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INTRODUCTION 
 

Ovarian cancer is one of the malignant tumors of the 

female reproductive system, characterized by a high 

mortality rate. With the deepening of research on tumor 

molecular mechanisms, for example, N7-Methyl-2'-

deoxyguanosine (m7dG) affects DNA replication by 

slowing down the catalytic efficiency of DNA 

polymerase β [1], and the research of new antitumor 

drugs, for example, the method innovation of synthesis 

of Solasodine acetate [2], an anticancer steroidal 

alkaloid, the mechanism of human tumor is becoming 

gradually clear and the overall survival rate also proves 

be improved. However, pathogenesis remains unclear of 

ovarian cancer. A dualistic origin for high grade serous 

ovarian carcinoma (HGSOC) indicates that HGSOC 

may originate from both fallopian tube (FTE) and 

ovarian surface epithelium (OSE), and this may 

influence its therapeutic response [3]. Between 1995-

2014, remarkable progress has been made in OC 

treatment, enhancing survival while lowering mortality 

and incidence in the 19 jurisdictions included in the 

study [4]. Minor reductions in disease-specific mortality 

are attributable to the use of oral contraceptives, recent 

expansion of risk-reducing surgery among women from 

high-risk genetic backgrounds, and a reduction in long-

term hormone replacement [5]. On the contrary, a 

prospective study indicated that elevated levels of 

circulating sphingomyelins, 3-23 years before diagnosis 

were associated with lower OC risk, regardless of 

histotype, with stronger associations among post-

menopausal women [6]. Although OC overall survival 
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ABSTRACT 
 

Ovarian cancer is associated with a high mortality rate. In this study, we established a new immune-related 
signature that can stratify ovarian cancer patients. First, we obtained immune-related genes through 
IMMUPORT, and DEGs (Differential Expression Genes) by analyzing the GSE26712 dataset. The APP (Antigen 
Processing and Presentation) and DEG signatures were established using univariate and multivariate Cox 
models. Kaplan-Meier analysis revealed the signatures’ prognostic value in training and validation cohorts (HR: 
0.379 VS. 0.450; 0.333 VS. 0.327). Nomogram analysis was used to assess the signatures’ ability to predict the 
30-month prognosis, which was evaluated using the calibration curve and time-dependent ROC curve (30-
month AUC: 0.665 VS. 0.743). Time-dependent ROC, Decision Curve Analysis (DCA) and Integrated 
discrimination improvement (IDI) was used to compare the new model to previously published gene signatures. 
30-month AUC composite variable (0.736) was higher than 9-gene signature (0.657), and composite variable 
had a larger net benefit and a higher IDI (+2.436%) relative to the 9-gene signature. Tumor immune infiltration 
and tumor microenvironment scores of the 2 groups separated by APP signature were compared. GSEA was 
used to identify enriched KEGG pathways. Conclusively, the proposed signature can stratify ovarian cancer 
patients by risk-score and guide clinical decisions. 
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(OS) and progression-free interval (PFI) have improved, 

many clinical challenges remain, including resistance to 

cisplatin chemotherapy, tumor recurrence, and late 

diagnosis [7]. Highlighting the need for improved 

understanding of OC and identification of novel 

biomarkers. Such biomarkers may facilitate patient’s 

stratification for improved outcomes. 

 

The main treatment for OC is surgery combined with 

platinum drugs, or paclitaxel chemotherapy [8]. 

