEGFA acetylation promoted 

VEGFA upregulation in injured peripheral nerves, thus 

participating in angiogenesis and reinforcing pain 

behaviors [48]. The previous studies showed that 

phosphorylation modification of VEGFA plays 

important roles in VEGFA regulated angiogenesis in

 

 
 

Figure 6. Effects of SAM on the cell cycle distribution in Primary-HUVECs. (A) Upon treatment with SAM at 0.04 mM and 0.08 mM 

for 24 h, the cell-cycle progression of primary HUVECs was analyzed by flow cytometry. (B) Flow cytometry was used to assess the cell cycle in 
primary HUVECs treated by L-dopa at 5 μM and 15 μM for 24 h. (C) Cell cycle-related proteins (CDK4/6 and p16) were determined using 
western blot analysis. α-Tubulin was used for the loading control. The quantitative results shown of three independent experiments are 
means ± SD. 
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Figure 7. Docking poses and activity pocket for SAM in the crystal structure of VEGFA (PBD ID: 1MKK). (A) The disulfide bridges 
between C61A-C104A of VEGFA. (B) Docking site of VEGFA crystal structure. (C and D) Important residues are labeled and shown as sticks to 
facilitate the localization of PFA or SAM on the active site region in VEGFA. 

 

 
 

Figure 8. Proposed schematic of SAM effect on L-dopa-induced angiogenesis and proliferation in HUVEC cell. SAM intake 
significantly suppresses the L-dopa-induced VEGFA upregulation. Different from L-dopa treatment, SAM could promote the cell cycle arrest at 
G1/S phase arrest, accompanied with the decreased tube formation ability and cell proliferation rate. In addition, the data from molecular 
docking analysis indicates the direct binding ability between SAM and VEGFA. 
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HUVECs [49]. Our present study demonstrated L-dopa 

elevated levels of ERK phosphorylation whereas the 

inverse change was seen with SAM treatment. As SAM 

can promote the acetylation of VEGFA, further research 

is needed to clarify the effect of SAM on the 

phosphorylation of VEGFA. 

 

Another interesting finding is that the changes of 

VEGFA level and cell proliferation rate by L-dopa may 

be due to their modulation upon ERK activation. As 

previously mentioned, the signal transduction cascade, 

the ERK signaling pathway, was closely correlated with 

the concentration of L-dopa and is frequently altered 

following chronic L-dopa treatment [50]. Using western 

blot assays, we found that FR180204, an ERK 

activation inhibitor, could relieve the efficacy of L-

dopa-induced upregulation of VEGFA. At the same 

time, downregulation of the ERK signaling pathway by 

FR180204 results in an enhanced inhibitory effect of 

SAM on the cell-cycle checkpoint proteins CDK4/6 in 

primary HUVEC cell lines. Taken together, EKR 

inhibitors may hypothetically contribute to decrease the 

severe negative effects during long-term treatment with 

L-dopa in patients with Parkinson's disease. 

 

This study, however, is subject to several limitations. 

First of all, the effect evaluated in the model was mainly 

based on the data from the primary cultured and 

immortalized HUVECs in vitro. These findings might 

be therefore subjected to some biases. In the future, the 

biological functions of SAM-VEGF signaling axis 

should be strengthened in more comprehensive 

researches, such as animal models and clinical trials. 

Second, we were unable to show the detailed 

mechanisms for VEGFA acetylation modification. All 

these factors need to be further clarified to understand 

their dynamics and functional implications. In 

conclusion, the objective of this report was to explore 

the roles of SAM on VEGF modulation. This study 

confirms meaningful clues that a temporary SAM intake 

can ameliorate L-dopa-induced VEGFA upregulation-

associated disorders.  