However, recent studies have highlighted the potential 

benefits of immunotherapy against various cancers, 

including OC. Therapeutic targeting of T cell inhibitory 

checkpoint proteins CTLA-4 and PD(L)1 is efficacious 

in many cancers, reducing tumor burden and increasing 

long-term survival [9]. Combining immuno-modulatory 

agents with low-dose whole-abdominal radiotherapy 

may enhance activity of beneficial immune cells while 

blocking or reprograming inhibitory ones such as 

MDSCs, M2 macrophages, and Tregs. These 

radiotherapy modalities represent new opportunities in 

OC treatment, promising to enhance the efficacy of 

immunotherapy against this disease [10]. Immuno-

therapy is associated with side effects, including skin 

toxicity and resistance [11, 12]. Here, we aimed to 

identify novel immune-related signatures that can 

stratify OC patients into high and low risk groups and 

identify those likely to benefit most from 

immunotherapy. We further explored the relationship 

between the new signatures, immune cell tumor 

infiltration and the tumor microenvironment (tumor 

stroma and immune components). 

 

RESULTS 
 

Construction of an immune-related prognostic risk 

model 
 

We found 148 antigen processing and presentation 

(APP) genes from the IMMUNE database. Of these, 11 

were identified by univariate Cox model (P <0.05): 

HLA-A, HLA-DOB, HLA-F, HSPA1L, IFNγ, LTA, 

PSMB8, PSMC1, PSME2, TAP1 and UBR1. Thus, a 

multivariate Cox regression model was performed using 

11 antigen-presenting-related genes (Table 1), and the 

APP score calculated using the formula mentioned 

above. Scores were separated using the best statistical 

cutoff of 0.794 established by maximally selected rank 

statistics (Figure 1A). Patients with APP scores lower 

than the cutoff were categorized in “low” group. The 

rest were grouped into the “high” group. The prognostic 

features of the 2 groups were evaluated in the training 

dataset using survival curves and Kaplan-Meier analysis 

(Figure 1B, 1C). OS was significantly lower for OC 

patients in the “high” group relative to the “low” group 

(HR = 0.379, 95% CI = (0.269, 0.534), p = 3.05e-08). 

Next, multivariate Cox model analysis on the training 

data using stage, age, and APP signature revealed that 

APP signature was independently prognostic in OC (HR 

= 0.41026, 95% CI = (0.291, 0.579), p = 4.13e-07). 

Patient age also emerged as an independent prognostic 

factor (HR= 1.000, 95% CI = (1.000, 1.000), p = 0.001). 

Suggesting that APP signature can stratify patients by 

OS. Next, a similar analysis was done on the validation 

dataset to validate the prognostic role of the APP 

signature (HR = 0.4242, 95% CI = (0.231, 0.781), p = 

0.005, for univariate Cox regression model) (Figure 

1D). Multivariate Cox analysis (age, stage and APP 

signature) revealed that the low APP signature was an 

independent prognostic factor of protection (HR = 

0.450, 95% CI = (0.243, 0.832), p = 0.011). In contrast, 

age and disease stage are not independent prognostic 

factors in OC. 

 

Construction of a differential gene-related 

prognostic risk model 
 

The GSE26712 dataset, which comprised of 10 normal 

ovarian epithelial tissues and 185 OC tissues, was used 

for analysis of differentially expressed genes (DEGs). 

This analysis identified 1540 DEGs, of which 973 had 

low expression and 567 high expression (Figure 2A). 

The univariate Cox model identified 130 genes 

associated with prognosis (p <0.05) (Supplementary 

Table 1). These were further analyzed with LASSO to 

reduce the dimensionality of values (Figure 2B). After 

cross validation, the optimal lambda value and 

candidate genes were identified, at which the minimal 

mean squared error, and candidate genes were used to 

calculate DEG score by establishing the multivariate 

Cox model. Next, we used maximally selected rank 

statistics to calculate an optimal cutoff value of 0.764 

(Figure 2C), which was used to stratify OC patients. 

Those scoring <0.764 were classified in the “low” 

group, which was considered to have good prognosis. 

The rest were placed in the “high” group, and had poor 

prognosis, as revealed by Kaplan-Meier analysis (HR = 

0.333, 95% CI = (0.240, 0.463), p = 5.89e-11) (Figure 

2D–2E). The multivariate Cox model (DEG score, age 

and stage) demonstrated that the DEG signature and age 

were independent factors (P<0.05). As showed in 

Supplementary Table 1, “low” group could be acted as 

independent prognostic protective factor (HR= 0.282, 

95% CI= (0.200, 0.398), P= 7.34e-13); age also was a 

prognostic risk factor (HR= 1.000, 95% CI= (1.000, 

1.000), P= 2.59e-05). In the external validation cohort, 

the DEG signature could distinguish patients with 

different prognosis. Relative to the “low” group, OS of 

patients in the “high” group was significantly worse 

(HR = 0.327, 95% CI = (0.199, 0.537), p = 9.78e-06) 

(Figure 2F). The lower DEG score was an independent 

prognostic protective factor for OC (HR = 0.309, 95% 
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Table 1. Univariate and multivariate Cox analysis of antigen-presenting-related genes. 

Genesymbol 
Univariate Cox regression model 

 
Multivariate Cox regression model 

coef HR HR.95L HR.95H P value 
 

coef HR HR.95L HR.95H P value 

HLA-A -0.12219 0.884978 0.784906 0.997809 0.045958 
 

0.227042 1.254883 0.927314 1.698163 0.141282 
HLA-DOB -0.14834 0.862136 0.796184 0.933551 0.000259 

 
-0.15474 0.856641 0.751962 0.975892 0.019968 

HLA-F -0.11502 0.891353 0.810994 0.979674 0.017034 
 

-0.10184 0.903173 0.732728 1.113266 0.339875 
HSPA1L -0.18284 0.832899 0.700867 0.989804 0.037862 

 
-0.14903 0.86154 0.709874 1.045609 0.131421 

IFNG -0.0774 0.925521 0.861848 0.993899 0.033317 
 

-0.04107 0.959764 0.858457 1.073027 0.470564 
LTA -0.09626 0.908228 0.835783 0.986954 0.023232 

 
0.021196 1.021422 0.886346 1.177083 0.769615 

PSMB8 -0.10547 0.899903 0.810651 0.998982 0.047808 
 

0.26473 1.30308 0.977904 1.736383 0.070697 
PSMC1 -0.2849 0.752087 0.580835 0.973829 0.030685 

 
-0.22198 0.800935 0.605311 1.059782 0.120284 

PSME2 -0.17636 0.838316 0.719252 0.97709 0.024039 
 

-0.08598 0.917616 0.72087 1.168059 0.484996 
TAP1 -0.13047 0.877686 0.79804 0.965281 0.007188 

 
-0.21124 0.809576 0.632694 1.03591 0.09306 

UBR1 0.358284 1.430872 1.102333 1.857329 0.007102 
 

0.316856 1.372804 1.030578 1.828675 0.030323 

 

 
 

Figure 1. Construction of APP signature. The optimal cutoff calculated by the maximally selected rank statistics (A), risk score analysis (B) 

including risk curve and distribution map of survival status in the training cohort, and the Kaplan-Meier curve grouped by APP signature in 
training cohort (C) and external validation cohort (D). 
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CI = (0.179, 0.533), p = 2.44e-05), although this was 

not statistically significant for age and disease stage as 

showed in multivariate Cox analysis. 

 

Composite variable, including APP signature and 

DEG signature, improved patient prognosis 

estimation 
 

The APP and DEG signatures were independent of each 

other as revealed by multivariate Cox regression 

analysis established by the 2 variables (HR = 0.507, 

95% CI = (0.354, 0.726), p = 0.0002; HR = 0.406, 95% 

CI = (0.288, 0.574), p = 3.12e-07). Other clinical 

variables, including age and disease stage were 

excluded from this analysis because of their small 

contributions. Based on the multivariate Cox regression 

analysis, a nomogram, a quantitative method to predict 

individual probability of overall survival, was 

established to estimate OC 30-month OS (Figure 3A). 