 

MATERIALS AND METHODS 
 

Cell lines and reagents 

 

With signed informed consent forms and following 

ethical standards from the research ethics committee, 

Xiangya Hospital, China (No. 201402007), umbilical 

cords were obtained from randomly selected healthy 

mothers after they gave birth, and stored at 2-8°C. Then, 

primary cultures of HUVEC were on-set after 

enzymatic digestion of endothelial tissue from umbilical 

cord veins, as previously reported [51]. In brief, 

HUVECs were isolated with dispase solution (Gibco, 

Grand Island, USA), pre-warmed at 37°C within 1 to 4 

h after birth. The obtained HUVECs were then 

propagated in cell culture dishes with EGM-2 

Endothelial Cell Growth Medium-2 (Lonza, MD, USA) 

supplemented with 10% fetal bovine serum (FBS, 

HyClone, UT, USA). Immortalized HUVECs (ATCC 

CRL-1730) were purchased from Xiangya Central 

Experiment Laboratory (Hunan, China) and were 

routinely cultured in RPMI Medium 1640 (Gibco, 

Grand Island, USA) supplemented with 10% FBS. L-

dopa (V900425, Sigma) and FR180204 (S7524, Selleck 

Chemicals) were dissolved in 0.1% dimethylsulfoxide 

(DMSO). In addition, SAM (A506555) was purchased 

from Sangon Biotech (China) and cycloheximide 

(CHX, 2112) was purchased from Cell Signaling 

Technology. The respective concentrations used can be 

seen in the results. 

 

Western blot and Co-immunoprecipitation (Co-IP) 

 

Briefly, approximately 1 × 10
6 

endothelial cells were 

seeded onto 6-well plates and cultured with the 

indicated concentrations of L-dopa or SAM for 48 h. 

The antibodies for western blot analysis were as 

follows: anti-α-Tubulin (69969, Santa Cruz), anti-

VEGFA (57496, Santa Cruz), anti-acetylated lysine 

(9441, Cell Signaling Technology), anti-extracellular 

signal-regulated kinase (ERK) (ab54230, Abcam), anti-

phospho-ERK (ab65142, Abcam), anti-protein kinase C 

(PKC) (17804, Santa Cruz), anti-p16 (468, Santa Cruz), 

anti-CDK4 (12790, Cell Signaling Technology), and 

anti-CDK6 (13331, Cell Signaling Technology). Protein 

expression levels were determined by western blot 

technology as previously described [52]. In brief, cell 

extracts were prepared in cold Pierce IP buffer (Thermo 

Scientific, 87788), and then subjected to 10% SDS-

PAGE and transferred to polyvinylidene fluoride 

membranes. The membranes were blocked with 5% fat-

free milk and incubated with the indicated antibodies. 

At last, the immunoreactive bands were visualized with 

SuperSignal
®
 West Femto Maximum Sensitivity 

Substrate (Thermo Scientific, 34095). For Co-IP, cell 

lysates were clarified by immunomagnetic separation 

and incubated with the indicated antibody plus 

Dynabeads
®
 Protein A (Thermo Scientific, 10002D) at 

4 °C. After extensive washing with lysis buffer, the 

immunocomplexes were analyzed by western blot as 

described. 

 

Real-time PCR 

 

Total RNA was isolated from the HUVECs and 

followed by cDNA synthesis as previously described 

[53]. Real-time PCR was performed with Power SYBR 

Green PCR Master Mix (Applied Biosystems, 4367659) 

using an ABI 7500 instrument. The primers for 
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detecting VEGFA and α-Tubulin were shown in 

Supplementary Table 1. 

 

Tube formation assay 
 

The tube formation test was analyzed to evaluate the 

effect of L-dopa and SAM on angiogenesis using a 

previously published process [6, 54]. Briefly, we first 

treated HUVEC cells with different concentrations of 

SAM or L-dopa, and 24 h later, cells were trypsinized 

and centrifuged at 600 × g for 5 min. Then 

approximately 5 × 10
4
 cells were seeded into 24-well 

plates with 200 µl of embedded Matrigel (BD 

Biosciences, NJ, USA). Then, the cells were incubated 

for 12 h, and the extent of endothelial microtubule-

forming was measured using a light microscope. 

 

Cell viability assay  

 

After treated with the indicated conditions, 

approximately 1 × 10
3
 primary HUVECs were seeded 

into 96-well plates and then incubated for 0 h, 24 h, 48 

h, 72 h, etc. Then, 10 µl CCK-8 reagent was added to 

each well, and then cell viability was evaluated using a 

spectrometer at 450 nm according to the instructions 

provided (Selleck Chemicals, USA). 