The prediction values of the 30-month nomogram in the 

calibration plot were very close to the 45-degree line in 

the training and validation datasets (Figure 3B–3C), 

indicating the consistency of the model. Time-

dependent ROC is shown in Figure 3D–3E. The 30-

month AUCs were 0.665 and 0.743, and the 60-month 

AUCs were 0.679 and 0.761. 

 

Comparison with previously published gene signatures 
 

Based on a 9-gene signature constructed by Tzu-Pin Lu 

and Kuan-Ting Kuo et al. [13] to predict OC OS, we 

establish a multivariate Cox regression model to 

calculate risk score and construct a signature named 9-

gene signature. The best cutoff of 0.926 calculated by 

the maximally selected rank statistics was used to 

convert the continuous scores to binary ones. Kaplan-

Meier analysis revealed that OC patients in the “high” 

group had a poor prognosis relative to the low group 

(Figure 4A). Cox models were established using APP 

signature, DEG signature, composite variable including 

APP signature and DEG signature, age, stage and 9-

gene signature, and the discriminative abilities of the 

models examined by time-dependent ROC curve and its 

AUCs (Figure 4B). The 30-month AUCs of composite 

variable, APP signature, and DEG signature were 0.736, 

0.712, and 0.718, respectively, which was better than 

the 9-gene signature (AUC=0.657) and control model 

(AUC=0.627) containing age and stage only. Upon 

 

 
 

Figure 2. Construction of DEG signature. Volcano plot for displaying differentially expressed genes in GSE26712 cohort (A), the 

procedure of data dimension reduction by lasso algorithm to select the optimal candidate genes (B), and the optimal cutoff of DEG signature  
calculated by the maximally selected rank statistics (C), the Kaplan-Meier curve grouped by DEG signature in training cohort (D) and external 
validation cohort (F), and the risk score analysis in the training cohort (E). 
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performance of 1000 resampling (the number of 

resampling seeds was set to 42), using the "bootstrap" 

method, the 30-month AUCs of APP signature, DEG 

signature, composite variable was significantly higher 

than that of the 9-gene signature (p<0.001). However, 

the 9-gene signature was better than the control model 

(p <0.01) (Figure 4C). Decision Curve Analysis 

(DCA) was used to evaluate clinical net benefit 

(Figure 4D–4E). Composite variable models provided 

a larger net benefit relative to the 9-gene signature 

when the risk threshold probability for a clinician or a 

patient ranged between 0.6 and 0.45. However, APP 

signature, DEG signature and composite variable 

model had a similar net benefit. Integrated dis-

crimination improvement (IDI) was performed using 

“survIDINRI” R package. Relative to the old 9-gene 

signature, the discriminative degree of the DEG 

signature and composite variable were significantly 

improved (4.822%, 95% CI (0.465%, 9.229%), p = 

0.020; 6.239%, 95% CI (2.135%, 10.053%, p <0.001) 

(Figure 4F–4G), but the IDI increase in APP signature 

was not significant (2.436%, 95% CI (-0.706%, 

6.103%), p =0.119). 

Analysis of immune cell infiltration and GSEA in 

different subgroups 
 

The “immuneEstimation” data, calculated from RNA-

Seq expression profiles using TIMER algorithm was 

analyzed to establish the abundance of 6 tumor-

infiltrating immune cells (TIICs). This analysis 

identified 367 cases of immune cell infiltration in OC. 

Next, violin plots were used to compare the 

abundance of 6 TIICs in OC, and groups defined 

based on APP signature (Figure 5A). B cell, CD4 T 

cell, neutrophil and dendritic cell scores were higher 

in the low group relative to the high group (p = 0.007, 

<0.001, 0.005 and <0.001) (Figure 5B). However, 

CD8 T cell and macrophage scores were not 

significantly different between the 2 groups, 

indicating that good prognosis associated with the low 

group may result from higher infiltration by B cells, 

CD4 T cells, neutrophils and dendritic cells. Next, 

immune and stromal scores were calculated using the 

“estimate” package on R, and divided into 2 groups 

by APP signature. Similarly, immune scores in the 

low group were higher than in the high group  

 

 
 

Figure 3. Construction of nomogram and evaluation of its prediction ability. The nomogram plot (A) composed of APP signature 
and DEG signature, the calibration curve for the estimation of 30-month survival probability in the training cohort (B) and the validation 
cohort (C), and the time-dependent ROC of 30 months describe the discriminative ability of the nomogram in the training cohort (D) and the 
validation cohort (E). 
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(p = 0.001). There were no significant differences 

between stromal cell scores and total scores. 

 

Because there were no immune-related, as well as up-

regulated pathways in the high group, we selected the 

top 5 pathways based on the enrichment score and along 

with them, displayed the 5 immune-associated and up-

regulated pathways in the low group (Figure 5C). The 5 

immune-associated pathways were associated with 

antigen processing and presentation, natural killer cell 

mediated cytotoxicity, T cell receptor signaling pathway, 

intestinal immune network for IGA production and 

systemic lupus erythematosus (Figure 5D). The 5 

upregulated pathways in the high group were associated 

with WNT signaling pathway, hedgehog signaling 

pathway, glycosaminoglycan biosynthesis chondroitin 

sulfate, basal cell carcinoma and axon guidance. This 

result was consistent with the above conclusion. The 

lower APP signature may increase tumor immune cell 

infiltration by up-regulating immune-related pathways,

 

 
 

Figure 4. Comparison with previously published gene signatures. The Kaplan-Meier curve grouped by 9-gene signature in training 

cohort (A), the time-dependent ROC at 30 months in the TCGA cohort (B), the box plot for comparing AUC values of different models ("****" 
means P value &lt;0.0001) (C), Decision Curve Analysis (DCA) (D–E), and the plot of Integrated Discrimination Improvement (IDI) (F–G). 
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improving outcomes. The 10 KEGG pathways 

associated with DEG signature were displayed in Figure 

5E. It was worth noting that the "ANTIGEN_ 

PROCESSING_AND_PRESENTATION" KEGG 

pathway was enriched by the DEG signature low-risk 

group, which was consistent with the previous results. 

Reasonably, the good OS of the DEG signature low-risk 

group may be related to the tumor immune response, but 

its specific mechanism remained to be further studied. 

 

DISCUSSION 
 

Antigen-presenting cells (APC) include dendritic cells, 

macrophages, and B lymphocytes. The ability to 

recognize, present, and process tumor antigens is a critical 

factor affecting cancer prognosis. Breast cancer studies 

have shown that differences in antigen processing and 

presentation caused differential immune-mediated 

antitumor responses activated by radiation [21]. Some 

research is devoted to the research and development of 

cancer vaccines. Nanoparticles, an adjuvant for cancer 

vaccines, come into people's vision, which can enhance 

antigen presentation and stimulate immune responses 

[22]. CD44-targeted PLGA nanoparticles can be a carrier 

of chemotherapy drugs and siRNA and selectively 

delivered them to the corresponding targets to improve 

OC chemotherapy resistance [23]. Additionally, cytokines 

regulate the balance between pro- and anti-tumor 

immunity. Local tumor-associated macrophages activated 

by T-cells, IFN-γ and GM-CSF may improve antigen 

processing and presentation by host macrophages to 

antigen-specific T cells. Activation of host macrophages 

transforms the TME from immunosuppressive to 

immunostimulatory and has anti-OC effects [24]. We 

identified 11 antigen presentation and processing genes 

(HLA-A, HLA-DOB, HLA-F, HSPA1L, IFNγ, LTA, 

PSMB8, PSMC1, PSME2, TAP1 and UBR1) related to 

OC prognosis upon TCGA data analysis, consistent with 

previous studies. HLA-A genotypes are valuable 

prognostic biomarkers in epithelial OC, and their 

downregulation is associated with poor survival [25]. 