 

Clonogenic survival assay 
 

The HUVECs (approximately 2 × 10
3
) were seeded into 

6-well plates and incubated for 24 h. The cells were 

then treated with different concentrations of L-dopa or 

SAM. After approximately 15 days, cells were washed 

with PBS, fixed in ice-cold methanol and stained with 

crystal violet. The cell clones were counted using 

ImageJ 1.52v software (National Institutes of Health, 

MD, USA), and survival curves were quantified using 

Microsoft Excel 2007 (Microsoft Office system, USA) 

 

Flow cytometric analysis  

 

Flow cytometry was performed to evaluate the cell cycle 

distribution of HUVECs treated with L-dopa or SAM 

using a published method [55]. Briefly, approximately 1 × 

10
6 

endothelial cells were seeded onto 6-well plates and 

cultured with the indicated concentrations of L-dopa or 

SAM for 24 h. All cells were washed with ice-cold PBS, 

fixed in 70% ethanol, and then stored at 4°C overnight. 

After washing with PBS again, the fixed cells were 

stained with 0.1% RNase A and 50 μg/ml propidium 

iodide at 25°C for approximately 30 min in a dark place 

and then assayed with guava easyCyte 12HT Benchtop 

Flow Cytometer (Millipore, Bedford, USA). Finally, the 

cell cycle parameters were determined using the 

CellQuest software program (Version 5.1, Becton, 

Dickinson and Company, USA).  

Molecular modeling 

 

To investigate the possible binding sites of SAM in the 

VEGFA protein, a molecular docking analysis was 

conducted using MOE v2014.090 software (Chemical 

Computing Group). The crystal structure of VEGFA 

(PBD ID: 1MKK) was downloaded from the RCSB 

Protein Data Bank [56] (http://www.rcsb.org/pdb/ 

explore/explore.do?structureId=1mkk). In addition, the 

2D or 3D structures of SAM were both obtained from 

the PubChem website [57] (https://pubchem. 

ncbi.nlm.nih.gov/). Regularization and optimization for 

VEGFA and SAM were performed with internal 

default parameters. In the analysis process, the active 

site of VEGFA was considered a rigid molecule, 

whereas the phytochemicals were treated as being 

flexible. The docked performic acid (PFA) was 

assigned a score according to its fit in the ligand 

binding pocket of VEGFA, serving as the control 

binding mode. 

 

Statistical analysis 

 

Data are presented as the mean ± standard deviation 

(SD). Statistical comparisons of data were performed 

with Student’s t-test and one-way ANOVA using the 

SPSS15.0 software (Chicago, IL, USA). p value < 0.05 

was considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 
 

Supplementary Figure 1. The effects of SAM and L-dopa on the VEGFA expression in immortalized HUVECs. (A and B) After 
treatment with indicated concentrations of SAM or L-dopa for 24 h, western blot was used to determine the VEGFA protein level in 
immortalized-HUVECs. (C and D) Real-time PCR analysis of VEGFA mRNA level after different concentrations of SAM or L-dopa treatment for 
24 h in immortalized-HUVECs. α-Tubulin was used for the loading control. The experiments were repeated for three independent times. And 
the quantitative results shown are means ± SD. * and ** indicated the significant difference. NS indicates no significant difference. 

 

 
 

Supplementary Figure 2. SAM administration enhances the acetylation level of VEGFA in immortalized HUVECs. The 

immortalized HUVECs cells were treated with 0.08 mM SAM for the 24 h, followed by Co-IP with antibody against VEGFA. 
Immunoprecipitants were immunoblotted with the indicated antibodies. 
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Supplementary Figure 3. The docked energy value between SAM and VEGFA. (A and B) As predicted, SAM fit the active pocket in 

VEGFA with the E-score
2
 values of -4.834 to -5.517, which is less than that of control binding mode, docked performic acid. 
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Supplementary Table 
 

 

Supplementary Table 1. The primers of VEGFA and α-tubulin for real-time PCR. 

Gene Name Forward Reverse 

VEGFA 5’-CACACAGGATGGCTTGAAGA-3’ 5’-AGGGCAGAATCATCACGAAG-3’ 

α-Tubulin 5’-CATGTACGTTGCTATCCAGGC-3’ 5’-CTCCTTAATGTCACGCACGAT-3’ 

 
 