Furthermore, downregulated IFNγ was also associated 

with poor OC survival [26]. Here, we uncovered DEGs in 

OC and ovarian epithelial tissues, identified those with 

prognosis value, and reduced the number of candidate 

genes by LASSO regression analysis. Surprisingly, the 

DEG signature performed very well on the training 

and validation datasets, and can stratify OC patients into 

high- and low-risk groups. Relative to APP signature, the 

DEG signature may have superior OC stratification 

capacity.  

 

Although bevacizumab has been used in advanced OC 

treatment alone or in combination with Olaparib with 

 

 

 

Figure 5. Analysis of immune cell infiltration and GSEA in different subgroups. The B cell, CD4 T cell, neutrophil and Dendritic 
scores of the two subgroups in TCGA cohort (A), the StromalScore, ImmunesSore, and ESTIMATEScore of the two subgroups in TCGA cohort 
(B); ten KEGG pathways analyzed by GSEA (C), in which groups was separated by APP signature, and two immune-related KEGG pathways (D); 
ten KEGG pathways analyzed by GSEA (E), in which groups was grouped by DEG signature. 
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substantial benefit in OC patients with homologous 

recombination deficiency, including those without a 

BRCA mutation [27, 28], late stage disease is associated 

with a 29% 5-year survival rate [29]. The improvement 

of OC overall survival rate, especially in advanced OC is 

a common problem. However, the pursuit of precise 

treatment is a promising entry point. Effective 

stratification of OC patients may identify those likely to 

benefit from chemotherapy, targeted agents, or 

immunotherapy [30, 31]. MiROvaR, a microRNA-based 

signature, that can classify OC patients into 2 groups by 

prognostic value [32]; Manuela Tumiati established a 

functional homologous recombination assay to predict 

primary chemotherapy response and long-term survival 

in OC patients [33]. An immune-related gene signature 

for OC is lacking. Thus, the signature we have 

established may identify tumor immune deficiency 

populations who may benefit from immunotherapy, 

which is critical for clinicians and patients making 

treatment choices. 

 

However, development of biomarkers that can predict 

responsiveness to various immunotherapies may allow 

better treatment selection. Therefore, OC immuno-

therapies have to take into account immune suppressive 

networks within the TME [34]. Infiltration by immune 

cells, and activated T cell recruitment to tumor sites are 

critical for tumor immunity as they affect tumor cell 

killing [35]. In lung cancer, Treg and Th17 cells in the 

TME modulate cytokine and chemokine production, 

promote immune cell recruitment and help regulate anti-

tumor and pro-tumor immune cell activation states [36]. 

However, T-cell infiltration can be impeded by local 

TME factors, including dense stroma, aberrant 

vasculature, and immunosuppressive factors such as 

TGFβ, which is an immunosuppressive cytokine that 

inhibits T-cell effector function by inhibiting antigen-

presenting DCs [37]. Based on the TCGA transcriptome 

data, we obtained data on immune cells abundance in OC 

tissue and scored the TME, proving that there is a 

significant difference in tumor immune cell infiltration 

and tumor purity in different immune risk groups. The 

low-risk group of APP signature, including T cells, NK 

cells, and dendritic cells, has a higher degree of immune 

cells infiltration relative to the high-risk group. Tumor 

cells purity in the low-risk group is lower than in the 

high-risk group. GSEA enrichment analysis found that T-

cells and NK cell-related KEGG pathways were 

upregulated in the low-risk group. These results indicate 

that APP signature may reflect tumor immunity in OC 

patients well, which may be a valuable reference for 

clinical immunotherapy.  

 

Our study identified new gene signatures. These 

signatures can identify high and low-risk OC patients, 

provide valuable clinical guidance for immunotherapy, 

and provide references for individualized treatment 

measures in OC. 

 

MATERIALS AND METHODS 
 

Data acquisition and processing 
 

OC transcriptome data were downloaded from TCGA 

(https://www.cancer.gov/) and ICGC database 

(https://dcc.icgc.org/). The TCGA dataset comprised of 

379 OC samples, of which 2 with incomplete survival 

data and 3 replicates were excluded. The ICGC dataset 

had 93 samples with complete follow-up data. The 

count data of RNAseq of OC was normalized using 

“limma” package on R, and transformed to log2 scale 

for further analysis. 

 

APP signature construction 

 

Given that tumor immunity is closely related to the 

antigen presentation and processing function of immune 

cells, 148 antigen-presenting-related genes were obtained 

from ImmPort (https://www.immport.org/home) to 

construct univariate Cox model and identify candidate 

genes for establishing a multivariate Cox model. The 

multivariate Cox model was used to calculate risk score 

using the formula; 
1

m

m mm
X


   (where X is 

candidate gene expression value, and β is regression 

coefficient obtained from  the multivariate Cox model). 

Maximally selected rank statistics was used to determine 

an optimal cutoff value and divide continuous risk scores 

into binary variables. The risk score model obtained in 

the training dataset is termed APP signature.  

 

DEG signature construction 
 

The GSE26712 dataset was downloaded GEO 

(https://www.ncbi.nlm.nih.gov/gds/) and consisted of 10 

normal ovarian epithelial tissues and 185 OC tissues. 

This dataset was used to identify DEGs in normal vs 

tumor tissues. Adjusted P (adj. P) values were applied 

to correct false positive results using default Benjamini-

Hochberg false discovery rate (FDR) method [14]. The 

DEG analysis threshold was set at adj. P <0.05 and | 

log2 FC|>1. This analysis identified 1,540 DEGs. They 

were then incorporated into the univariate Cox 

regression model for candidate prognostic DEGs 

selection. Due to the huge number of DEGs, LASSO 

algorithm was used to reduce data dimensionality, 

which narrowed candidate DEGs to 8. Risk score for the 

8 candidate DEGs was calculated using multivariate 

Cox model with the formula 
1

m

m mm
X


  (where X 

is candidate gene expression value, and β is regression 

coefficient obtained from multivariate Cox model). The 

https://www.cancer.gov/
https://dcc.icgc.org/
https://www.immport.org/home
https://www.ncbi.nlm.nih.gov/gds/
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new risk score model is termed DEG signature. OS was 

presented as Kaplan-Meier curves in 2 risk score groups 

that were separated by an optimal cutoff value 

determined by the maximally selected rank statistics. 

 

Nomogram construction 

 

Nomograms are designed to answer a specific question 

and when appropriately used, they are valuable tools for 

clinicians and patients. They generate an individual’s 

probability of having a certain clinical outcome by 

integrating diverse prognostic and determinant variables 

[15]. Only the APP and DEG signatures were integrated 

into the “rms” R package to build a multivariate Cox 

model, because clinical variables like age and stage 

contributed little to the model compared with APP and 

DEG signature. Next, a nomogram was constructed to 

estimate probability of patient survival. Based on the 

APP and DEG signatures, nomogram scores for all 

patients could be obtained, as well as the total score 

(sum of the 2 scores) and survival probability. 

Considering the consistency between the actual survival 

and the predicted survival probability of the nomogram, 

the nomogram predicted the 30-month survival 

probability after OC diagnosis. A calibration curve was 

used to describe the actual survival probability and the 

prediction value of the nomogram on OC patients in the 

training and the validation datasets. The closeness of 

bias-corrected lines for both the 30-month and the 

diagonal line indicated that the model had good 

consistency [16]. Time-dependent receiver operating 

characteristic (time-dependent ROC) curve was 

constructed on the training dataset and the external 

validation dataset, and the area under curve (AUC) 

calculated to describe the model’s ability to discriminate.  

 

Decision curve analysis and integrated discrimination 

improvement 
 

Decision curve analysis (DCA) assesses model utility in 

decision making relative to conventional performance 

measures, such as P values, relative risks, and the 

concordance index, which cannot indicate whether a 

model is worth using, which of 2 models is better, or 

whether data on an additional predictor is necessary [17, 

18]. We therefore constructed a DCA to compare clinical 

net benefit between the APP signature, DEG signature 

and 9-gene signature published by Tzu-Pin Lu and  

Kuan-Ting Kuo. The significance of the new signatures 

on OC prognosis was also evaluated. ROC curve and its 

AUC were used to compare the differentiating ability of 

the gene signatures. Additionally, IDI was used to 

quantitatively evaluate improvements in the diagnostic 

performance of the new signatures over the 9-gene 

signature. IDI not only visually displayed the proportion 

of OC patients correctly reclassified, but also calculated 

the cost-effectiveness, a function that conventional 

indicators do not have. 

 

Tumor immune cell infiltration 
 

Immune cell infiltration data for TCGA tumor  

samples were obtained from TIMER (https://cistrome. 

shinyapps.io/timer/) [19], including 6 types of immune 

cell infiltration data, including B cells, CD4 T cells, 

CD8 T cells, neutrophils, macrophages and dendritic 

cells, in more than 20 tumors. Data analysis, including 

abundance of infiltrating immune cells was done using 

TIMER algorithm based on RNA-Seq expression 

profiles data. We matched the samples of the training 

dataset with the TIMER data, and then got immune cells 

infiltration data for 367 OC samples. Wilcox non-

parametric test was used to compare whether there were 

differences in the infiltration levels of the 6 immune 

cells in the 2 groups separated by APP signature. 

 

Tumor microenvironment 

 

The tumor microenvironment (TME) is the cellular 

environment in which a tumor exists. Other than tumor 

cells, the TME comprises of blood vessels, extracellular 

matrix, stromal cells, fibroblasts, immune cells (including T 

lymphocytes, B lymphocytes, natural killer cells and 

natural killer T cells) [20]. Based on TCGA OC 

transcriptome expression data, we obtained TME scores 

through the “estimate” R package, including StromalScore, 

ImmunesSore, and ESTIMATEScore. The ESTIMATE 

algorithm performs single sample Gene Set Enrichment 

Analysis to predict tumor purity. The scores were divided 

into 2 groups by APP signature, and the score differences 

between the groups compared by Wilcox test. 

 

GSEA 
 

GSEA (Gene Set Enrichment Analysis) was performed 

to identify KEGG pathways with P <0.05 and FDR 

<0.25 between the 2 groups. First, OC expression data 

was divided into high group and low group by APP 

signature DEG signature, respectively, and KEGG 

pathway enrichment analysis done using GSEA 4.0 

software. The top-20 upregulated pathways were 

selected in 2 groups based on enrichment analysis score. 

The focus of this study was to assess the relationship 

between tumor immunity and OC prognosis. Therefore, 

all immune-related pathways were extracted from these 

40 pathways to elucidate underlying mechanisms on 

how immunity affects tumors. 
 

Statistical analysis 
 

All statistical analyses were done using R (https://www.r-

project.org/). GSEA software (https://www.gsea-

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://www.r-project.org/
https://www.r-project.org/
https://www.gsea-msigdb.org/gsea/index.jsp
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msigdb.org/gsea/index.jsp) was for gene enrichment 

analysis. Survival data are presented as Kaplan-Meier 

curves, and comparison between groups done by log-rank 

test. Time-dependent ROC curve and its AUC were used 

to describe the prognostic models’ discriminative 

abilities. IDI value was also used to compare 

distinguishing abilities between different models. P = 

<0.05 indicated statistical significance. 
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SUPPLEMENTARY MATERIALS  

 

Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Univariate and multivariate Cox analysis of DEGs. 

 


